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Abstract. In this paper, the uncertainty property is represented by Z-number as 
the coefficients and variables of the fuzzy equation. This modification for the 
fuzzy equation is suitable for nonlinear system modeling with uncertain parame-
ters. Here, we use fuzzy equations as the models for the uncertain nonlinear sys-
tems. The modeling of the uncertain nonlinear systems is to find the coefficients 
of the fuzzy equation. However, it is very difficult to obtain Z-number coeffi-
cients of the fuzzy equations. 
Taking into consideration the modeling case at par with uncertain nonlinear sys-
tems, the implementation of neural network technique is contributed in the com-
plex way of dealing the appropriate coefficients of the fuzzy equations. We use 
the neural network method to approximate Z-number coefficients of the fuzzy 
equations. 

Keywords: Fuzzy Modeling, Z-number, Uncertain Nonlinear System. 

1 Introduction 

An exceptional case of uncertain system modeling at par with fuzzy equation is fuzzy 
polynomial interpolation. Polynomials have been used with fuzzy coefficients in order 
to interpolate uncertain data that are expressed using fuzzy numbers [1]. Interpolation 
methodology has been broadly utilized for function approximation as well as system 
identification [2]. In [3], the fuzzy polynomial interpolation is applied for system mod-
eling. The theory problem associated with polynomial interpolation is researched in [4]. 
It elaborates that the interpolation of the function includes time complexity at par with 
data points. In [5], two-dimensional polynomial interpolation is demonstrated. Smooth 
function approximation has been broadly implemented currently [6]. It yields a model 
by utilizing Lagrange interpolating polynomials at the points of product grids [1,7]. 
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However if it involves uncertainties in the interpolation points, the above suggested 
techniques will not work appropriately. 
The fuzzy equation can be regarded as a generalized form of the fuzzy polynomial. 
Compared with the normal fuzzy systems, the fuzzy equations are more easy to be ap-
plied. There are several approaches to construct the fuzzy equations. [8] used the fuzzy 
number on parametric shapes and replaced the original fuzzy equations with crisp linear 
systems. [9] proposed the homotypic analysis technique. [10] used the Newton meth-
odology. In [11] the solution associated to the fuzzy equations is studied by the fixed 
point technique. The numerical solution associated to the fuzzy equations can be ex-
tracted by iterative technique [12], interpolation technique [13] and the Runge-Kutta 
technique [14]. The neural networks may also be used to solve fuzzy equations. In [15], 
the simple fuzzy quadratic equation is resolved by the neural network method. [16] 
extended the result of [15] to fuzzy polynomial equations. In [17], the solution of dual 
fuzzy equation is obtained by neural networks. A matrix pattern associated with the 
neural learning has been quoted in [18]. The predictor-corrector approach is applied in 
[19]. 
The decisions are carried out based on knowledge. In order to make the decision fruit-
ful, the knowledge acquired must be credible. Z-numbers connect to the reliability of 
knowledge [20]. Many fields related to the analysis of the decisions use the ideas of Z-
numbers. Z-numbers are much less complex to calculate when compared to nonlinear 
system modeling methods. Z-number is abundantly adequate number than the fuzzy 
number. Although Z-numbers are implemented in many literatures, from theoretical 
point of view this approach is not certified completely. There are few structure based 
on the theoretical concept of Z-numbers [21]. [22] gave an inception which results in 
the extension of Z-numbers. [23] proposed a theorem to transfer Z-numbers to the usual 
fuzzy sets. In [20] a novel approach was followed for the conversion of Z-number into 
fuzzy number. 
In this paper, we use fuzzy equations to model the uncertain nonlinear systems, where 
the coefficients and variables are Z-numbers. Z-number is a novel idea that is subjected 
to a higher potential in order to illustrate the information of the human being as well as 
to use in information processing [20]. Z-numbers can be regarded as to answer ques-
tions and carry out the decisions [24]. This paper is one of the first attempts in finding 
the coefficients of fuzzy equations based on Z-numbers. We use the neural network 
method to approximate the coefficients of the fuzzy equations. The standard backprop-
agation method is modified, such that Z-numbers in the fuzzy equations can be trained. 

2 Nonlinear system modeling with fuzzy equations and Z-
numbers 

A general discrete-time nonlinear system can be described as  
 捲賃袋怠 噺 喧違岷捲違賃 ┸ 拳賃峅┸ 嫌賃 噺 圏博岷捲違賃峅 (1) 

 Here we consider 激賃 樺 恩通 as the input vector, 捲賃 樺 恩鎮 is regarded as an internal state 
vector and 鯨賃 樺 恩陳 is the output vector. 喧 and 圏 are noted as generalized nonlinear 
smooth functions 喧┸ 圏 樺 系著. Define 鯨賃 噺 岷嫌賃袋怠脹 ┸ 嫌賃脹 ┸ ┼ 峅脹 and 激賃 噺 岷激賃袋怠脹 ┸ 激賃脹 ┸ ┼ 峅脹. 
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Suppose
擢聴擢掴 is non-singular at the instance 捲賃 噺 ど, 激賃 噺 ど┸ this will create a path to-

wards the following model  

 sk  sk1
T ,sk2

T ,wk
T ,wk1

T ,   
 

(2) 

 
 Where よ岫ゲ岻 is an nonlinear difference equation exhibiting the plant dynamics, 激賃 
and 鯨賃 are computable scalar input and output respectively. The nonlinear system 
which is represented by (2) is implied as a NARMA model. The input of the system 
with incorporated nonlinearity is considered to be as  

xk  sk1
T ,sk2

T ,wk
T ,wk1

T ,T
 

 Taking into consideration the nonlinear systems as mentioned in (plant), it can be 
simplified as the following linear-in-parameter model  

 嫌賃 噺 布 布 決沈珍喧沈岫捲賃岻圏珍岫検賃岻陳
珍退怠

津
沈退怠  (3) 

 here 決沈珍 is considered to be the linear parameter, 喧沈岫捲賃岻 and 圏珍岫検賃岻 are nonlinear func-
tions. The variables related to these functions are quantifying input and output. 
The modeling of uncertain nonlinear systems can be achieved by utilizing the linear-
in-parameter models linked to fuzzy parameters. We assume the model of the nonlinear 
systems (3) has uncertainties in the 決沈珍 ,捲賃 and 検賃  . These uncertainties are in the sense 
of Z-numbers [25]. 
Definition 1. If 懸 is: 1) normal, there exists 高待 樺 恩 in such a manner 懸岫高待岻 噺 な , 2) 
convex, 懸岫紘高 髪 岫な 伐 紘岻高岻 半 min版懸盤高┸ 懸岫肯岻匪繁 ┸ 褐高┸ 肯 樺 恩┸ 褐紘 樺 岷ど┸な峅, 3) upper 
semi-continuous on 恩┸ 懸岫高岻 判 懸岫高待岻 髪 綱, 褐高 樺 軽岫高待岻┸ 褐高待 樺 恩┸ 褐綱 伴 ど┸ 軽岫高待岻is a 
neighborhood, 4) 懸袋 噺 岶高 樺 恩┸ 懸岫高岻 伴 ど岼 is compact, then 懸 is a fuzzy variable, 懸 樺継┺ 迎 蝦 岷ど┸な峅 . 
The fuzzy variable 懸 can be also represented as 

 懸 噺 岫懸┸ 懸岻 (4) 
  Where 懸 is the lower-bound variable and 懸 is the upper-bound variable. 
Definition 2. A 傑 -number has two components傑 噺 岷懸岫高岻┸ 喧峅. The primary component 懸岫高岻 is termed as a restriction on a real-valued uncertain variable 高. The secondary 
component 喧 is a measure of reliability of 懸 . 喧 can be reliability, strength of belief, 
probability or possibility. When 懸岫高岻 is a fuzzy number and 喧 is the probability distri-
bution of  , 傑 -number is defined as 傑袋 -number. When both 懸岫高岻 and 喧 are fuzzy 
numbers, 傑 -number is defined as 傑貸 -number. 傑袋 -number carries more information than 傑貸 -number. In this paper, we use the defi-
nition of 傑袋-number, i.e.,傑 噺 岷懸┸ 喧峅┸ 懸 is a fuzzy number and 喧 is a probability distri-
bution. 
We use so called membership functions to express the fuzzy number. One of the most 
popular membership function is the triangular function 

 v  Ga,b,c 
a
ba

a    b
c
cb

b    c
otherwisev  0   

 

(5) 
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 and trapezoidal function  

 v  Ga,b,c,d 

a
ba

a    b
d
dc

c    d

1 b    c

otherwisev  0   

 

(6) 

 The probability measure is expressed as 

 喧 噺 豹 航塚岫高岻喧岫高岻穴高眺  (7) 

 where 喧 is the probability density of 高 and R is the restriction on 喧┻ For discrete 傑 -
numbers  

 喧岫懸岻 噺 布 航塚岫高沈岻喧岫高沈岻津
沈退怠  (8) 

Definition 3. The fuzzy number 懸 in association to the 糠 -level is illustrated as  

 岷懸峅底 噺 岶欠 樺 恩┺ 懸岫欠岻 半 欠岻岼 
 

(9) 

 
 Where ど 隼 糠 判 な┸ 懸 樺 継┻  
Therefore岷懸峅待 噺 懸袋 噺 岶高 樺 恩┸ 懸岫高岻 伴 ど岼  Since 糠 樺 岷ど┸な峅┸ 岷懸峅底  is a bounded men-
tioned as 懸底 判 岷懸峅底 判 懸底 The 糠 -level of 懸 in midst of 懸底 and 懸底 is explained as  岷懸峅底 噺 岫懸底 ┸ 懸底岻 懸底 and 懸底 signify the function of 糠┻ We state 懸底 噺 穴凋岫糠岻┸ 懸底穴喋岫糠岻┸ 糠 樺 岷ど┸な峅┻  
Definition 4. The 糠 -level of 傑 -number 傑 噺 岫懸┸ 鶏岻 is demonstrated as 

 岷傑峅底 噺 岫岷撃峅底 ┸ 岷喧峅底岻 (10) 
 where ど 隼 糠 判 な┻ 岷喧峅底 is calculated by the Nguyen's theorem  

p  pv  pv,v  P,P   

 where pv  p|  v  . So 岷傑峅底can be expressed as the form 糠 -
level of a fuzzy number  

 岷傑峅底 噺 岾傑底 ┸ 傑底峇 噺 岫盤懸銚┸ 鶏銚匪┸ 岾懸銚 ┸ 鶏銚峇岻 

 
(11) 

 where 喧底 噺 懸底喧岫高沈底岻┸ 喧底 噺 懸底喧岫高沈底岻 ,岷高沈峅底 噺 岫高沈底 ┸ 高沈底岻 .  

Similar with the fuzzy numbers [26-29], 傑 -numbers are also incorporated with three 
primary operations: 妓┸宜 and 駒 . These operations are exhibited by: sum subtract mul-
tiply and division.  The operations in this paper are different definitions with [20]. The 糠 -level of 傑 -numbers is applied to simplify the operations. 
Let us consider 傑怠 噺 岫懸怠┸ 喧怠岻 and 傑態 噺 岫懸態┸ 喧態岻 be two discrete 傑 -numbers illustrat-
ing the uncertain variables 高怠 and 高態, デ 喧怠岫高怠賃岻津賃退怠 噺 な , デ 喧態岫高態賃岻津賃退怠 噺 な. The op-
erations are defined  

Z12  Z1  Z2  v1  v2,p1  p2  
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 where   ,,  . 
The operations for the fuzzy numbers are defined as [26]  

 

v1  v2  v1
  v2

,v1
  v2



v1  v2  v1
  v2

,v1
  v2



v1  v2 
minv1

v2
,v1

v2
,v1

v2
,v1

v2


maxv1
v2

,v1
v2

,v1
v2

,v1
v2



  

 

(13) 

 For all 喧怠 茅 喧態 operations, we use convolutions for the discrete probability distribu-
tions 

p1  p2  
i

p11,ip22,ni   p12
 

 The above definitions satisfy the Hukuhara difference [30-32], 

Z1 H Z2  Z12

Z1  Z2  Z12  
 Here if 傑怠 宜張 傑態 prevails, the 糠 -level is  

Z1 H Z2  Z1
  Z2

,Z1
  Z2


 

 Obviously, 傑怠 宜張 傑怠 噺 ど , 傑怠 宜張 傑怠 塙 ど . 
Also the above definitions satisfy the generalized Hukuhara difference [33]  

 Z1 gH Z2  Z12 
1 Z1  Z2  Z12

2 Z2  Z1  1Z12

  

 

(14) 

 It is convenient to display that 1) and 2) in combination are genuine if and only if 傑怠態 
is a crisp number. With respect to 糠 -level what we got are 岷傑怠 祇直張 傑態峅底 噺岷min 峽傑怠底 伐 傑態底 ┸ 傑怠底 伐 傑態底峺 ┸ max 岶傑怠底 伐 傑態底 ┸ 傑怠底 伐 傑態底岼峅 and If 傑怠 宜直張 傑態 and 傑怠 宜張 傑態 

subsist, 傑怠 宜張 傑態 噺 傑怠 宜直張 傑態. The circumstances for the inerrancy of 傑怠態 噺傑怠 宜直張 傑態 樺 継 are  

 

な岻 班 傑怠態底 噺 傑怠底 伐 傑態底  欠券穴 傑怠態底 噺 傑怠底 伐 傑態底拳件建月 傑怠態底  件券潔堅結欠嫌件券訣 傑怠態底  穴結潔堅結欠嫌件券訣傑怠態底 判 傑怠態底  に岻 班 傑怠態底 噺 傑怠底 伐 傑態底 欠券穴 傑怠態底 噺 傑怠底 伐 傑態底 拳件建月 傑怠態底  件券潔堅結欠嫌件券訣 傑怠態底  穴結潔堅結欠嫌件券訣┸ 傑怠態底 判 傑怠態底
 (15) 

 where 褐糠 樺 岷ど┸な峅  
If  懸 is a triangular function, the absolute value of Z –number 傑 噺 岫懸┸ 喧岻 is 

 】傑岫高岻】 噺 岫】欠怠】 髪 】決怠】 髪 】潔怠】┸ 喧岫】欠態】 髪 】決態】 髪 】潔態】岻岻 (16) 
 If  懸怠 and 懸態 are triangular functions, the supremum metric for Z -numbers 傑怠 噺
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岫懸怠┸ 喧怠岻 and 傑態 噺 岫懸態┸ 喧態岻 is given as  経岫傑怠┸ 傑態岻 噺 穴岫懸怠┸ 懸態岻 髪 穴岫喧怠┸ 喧態岻 
 in this case 穴岫ゲ┸ゲ岻 is the supremum metrics considering fuzzy sets [26]. 経岫傑怠┸ 傑態岻 is 
incorporated with the following possessions:  

DZ1  Z,Z2  Z  DZ1,Z2

DZ2,Z1  DZ1,Z2

DZ1,kZ2  ||DZ1,Z2

DZ1,Z2  DZ1,Z  DZ,Z2  
 where 樺 恩 , 傑 噺 岫懸┸ 喧岻 is 傑 -number and 懸 is triangle function. 
Definition 5. Let 傑楓 denotes the space of 傑 -numbers. The 糠 伐 level of 傑 -number valued 
function 罫┺ 岷ど┸ 欠峅 蝦 傑楓 is 罫岫懸┸ 糠岻 噺 岷罫岫懸┸ 糠岻┸ 罫岫懸┸ 糠岻峅 
 where 樺 傑楓 , for each 糠 樺 岷ど┸な峅 . 
With the definition of Generalized Hukuhara difference, the gH-derivative of 罫 at 懸待 
is expressed as  

 
穴穴建 罫岫懸待岻 噺 lim朕蝦待 な月 岷罫岫懸待 髪 月岻 宜直張 罫岫懸待岻峅 (16) 

 
 In (17), 罫岫懸待 髪 月岻 and 罫岫懸待岻 exhibits similar style with 傑怠 and 傑態 respectively in-
cluded in (14). 
Now we utilize the fuzzy equation (3) to model the uncertain nonlinear system (1). 
Modeling with fuzzy equation (or fuzzy polynomial ) can be regarded as fuzzy interpo-
lation. In this paper, we utilize the fuzzy equation (1) to model the uncertain nonlinear 
system (1), in such a manner that the output related to the plant 嫌賃 can approach to the 
desired output 嫌賃茅 ,  

 min調入 押嫌賃 伐 嫌賃茅押 (18) 

This modeling object can be regarded as to detect 決沈┸珍 for the following fuzzy equation 

 sk
  

i1

n


j1

m

bij pixqjy   
 

(19) 

 where 捲追 噺 岷嫌賃貸怠脹 ┸ 嫌賃貸態脹 ┸ ┼ ┸ 拳賃脹 ┸ 拳賃貸怠脹 ┸ ┼ 峅脹 ┻  
3 Z-number parameter estimation with neural networks 

We design a neural network to represent the fuzzy equation (3), see Fig. 1. The inputs 
to the neural network are 捲賃 and 検賃 , the output is Z-number 傑賃 ┻ The main idea is to 
detect appropriate weight of neural network 決沈┸珍 in such a manner that the output of 
the neural network 傑賃 converges to the desired output 嫌賃茅 .  
The input Z-numbers 捲賃 and 検賃 are first applied to 糠 -level as in (11) 
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岷捲賃峅底 噺 岫捲賃底 ┸ 捲賃底岻岷検賃峅底 噺 岫検賃底 ┸ 検賃底岻 (20) 

 Then in the first hidden units we have 

 
岷も沈峅底 噺 岫喧沈盤捲賃底匪┸ 喧沈盤捲賃底匪       件 噺 な┸ ┼ ┸ 券岻範も珍飯底 噺 岫圏珍 岾検賃底峇 ┸ 圏珍盤検賃底匪       倹 噺 な┸ ┼ ┸ 兼岻 (21) 

 and in the second hidden units we have  

 
範も沈┸珍飯底 噺 岶デ も沈 底も珍底沈┸珍樺朝 髪 デ も沈 底も珍底沈┸珍樺潮 髪 デ も沈底沈┸珍樺町 も珍底 ┸  デ も沈 底も珍底沈┸珍樺朝嫦 髪 デ も沈底も珍 底沈┸珍樺潮嫦 髪 デ も沈底も珍底沈┸珍樺町嫦 岼  (22) 

 

 where 軽 噺 岶件┸ 倹 嵳も沈底 半 ど┸ も珍 底 半 ど岼 ,頚 噺 岶件┸ 倹 嵳も沈底 隼 ど┸ も珍底 隼 ど岼  , 芸 噺 岶件┸ 倹 嵳も沈底 隼ど┸ も珍底 半 ど岼 , 軽嫗 噺 件┸ 倹 嵳も沈底 半 ど┸ も珍底 半 ど岼  , 頚嫗 噺 件┸ 倹 嵳も沈底 隼 ど┸ も珍底 隼 ど岼┸  芸嫗 噺件┸ 倹 嵳も沈底 隼 ど┸ も珍底 隼 ど岼 . 
The neural network output is  

 
岷s賃峅底 噺 岶デ も沈┸珍底b沈┸珍底沈┸珍樺朝 髪 デ も沈┸珍底b沈┸珍底沈┸珍樺潮 髪 デ も沈┸珍底沈┸珍樺町 決沈┸珍底 ┸  デ も沈┸珍底b沈┸珍底沈┸珍樺朝嫦 髪 デ も沈┸珍底b沈┸珍底沈┸珍樺潮嫦 髪 デ も沈┸珍底b沈┸珍底沈┸珍樺町嫦 岼  (23) 

 where 軽 噺 岶件┸ 倹 嵳も沈┸珍底 半 ど┸ b沈┸珍底 半 ど岼 ,頚 噺 岶件┸ 倹 嵳も沈┸珍底 隼 ど┸ b沈┸珍底 隼 ど岼  , 芸 噺岶件┸ 倹 嵳も沈┸珍底 隼 ど┸ b沈┸珍底 半 ど岼 , 軽嫗 噺 岶件┸ 倹 嵳も沈┸珍底 半 ど┸ b沈┸珍底 半 ど岼  , 頚嫗 噺 岶件┸ 倹 嵳も沈┸珍底 隼ど┸ b沈┸珍底 隼 ど岼┸  芸嫗 噺 岶件┸ 倹 嵳も沈┸珍底 隼 ど┸ b沈┸珍底 隼 ど岼. 
 

 
Fig. 1. Fuzzy equation in the form of neural network.  

 
In order to train the weights, we need to define a cost function for the fuzzy numbers. 
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The error of the training is  結賃 噺 嫌賃茅 伐 嫌賃 
 

 where 岷嫌賃茅峅底 噺 岾嫌賃茅 底 ┸ 嫌賃茅 底峇 ┸ 岷嫌賃 峅底 噺 磐嫌賃 底 ┸ 嫌賃 底卑 ┸ 岷結賃 峅底 噺 岫結賃 底 ┸ 結賃 底岻  The cost 

function is defined as 

 

め賃 噺 め底 髪 め底
 め底 噺 なに 岫嫌賃茅底 伐 嫌賃茅 底岻態 め底 噺 なに 岫嫌賃茅 底 伐 嫌賃茅底岻態 

(24) 

 め賃 is considered to be a scalar function. It is quite obvious,め賃 蝦 ど means 岷嫌賃峅底 蝦岷嫌賃茅峅底  
The vital positiveness lies within the least mean square (24) is that it has a self-correct-
ing feature that makes it suitable to function for arbitrarily vast duration without shifting 
from its constraints. The mentioned gradient algorithm is subjected to cumulative series 
of errors and is convenient for long runs in absence of an additional error rectification 
procedure. It is more robust in statistics, identification and signal processing [34]. 
Now we use gradient method to train Z-number weight 決沈┸珍 噺 岫決沈┸珍┸ 決沈┸珍岻 . We compute 擢知入擢長日┸乳 and  

擢知入擢長日┸乳 as  

 擢知入擢長日┸乳 噺 擢知入琶擢坦入琶 擢坦入琶擢但日乳琶 擢但日乳琶擢但日乳琶 髪 擢知入琶擢坦入琶 擢坦入琶擢但日乳琶 擢但日乳琶擢但日乳琶  噺 伐 岾嫌賃茅底伐嫌賃 底峇 デ も沈┸珍底ち沈┸珍樺朝 伐 磐嫌賃茅底 伐 嫌賃 底卑 岫デ も沈┸珍底沈┸珍樺潮嫦 髪 デ も沈┸珍底沈┸珍樺潮嫦 岻ち  

 
 

 where 
and  項め賃項決沈┸珍 噺 項め賃底項s賃底 項s賃底項b沈珍 底 項b沈珍 底項b沈珍 底 髪 項め賃底項s賃底 項s賃底項b沈珍 底 項b沈珍底項b沈珍底 

噺 伐 岾嫌賃茅底伐嫌賃 底峇 岫デ も沈┸珍底沈┸珍樺潮 髪 デ も沈┸珍底沈┸珍樺町 岻ち怠 伐 磐嫌賃茅 底 伐 嫌賃 底卑 デ も沈┸珍底ち怠沈┸珍樺朝嫦   

 where 
The coefficient 決沈┸珍 is updated as 

 

決沈┸珍岫倦 髪 な岻 噺 決沈┸珍岫倦岻 伐 考 項め賃項決沈┸珍決沈┸珍岫倦 髪 な岻 噺 決沈┸珍岫倦岻 伐 考 項め賃項決沈┸珍
 

 

(25) 

 where 考 is the training rate 考 伴 ど┻ For the requirement of increasing the training pro-
cess, the adding of the momentum term is mentioned as  
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決沈┸珍岫倦 髪 な岻 噺 決沈┸珍岫倦岻 伐 考 項め賃項決沈┸珍 髪 め岷決沈┸珍岫倦岻 伐 決沈┸珍岫k 伐 な岻峅
決沈┸珍岫倦 髪 な岻 噺 決沈┸珍岫倦岻 伐 考 項め賃項決沈┸珍 髪 め岷決沈┸珍岫倦岻 伐 決沈┸珍岫倦 伐 な岻峅 (25) 

 where 紘 伴 ど  
Learning algorithm 
1) Step 1: Choose the training rates  考 伴 ど , 紘 伴 ど and the stop criterion め 伴 ど┻  The 

initial Z-number vector 稽 噺 岫決怠┸怠┸ ┼ ┸ 決津┸陳岻 is selected randomly. The initial learn-
ing iteration is 倦 噺 な the initial learning error め 噺 ど. 

2) Repeat the following steps for  糠 噺 糠怠┸ ┼ ┸ 糠陳 , until all training data are applied 

a) Forward calculation: Calculate the 糠 -level of Z-number output 嫌賃 sk  with the  糠 -level of Z-number input vectors 岫捲賃 ┸ 検賃岻┸ and Z-number connection weight 
B. 

b) Back-propagation: Adjust Z-number parameters 決沈┸珍  ┸ 件 噺 な┸ ┼ ┸ 券┸ 倹 噺 な┸ ┼ ┸ 兼┸ 
by using the cost function for the 糠 -level of Z-number output 嫌賃 ┸sk ,  and Z-
number target output 嫌賃茅   . 

c) Stop criterion: calculate the cycle error め賃 ┸ め 噺 め 髪 め賃 ┻ 倦 噺 倦 髪 な  If  め 伴 め 
let め 噺 ど┸ a new training cycle is initiated. Go to (a). 

Conclusion 

In this paper, the classical fuzzy equation is modified such that its coefficients and var-
iables are Z-numbers. However, the parameters of the fuzzy equations cannot be ob-
tained directly. We use the neural network method to approximate Z-number coeffi-
cients of the fuzzy equations. The neural model is constructed with the structure of 
fuzzy equations. With modified backpropagation method, the neural network is trained. 
Further work is to study the stability of training algorithms. 
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