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Mexico City, Mexico.

Abstract

The uncertain nonlinear systems can be modeled with fuzzy equations or fuzzy

differential equations (FDEs) by incorporating the fuzzy set theory. The solutions of

them are applied to analyze many engineering problems. However, it is very difficult

to obtain solutions of FDEs.

In this paper, the solutions of FDEs are approximated by two types of Bernstein

neural networks. Here, the uncertainties are in the sense of Z−numbers. We first

transform the FDE into four ordinary differential equations (ODEs) with Hukuhara

differentiability. Then we construct neural models with the structure of ODEs. With

modified backpropagation method for Z−number variables, the neural networks are

trained. The simulation results show that these new models, Bernstein neural networks,

are effective to estimate the solutions of FDEs based on Z-numbers.

1 Introduction

Since the uncertainty in parameters can be transformed into fuzzy set theory [37], fuzzy set

and fuzzy system theory are good tools to deal with uncertainty systems. Fuzzy models

are applied for a large class of uncertainty nonlinear systems, for example Takagi-Sugeno

fuzzy model [35]. When the parameter of an equation are changeable in the manner of fuzzy

set, this equation becomes a fuzzy equation [8]. When the parameters or the states of the

differential equations are uncertain, they can be modeled with FDE.

Many FDEs use fuzzy numbers as the coefficients of the differential equations to describe

the uncertainties [15]. The applications of these FDEs are in connection with nonlinear
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modeling and control [20, 21, 22, 23]. Another type of FED uses fuzzy variables to express

the uncertainties. The study on the solutions of FDEs are applied into chaotic analysis,

quantum system and many engineering problems, such as civil engineering and modeling

actuators. The basic idea of fuzzy derivative was first introduced in [10]. Then it is extended

in [13]. In [27], the first order FDE with periodic boundary conditions is analyzed. Then

higher order linear FDE are studied.

Too much complexity is involved in solving nonlinear FDE. By interval-valued method,

[33] examines the basis solutions nonlinear FDEs with generalized differentiability. [16]

suggests some suitable criterion to fuzzify the crisp solutions. [29] uses two-point fuzzy

boundary value for FDE. [18] uses homotopy analysis technique for FDE. However, all of

above analytical methods for the solutions of FDEs are very difficult, especially for nonlinear

FDEs.

Numerical solutions of FDEs have been discussed by many scientists recently. The nu-

merical solutions of first-order FDE is proposed in [32] with an iterative technique. [3] uses

Laplace transform for second-order FDE. Euler numerical technique is used in [36] to solve

FDE. Some other numerical techniques, such as Nystrom approach [26], Taylor method [1]

and Runge-Kutta approach [31] can also be applied to solve FDEs. However the approxi-

mation accuracy of these numerical calculations are normally less [30].

The solution of FDE is uniformly continuous and inside compact sets [7]. Neural networks

can give a good estimation for the solutions of FDEs. [2] shows that the solution of ODE can

be approximated by neural network. [28] applies dynamics neural networks to approximate

first-order ODE. There are few works on FDE. [14] suggests a static neural network to solve

FDE. Since the structure of the neural network is not suitable for FDE, the approximation

accuracy is poor.

The decisions are carried out based on knowledge. In order to make the decision fruitful,

the knowledge acquired must be credible. Z-numbers connect to the reliability of knowledge

[38]. Many fields related to the analysis of the decisions are actually use the ideas of Z-

numbers. Z-numbers are much less complex to calculate compared with nonlinear system

modeling methods. The Z-number is abundantly adequate number compared with the fuzzy

number. Although Z-numbers are implemented in many literatures, from theoretical point

of view this approach is not certified completely.

The Z-number is a novel idea that is subjected to a higher potential to illustrate the

information of the human being and to use in information processing [38]. Z-numbers can

be regarded as to answer questions and carry out the decisions [24]. There are few structure

based on the theoretical concept of Z-numbers [17]. [4] gives an inception extend Z-numbers.

[25] proposes a theorem to transfer the Z-numbers to the usual fuzzy sets.

In this paper, we use a new model named Bernstein neural network, which has good

properties of Bernstein polynomial for FDE based on Z-number. The Bernstein polynomial

2



has good uniform approximation ability for continuous functions [12]. Also a very important

property of the Bernstein polynomial is that it generates a smooth estimation for equal

distance knots [11]. This property is suitable for FDE approximation.

We use two types of neural networks: static and dynamic models, to approximate the

solutions of FDEs based on Z-numbers. These numerical methods use generalized differen-

tiability of FDEs. The solutions of FDE is substituted into four ODEs. Then the corre-

sponding Bernstein neural networks are applied. Finally, we use two real examples to show

the effectiveness of our approximation methods with the Bernstein neural networks.

2 Fuzzy differential equation for uncertain nonlinear

system modeling

Consider the following controlled unknown nonlinear system

ẋ = f1(x1, u, t) (1)

where f1(x1, u) is unknown vector function, x1 ∈ ℜn is an internal state vector and u ∈ ℜm

is the input vector.

In this paper, we use the following differential equation (FDE) to model the uncertain

nonlinear system (1),
d

dt
x = f(x, u) (2)

where x ∈ ℜn is the Z-number variable, which corresponds to the state x1 in (1), f(t, x) is a

Z-number vector function, which relates to f1(x1, u),
d
dt
x is the derivative associated to the

Z-number variable. Here the uncertainties of the nonlinear system (1) are in the sense of

Z-numbers.

In order to use FDE based on Z-numbers, we first introduce some concepts of fuzzy

variables and Z-numbers.

Definition 1 (fuzzy variable) If x is: 1) normal, there exists ζ0 ∈ R in such a manner

x(ζ0) = 1, 2) convex, x(λζ+(1−λ)ζ) ≥min{x(ζ), x(ξ)}, ∀ζ, ξ ∈ R, ∀λ ∈ [0, 1], 3) upper semi-

continuous on R, x(ζ) ≤ x(ζ0) + ε, ∀ζ ∈ N(ζ0), ∀ζ0 ∈ R,, ∀ε > 0, N(ζ0) is a neighborhood,

4) x+ = {ζ ∈ R, x(ζ) > 0} is compact, then x is a fuzzy variable, x ∈ E : R → [0, 1].

The fuzzy variable x can be also represented as

x = A (x, x̄) (3)

where x is the lower-bound variable, x̄ is the upper-bound variable and A is a continuous

function.
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Definition 2 (Z-numbers) A Z-number has two components Z = [x(ζ), p]. The primary

component x(ζ) is termed as a restriction on a real-valued uncertain variable ζ. The sec-

ondary component p is a measure of reliability of x. p can be reliability, strength of belief,

probability or possibility. When x(ζ) is a fuzzy number and p is the probability distribution

of ζ, the Z-number is defined as Z+-number. When both x(ζ) and p are fuzzy numbers, the

Z-number is defined as Z−-number.

The Z+-number carries more information than the Z−-number. In this paper, we use

the definition of Z+-number, i.e., Z = [x, p] , x is a fuzzy number and p is a probability

distribution.

We use so called membership functions to express the fuzzy number. The most popular

membership functions are the triangular function

µx = F (a, b, c) =

{
ζ−a

b−a
a ≤ ζ ≤ b

c−ζ

c−b
b ≤ ζ ≤ c

otherwise µx = 0 (4)

and trapezoidal function

µx = F (a, b, c, d) =





ζ−a

b−a
a ≤ ζ ≤ b

d−ζ

d−c
c ≤ ζ ≤ d

1 b ≤ ζ ≤ c

otherwise µx = 0 (5)

The probability measure is expressed as

P =

∫

R

µx(ζ)p(ζ)dζ (6)

where p is the probability density of ζ and R is the restriction on p. For discrete Z-numbers

P (x) =
n∑

i=1

µx(ζi)p(ζi) (7)

Definition 3 (α-level of Z-numbers) The α-level of the Z-number Z = (x, P ) is demon-

strated as

[Z]α = ([x]α, [p]α) (8)

where 0 < α ≤ 1. [p]α is calculated by the Nguyen’s theorem

[p]α = p([x]α) = p([xα, xα]) =
[
Pα, P

α]

where p([x]α) = {p(ζ)|ζ ∈ [x]α}. So [Z]α can be expressed as the form α-level of a fuzzy

number

[Z]α =
(
Zα, Z

α)
=

(
(xα, P α) ,

(
xα, P

α))
(9)

where Pα = xαp(ζi
α), P

α
= xαp(ζi

α
), [ζi]

α = (ζi
α, ζi

α
).
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Similar with the fuzzy numbers [20], the Z-numbers are also incorporated with three

primary operations: ⊕, ⊖ and ⊙. These operations are exhibited by: sum subtract multiply

and division. The operations in this paper are different definitions with [37]. The α-level of

Z-numbers is applied to simplify the operations.

Let us consider Z1 = (x1, p1) and Z2 = (x2, p2) be two discrete Z-numbers illustrating

the uncertain variables ζ1 and ζ2,
∑n

k=1 p1(ζ1k) = 1,
∑n

k=1 p2(ζ2k) = 1. The operations are

defined

Z12 = Z1 ∗ Z2 = (x1 ∗ x2, p1 ∗ p2)
where ∗ ∈ {⊕,⊖,⊙}.

The operations for the fuzzy numbers are defined as [20]

[x1 ⊕ x2]
α = [x1

α + x2
α, x1

α + x2
α]

[x1 ⊖ x2]
α = [x1

α − x2
α, x1

α − x2
α]

[x1 ⊙ x2]
α =

(
x1

αx2
α + x1

αx2
α − x1

αx2
α, x1

αx2
α + x1

αx2
α − x1

αx2
α
) (10)

For all p1 ∗ p2 operations, we use convolutions for the discrete probability distributions

p1 ∗ p2 =
∑

i

p1(ζ1,i)p2(ζ2,(n−i)) = p12(ζ)

The above definitions satisfy the Hukuhara difference [5],

Z1 ⊖H Z2 = Z12

Z1 = Z2 ⊕ Z12

Here if Z1 ⊖H Z2 prevails, the α-level is

[Z1 ⊖H Z2]
α = [Zα

1 − Zα
2 , Z

α

1 − Z
α

2 ]

Obviously, Z1 ⊖H Z1 = 0, Z1 ⊖ Z1 ̸= 0.

Also the above definitions satisfy the generalized Hukuhara difference [6]

Z1 ⊖gH Z2 = Z12 ⇐⇒
{

1) Z1 = Z2 ⊕ Z12

2) Z2 = Z1 ⊕ (−1)Z12

(11)

It is convenient to display that 1) and 2) in combination are genuine if and only if Z12 is a

crisp number. With respect to α-level what we got are [Z1 ⊖gH Z2]
α = [min{Zα

1 − Zα
2 , Z

α

1 −
Z

α

2},max{Zα
1 −Zα

2 , Z
α

1 −Z
α

2}] and If Z1⊖gH Z2 and Z1⊖H Z2 subsist, Z1⊖H Z2 = Z1⊖gH Z2.

The circumstances for the inerrancy of Z12 = Z1 ⊖gH Z2 ∈ E are

1)

{
Zα

12 = Zα
1 − Zα

2 and Z
α

12 = Z
α

1 − Z
α

2

with Zα
12 increasing, Z

α

12 decreasing, Zα
12 ≤ Z

α

12

2)

{
Zα

12 = Z
α

1 − Z
α

2 and Z
α

12 = Zα
1 − Zα

2

with Zα
12 increasing, Z

α

12 decreasing, Zα
12 ≤ Z

α

12

(12)
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where ∀α ∈ [0, 1]

If x is a triangular function, the absolute value of the Z-number Z = (x, p) is

|Z(ζ)| = (|a1|+ |b1|+ |c1|, p(|a2|+ |b2|+ |c2|)) (13)

If x1 and x2 are triangular functions, the supremum metric for Z-numbers Z1 = (x1, p1) and

Z2 = (x2, p2) is given as

D(Z1, Z2) = d(x1, x2) + d(p1, p2)

in this case d(·, ·) is the supremum metrics considering fuzzy sets [20]. D(Z1, Z2) is incorpo-

rated with the following possessions:

D(Z1 + Z,Z2 + Z) = D(Z1, Z2)

D(Z2, Z1) = D(Z1, Z2)

D(kZ1, kZ2) = |k|D(Z1, Z2)

D(Z1, Z2) ≤ D(Z1, Z) +D(Z,Z2)

where k ∈ R, Z = (x, p) is Z-number and x is triangle function.

Definition 4 (α−level of Z-number valued function) Let Z̃ denotes the space of Z-

numbers. The α−level of Z-number valued function F : [0, a] → Z̃ is

F (x, α) = [F (x, α), F (x, α)]

where x ∈ Z̃, for each α ∈ [0, 1].

With the definition of Generalized Hukuhara difference, the gH-derivative of F at x0 is

expressed as
d

dt
F (x0) = lim

h→0

1

h
[F (x0 + h)⊖gH F (x0)] (14)

In (14), F (x0 + h) and F (x0) exhibits similar style with Z1 and Z2 respectively included in

(11).

If we apply the α−level (8) to f(t, x) in (2), then we obtain two Z-number valued

functions: f [t, x(ζ, α), x̄(ζ, α)] and f [t, x(ζ, α), x̄(ζ, α)] .

The fuzzy differential equation (2) can be equivalent to the following four ODE

1)

{
d
dt
x = f [t, x(ζ, α), x̄(ζ, α)]

d
dt
x̄ = f [t, x(ζ, α), x̄(ζ, α)]

2)

{
d
dt
x = f [t, x(ζ, α), x̄(ζ, α)]

d
dt
x̄ = f [t, x(ζ, α), x̄(ζ, α)]

(15)

The fuzzy model of (1) can be regarded as four ordinary differential equations (15).
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Figure 1: Nonlinear system modeling with fuzzy differential equation

In this paper, we use the FDE (2) to model the uncertain nonlinear system (1), such that

the output of the plant x can follow the plant output x1,

min
f

∥x− x1∥ (16)

This modeling object can be considered as: finding f and f in the fuzzy equations of (15)

or finding the soultions of these models. It is impossible to obtain analytical solutions. In

this paper, we use neural networks to approximate them, see Figure 1.

In fact, the nonlinear system can be modeled by the neural network directly. However,

this data-driven black box identification method does not use the model information. While

the FDE use the model information of the nonlinear system, such as the brief form of the

differential equation.

3 Solving fuzzy differential equation with neural net-

works

In general, it is difficult to solve the four equations (15) or (2). In this paper, we use a

special neural network named Bernstein neural network to approximate the solutions of the

FDE (2).

The Bernstein neural network use the following Bernstein polynomial,

B(x1, x2) =
∑N

i=0

∑M

j=0

(
N
i

)(
M
j

)

Wi,jx1i(T − x1i)
N−ix2j(1− x2j)

M−j
(17)

where
(
N
i

)
= N !

i!(N−i)!
,
(
M
j

)
= M !

j!(M−j)!
, Wi,j is the Z-number coefficient.
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This two variable polynomial can be regarded as a neural network, which has two inputs

x1i and x2j and one output y,

y =
N∑

i=0

M∑

j=0

λiγjWi,jx1i(T − x1i)
N−ix2j(1− x2j)

M−j (18)

where λi =
(
N
i

)
, γj =

(
M
j

)
.

Because the Bernstein neural network (18) has similar forms as (15), we use the Bernstein

neural network (18) to approximate the solutions of four ODEs in (15).

If x1 and x2 in (17) are defined as: x1 is time interval t, x2 is the α-level , the solution of

(2) in the form of the Bernstein neural network is

xm(t, α) = xm(0, α)

⊕t
∑N

i=0

∑M

j=0 λiγjWi,jti(T − ti)
N−iαj(1− αj)

M−j
(19)

where xm(0, α) is the initial condition of the solution based on Z-number.

so the derivative of (18) is

1)

{
d
dt
xm = C1 + C2

d
dt
x̄m = D1 +D2

2)

{
d
dt
xm = C1 + C2

d
dt
x̄m = D1 +D2

(20)

where t ∈ [0, T ], α ∈ [0, 1], tk = kh, h = T
k
, k = 1, ..., N , αj = jh1, h1 =

1
M
, j = 1, ...,M ,

C1 =
∑N

i=0

∑M

j=0 λiγjW i,jti(T − ti)
N−iαj(1− αj)

M−j

D1 =
∑N

i=0

∑M

j=0 λiγjW i,jti(T − ti)
N−iαj(1− αj)

M−j

C2 = tk
∑N

i=0

∑M

j=0 λiγjW i,j[iti−1,j(T − ti)
N−i

− (N − i) ti,j(T − ti)
N−i−1]αi

j(1− αj)
M−j

D2 = tk
∑N

i=0

∑M

j=0 λiγjW i,j[iti−1,j(T − ti)
N−i

− (N − i) ti,j(T − ti)
N−i−1]αi

j(1− αj)
M−j

The above equations can be regarded as the neural network form, see Figure 2.

• input unit:

o11 = t, o12 = α

• the first hidden units:
o21,i = f 1

i (o
1
1), o22,i = f 2

i (o
1
1)

o23,j = g1j (o
1
2), o24,j = g2j (o

1
2)

• the second hidden units:

o31,i = o21,i(o
2
2,i), o32,j = o23,j(o

2
4,j)
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Figure 2: Static Bernstein neural network

• the third hidden units:

o41,i = λio
3
1,i, o42,i′ = γjo

3
2,j

• the forth hidden units:

o5i,j = o41,io
4
2,j

• output unit:

N(t, α) =
N∑

i=0

M∑

j=0

(ai,jo
5
i,j)

where f 1
i = ti, f 2

i = (T − t)N−i, λi =
1

TN

(
N
i

)
, g1j = αj, g2j = (1− α)M−j, γj =

(
M
j

)
.

We define the training errors between (20) and (15) as

1)

{
e1 = C1 + C2 − f

ē1 = D1 +D2 − f̄

2)

{
e2 = C1 + C2 − f̄

ē2 = D1 +D2 − f

(21)

The standard back-propagation learning algorithm is utilized to update the weights with

the above training errors

W i,j (k + 1) = W i,j (k)− η1(
∂e2

1

∂W i,j
+

∂e2
1

∂W i,j
)

W i,j (k + 1) = W i,j (k)− η2(
∂e2

2

∂W i,j
+

∂e2
2

∂W i,j
)

(22)

where η1 and η2 are positive learning rates.
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Figure 3: Dynamic Bernstein nerual network

The momentum terms, γ∆W i,j (k − 1) and γ∆W̄i,j (k − 1) can be added to stabilized

the training process. The above Bernstein neural network can be retended into a recurrent

(dynamic) form, see Figure 3. The dynamic Bernstein neural network is
{

d
dt
xm(t, α) = P (t, α)A(xm(t, α), x̄m(t, α)) +Q(t, α)

d
dt
x̄m(t, α) = P (t, α)A(xm(t, α), x̄m(t, α)) +Q(t, α)

(23)

Obviously this dynamic network has the form of

f(t, x) = P (t)x+Q(t)

and it is closed to (2).

The training algorithm is similar as (22), only the training errors are changed as

1)

{
e1 = C1 + C2 − PA(xm, x̄m)−Q

ē1 = D1 +D2 − PA(xm, x̄m)−Q

2)

{
e2 = C1 + C2 − PA(xm, x̄m)−Q

ē2 = D1 +D2 − PA(xm, x̄m)−Q

(24)

4 Applications

In this section, we use several real applications to show how to use the Bernstein neural

networks to approximate the solutions of the FDEs.
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Figure 4: Vibration mass

Example 1 The vibration mass system shown in Figure 4 can be modeled by the ODE

d

dt
x(t) =

k

m
x(t) (25)

where the spring constant is k = 1. The mass m is changeable in [(0.75, 1.125), p(0.7, 0.8, 1)],

so the position state x(t) has some uncertainties, the ODE (25) can be formed into a FDE

based on Z-number. It has the same form as (25), only x(t) becomes a Z-number variable.

If the initial position is x(0) = [(0.75 + 0.25α, 1.125− 0.125α), p(0.8, 0.9, 1)], α ∈ [0, 1] , then

the exact solutions of the FDE (25) is [19]

x(t, α) =
[
((0.75 + 0.25α)et, (1.125− 0.125α)et), p(0.8, 0.9, 1)

]
(26)

where t ∈ [0, 1]. Now we use the static Bernstein neural network (19), noted as SNN to

approximate the Z-number solution [(xm(t, α), xm(t, α)), p(0.8, 0.94, 1)] (26) where





xm(t, α) = (0.75 + 0.25α)

+t
∑N

i=0

∑M

j=0 λiγjW i,jti(T − ti)
N−iαj(1− αj)

M−j

xm(t, α) = (1.125− 0.125α)

+t
∑N

i=0

∑M

j=0 λiγjW i,jti(T − ti)
N−iαj(1− αj)

M−j

We also use dynamic Bernstein neural network (23), noted as DNN to approximate the

solutions. The learning rates are η = 0.01, γ = 0.01. To compare our results, we use

the other two popular methods: Max-Min Euler method and Average Euler method [36]. The

comparison results are shown in Table 1 and Table 2. Corresponding solution plots are shown

in Figure 5.

Table 1. Solutions of different methods based on Z-numbers

11



Figure 5: Comparison plots of SNN, DNN, Max-Min Euler, Average Euler and the exact

solution based on Z-numbers

α Exact solution SNN DNN

0 [(2.1858,3.2787),p(0.8,0.87,0.95)] [(2.2967,3.4240),p(0.7,0.81,0.85)] [(2.2250,3.3883),p(0.71,0.85,0.87)]

0.2 [(2.2924,3.1521),p(0.81,0.9,1)] [(2.3545,3.2570),p(0.7,0.82,0.9)] [(2.3504,3.2467),p(0.75,0.83,0.9)]

0.6 [(2.5790,3.0088),p(0.81,0.9,1)] [(2.6759,3.1461),p(0.7,0.8,0.87)] [(2.6097,3.0872),p(0.75,0.83,0.9)]

1 [(2.9144,2.9144),p(0.8,0.87,0.95)] [(2.9667,2.9667),p(0.7,0.8,0.87)] [(2.9532,2.9532),p(0.71,0.85,0.87)]

α Exact solution Max-Min Euler Average Euler

0 [(2.1858,3.2787),p(0.8,0.87,0.95)] [(2.4847,3.4771),p(0.7,0.82,0.85)] [(2.9921,3.4921),p(0.65,0.8,0.85)]

0.2 [(2.2924,3.1521),p(0.81,0.9,1)] [(2.6100,3.5888),p(0.72,0.8,0.87)] [(2.8137,3.2303),p(0.6,0.7,0.75)]

0.6 [(2.5790,3.0088),p(0.81,0.9,1)] [(2.7137,3.1660),p(0.6,0.8,0.87)] [(2.9565,3.1372),p(0.6,0.7,0.8)]

1 [(2.9144,2.9144),p(0.8,0.87,0.95)] [(3.0152,3.0152),p(0.6,0.8,0.87)] [(3.1249,3.1249),p(0.6,0.7,0.8)]

Table 2. Approximation errors based on Z-numbers

α SNN DNN Max-Min Euler Average Euler

0 [(0.0684,0.1251),p(0.7,0.8,0.85)] [(0.0231,0.0671),p(0.7,0.85,0.87)] [(0.1064,0.1596),p(0.7,0.8,0.85)] [(0.2404,0.5138),p(0.6,0.8,0.85)]

0.2 [(0.0735,0.1192),p(0.7,0.8,0.9)] [(0.0266,0.0675),p(0.75,0.8,0.9)] [(0.1127,0.1551),p(0.7,0.8,0.87)] [(0.1588,0.4286),p(0.7,0.8,0.85)]

0.6 [(0.0855,0.1095),p(0.8,0.87,0.95)] [(0.0339,0.0689),p(0.8,0.9,1)] [(0.1253,0.1462),p(0.7,0.85,0.9)] [(0.0082,0.2798),p(0.7,0.81,0.9)]

0.8 [(0.0833,0.0939),p(0.8,0.91,1)] [(0.0345,0.0526),p(0.8,0.94,1)] [(0.1247,0.1345),p(0.8,0.9,1)] [(0.0628,0.2009),p(0.75,0.9,1)]

1 [(0.1029,0.1029),p(0.7,0.8,0.9)] [(0.0572,0.0572),p(0.8,0.85,0.95)] [(0.1410,0.1410),p(0.7,0.8,0.87)] [(0.1410,0.1410),p(0.7,0.8,0.87)]

We use the following to transfer the Z−numbers to fuzzy numbers,

α =

∫
xπP̃ (x)dx∫
πP̃ (x)dx

consider Z = (A, p) = [(2.1858, 3.2787), p(0.8, 0.87, 0.95)]. Then Zα = [2.1858, 3.2787; 0.87]

and so Z ′ = [
√
0.87 2.1858,

√
0.87 3.2787]. The comparison results of different methods for

the fuzzy numbers are shown in Table 3.

Table 3. Solutions of different methods based on fuzzy numbers
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Figure 6: Z-number and fuzzy number

α Exact solution SNN DNN Max-Min Euler Average Euler

0 [2.0387,3.0581] [1.9703,3.0043] [1.9901,3.0305] [1.9453,2.5980] [2.2441,2.6191]

0.1 [2.1067,3.0241] [2.0302,2.9415] [2.0591,2.9752] [2.0102,2.8855] [2.2791,2.6166]

0.2 [2.1746,2.9901] [2.1059,2.9131] [2.1283,2.9399] [2.0750,2.8531] [2.3140,2.6140]

0.3 [2.2426,2.9561] [2.1618,2.8707] [2.1901,2.8931] [2.1398,2.8207] [2.3490,2.6115]

0.4 [2.3105,2.9222] [2.2307,2.8453] [2.2601,2.8799] [2.2047,2.7883] [2.3840,2.6090]

0.5 [2.3785,2.8882] [2.2984,2.8088] [2.3288,2.8337] [2.2695,2.7559] [2.4189,2.6064]

0.6 [2.4465,2.8542] [2.3631,2.7784] [2.3904,2.7955] [2.3344,2.7234] [2.4539,2.6039]

0.7 [2.5144,2.8202] [2.4292,2.7449] [2.4555,2.7691] [2.3992,2.6910] [2.4888,2.6013]

0.8 [2.5824,2.7862] [2.4895,2.7067] [2.5101,2.7302] [2.4641,2.6586] [2.5238,2.5988]

0.9 [2.6503,2.7523] [2.5564,2.6769] [2.5821,2.7001] [2.5289,2.6262] [2.5588,2.5963]

1 [2.7183,2.7183] [2.6199,2.6399] [2.6414,2.6614] [2.5937,2.5937] [2.5937,2.5937]

The Z−numbers increase degree of reliability of the information. The crucial factor is

that incorporated information is not only the most generalized representation of information

uncomplicated real world but also incorporated with greater narrative power extracted from

human cognition perspective compared with fuzzy number. The comparison between the Z-

number Z = [(2.1858, 3.2787), p(0.8, 0.87, 0.95)] and fuzzy number [2.0387, 3.0581] is shown in

Figure 6. We see that the Z-number incorporates with various information and the solution

of the Z-number is more accurate. The membership function for the restriction in the Z-

number is µAZ
= [2.1858, 3.2787]. It can be in probability form.

Example 2 The heat treatment system in welding can be modeled as [9]:

d

dt
x(t) = 3Ax2(t) (27)

where transfer area A is uncertainty as A = [(1 + α, 3− α), p(0.8, 0.87, 0.95)], α ∈ [0, 1]. So

(27) is a FDE based on Z-number. If the initial condition is x(0) = [(0.5
√
α, 0.2

√
1− α +

13



0.5), p(0.8, 0.92, 1)], the static Bernstein neural network (19) has the form of





xm(t, α) = 0.5
√
α

+t
∑N

i=0

∑M

j=0 λiγjW i,jti(T − ti)
N−iαj(1− αj)

M−j

xm(t, α) = 0.2
√
1− α + 0.5

+t
∑N

i=0

∑M

j=0 λiγjW i,jti(T − ti)
N−iαj(1− αj)

M−j

where the approximate Z-number solution is termed as [(xm(t, α), xm(t, α)), p(0.8, 0.9, 1)].

With the learning rates η = 0.002 and γ = 0.002, the approximation results for Z-numbers

are shown in Table 4.

Table 4. Bernstein neural networks approximate the Z-numbers

α SNN DNN

0 [(0.0582,0.0859),p(0.7,0.8,0.85)] [(0.0250,0.0425),p(0.7,0.82,0.9)]

0.1 [(0.0449,0.0696),p(0.7,0.8,0.9)] [(0.0224,0.0399),p(0.75,0.82,0.9)]

0.2 [(0.0419,0.0619),p(0.8,0.92,1)] [(0.0207,0.0394),p(0.8,0.94,1)]

0.3 [(0.0250,0.0348),p(0.7,0.81,0.9)] [(0.0226,0.0344),p(0.8,0.85,0.96)]

0.4 [(0.0487,0.0689),p(0.7,0.8,0.88)] [(0.0271,0.0510),p(0.75,0.82,0.9)]

0.5 [(0.0534,0.0665),p(0.8,0.9,1)] [(0.0160,0.0271),p(0.81,0.92,1)]

0.6 [(0.0494,0.0765),p(0.8,0.9,1)] [(0.0201,0.0413),p(0.81,0.92,1)]

0.7 [(0.0630,0.0859),p(0.75,0.82,0.9)] [(0.0303,0.0476),p(0.82,0.9,1)]

0.8 [(0.0393,0.0536),p(0.8,0.92,1)] [(0.0164,0.0379),p(0.82,0.94,1)]

0.9 [(0.0422,0.0669),p(0.8,0.9,1)] [(0.0212,0.0430),p(0.8,0.94,1)]

1 [(0.0443,0.0443),p(0.7,0.8,0.88)] [(0.0186,0.0186),p(0.7,0.82,0.9)]

5 Conclusions

In this paper, we use two types of Bernstein neural networks: static and dynamic models

to approximate the solutions of FDEs on the basis of Z-numbers. We first transform the

FDE into four ODEs with Hukuhara differentiability. Then we construct neural models with

the structure of ODEs. With modified backpropagation method for Z-number variables, the

neural networks are trained. Two real examples are employed to show the effectiveness of

our approximation methods with the Bernstein neural networks. The future works are the

application of these mentioned methodologies for fuzzy partial differential equations on the

basis of Z-numbers.
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