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Abstract 

Oral cavity cancer has a low 5-year survival rate, but improved outcomes occur when the disease 
is detected early. Cytology is a less invasive method to assess potentially malignant oral lesions 
relative to the gold-standard scalpel biopsy and histopathology. We aimed to assess the 
diagnostic accuracy of a cytological test for analysis of the entire spectrum of oral epithelial 
dysplasia and oral squamous cell carcinoma. We enrolled subjects with potentially malignant oral 
lesions, previously diagnosed malignant lesions, and healthy volunteers without lesions. We 
obtained brush cytology specimens and matched scalpel biopsies for all subjects with lesions. 
Histopathological assessment of the scalpel biopsy specimens classified lesions into six 
categories. Brush cytology specimens from 486 subjects were assessed relative to histopathology 
using phenotypic and molecular markers. Machine learning classif iers were trained to identify 
cytological features of potential clinical utility. Multimodal diagnostic models were developed using 
cytology results, lesion characteristics, and risk factors. Cytological features substantially 
outperformed lesion appearance and risk factors in predicting dysplasia and squamous cell 
carcinoma. Squamous cells with nuclear F-actin staining were associated with early disease (i.e., 
distinguishing benign lesions from more severe lesions), while small round parabasal-like cells 
and leukocytes were associated with late disease (i.e., distinguishing severe dysplasia and 
carcinoma from less severe lesions). Lesions with the impression of oral lichen planus 
demonstrated a strong protective effect in both early and late disease prediction. Diagnostic 
models accurately discriminated early and late disease with AUCs of 0.82 (95% CI 0.77–0.87) 
and 0.93 (0.88–0.97), respectively. The cytological features identified here have the potential to 
serve as predictors for lesion screening and surveillance of the entire spectrum of oral epithelial 
dysplasia and squamous cell carcinoma in multiple care settings.  

Introduction 

Potentially malignant oral lesions (PMOL), such as leukoplakia or erythroplakia, are clinical 
diagnoses rendered when a clinician encounters a white, mixed red-white, or red patch that 
cannot be attributed to a benign etiology. These lesions require further diagnostic testing to rule 
out oral epithelial dysplasia (OED) or oral squamous cell carcinoma (OSCC). The typical pathway 
to diagnosis of PMOL is biopsy and histopathologic evaluation requiring an invasive surgical 
procedure and specialty referral. Given the overlapping clinical features of oral epithelial lesions 
encountered by primary care clinicians, such as dentists, it is challenging to perform an adequate 
risk assessment of oral epithelial lesions based on appearance and risk factors alone and decide 
if referral is required (Lingen et al. 2017). While there are numerous minimally invasive adjuncts 
to assist in the triage of PMOL, only cytology has been demonstrated as an accurate surrogate 
for histopathology (Huber 2018; Lingen et al. 2017; Rashid and Warnakulasuriya 2015). However, 
delays associated with remote laboratory testing and significant bias of previous studies (Poate 
et al. 2004; Svirsky et al. 2002) have hindered the adoption of oral cytology adjuncts. There is a 
strong need for adjunctive testing in near real-time at the point of care (POC) with sufficient 
sensitivity to identify at-risk lesions and sufficient specificity to discriminate benign lesions from 
those with increasing risk of malignancy.  
 
Cytological signatures are morphological, phenotypical, or intensity-based measurements from 
images of stained cells which may be of clinical and diagnostic utility. Cell phenotypic changes 
involving cytoskeletal actin have been associated with cancer initiation and progression (Gunning 
et al. 2008; Stevenson et al. 2012). Cancer cells require a high degree of cellular motility to invade, 
spread, and grow—processes that are driven by actin polymerization, cell adhesion, and actin-
myosin contraction (Olson and Sahai 2009). Actin content has shown strong promise as a 
biomarker for OSCC (de Jong et al. 2010). Previous studies have implicated nuclear actin in a 
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variety of functions, such as supporting and organizing nuclear content (Belin et al. 2013), 
mechanosensing (Le et al. 2016), nuclear expansion (Moore and Vartiainen 2017), and increasing 
nuclear compliance while maintaining mechanical protection for genetic material (Miroshnikova 
et al. 2017). Early studies of in vitro cellular transformation models showed promise for nuclear 
actin biomarkers in uroepithelial cell lines (Hemstreet et al. 1996). While promising basic scientific 
research has advanced the understanding of such cytological signatures, their translational 
diagnostic utility has not yet been demonstrated for OED or OSCC. Multimodal models 
incorporating cytological signatures including actin, features of lesion appearance, and risk factors 
have strong potential to improve diagnostic performance. 
 
We previously reported a cytology-on-a-chip system comprising microfluidics, multispectral 
fluorescence imaging, and single-cell analytics (Weigum et al. 2010). A multisite clinical validation 
effort led to the development of one of the largest oral cytology databases for PMOL (Abram et 
al. 2016) in which brush cytology measurements were prospectively collected, measured, and 
correlated with six levels of histopathological diagnosis (Speight et al. 2015). The same approach 
demonstrated strong potential for surveillance of OSCC in Fanconi Anemia patients (Abram et al. 
2018). Recently, we developed a POC oral cytology tool comprising a brush cytology test kit, 
cartridge, instrument, clinical algorithms, and software that automates cellular and molecular 
analysis of various cytological signatures of OED and OSCC in a matter of minutes (McRae et al. 
2020). Although diagnostic accuracy for the cytology-on-a-chip rivaled and exceeded 
commercially available adjuncts, more studies were needed to investigate the clinical utility of 
novel cytological signatures of OED and OSCC. In this current study, we describe an analysis of 
new cytological signatures of OED and OSCC using cytology results from our previous study. We 
asked whether new multimodal diagnostic signatures, including cytological features related to F-
actin localization, could predict OED and OSCC in clinical applications such as PMOL triage in 
primary care and OED/OSCC surveillance in secondary or tertiary care settings. 

Materials and Methods 

Study design and participants 

Previously, a cytology-on-a-chip system was evaluated for its ability to classify mucosal lesions 
according to histopathologic diagnosis in a four-site, international, prospective, non-interventional 
study (Abram et al. 2016; Speight et al. 2015). The study was approved by the Institutional Review 
Boards of all participating institutions, including Rice University, where chip-based measurements 
were completed on brush cytology samples. All patients provided written informed consent. 
Histopathological and brush cytological samples were collected from three groups: (1) 
prospectively recruited patients with PMOL who underwent scalpel biopsy as part of standard of 
care, (2) patients with recently diagnosed OSCC, and (3) healthy volunteers without lesions. 
Histopathological diagnosis categorized scalpel biopsy specimens into six categories based on 
the WHO guidelines (El-Naggar et al. 2017) plus healthy controls without lesions who did not 
undergo scalpel biopsy and histopathology. A new adjudication process (Speight et al. 2015) was 
implemented to overcome limitations of conventional OED grading which is often considered 
subjective and lacking intra- and inter-observer reproducibility (Warnakulasuriya et al. 2008). 
Adjacent serial histologic sections were independently scored by two pathologists. Upon 
disagreement of scoring, a third independent pathologist reviewed both sections. If the adjudicator 
did not agree with either of the initial two pathologists, a third stage consensus review was 
conducted to attain a final diagnosis. This process was able to achieve 100% agreement 
compared to an initial pre-adjudication rate of 69.9%. The current study utilized cytological 
measurements from this prior work (Abram et al. 2016; Speight et al. 2015). All subjects with 
sufficient material and complete biomarker results were included in the analysis.  
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Procedures 

Brush cytological specimens were collected and processed as previously described (Abram et al. 
2016; Speight et al. 2015). Complete details are provided in the Appendix. All subjects underwent 
brush sampling of the oral lesion, site of known cancerous lesion, or clinically normal mucosa. All 
assays contained Phalloidin-AlexaFluor-647 for cytoplasmic counterstaining and visualizing F-
actin localization and DAPI for nuclear counterstaining in the secondary antibody cocktail. Image 
analysis software CellProfiler (Carpenter et al. 2006) detected individual cells; defined nuclear 
and cytoplasmic boundaries; obtained intensity measurements for red (F-actin), green 
(immunofluorescence), and blue (DNA) spectral channels; and defined morphometric 
parameters.  

Cell phenotype classifier 

Trained and tested cell phenotype classifiers quantified the distributions of cellular and nuclear 
phenotypes. The cell phenotype classifier was trained to identify differentiated squamous 
epithelial (DSE) cells, small round (SR) cells, mononuclear leukocytes (ML), and lone nuclei (LN). 
This work introduces new nuclear phenotypes and a classifier for DSE cells with (NA+) and 
without (NA-) nuclear F-actin (i.e., cells with or without F-actin localized in or around the nucleus). 
Both cellular and nuclear k-Nearest Neighbor algorithms were trained on a subset of 144 
cellular/nuclear features from cytology, including morphological and biomarker intensity-based 
measurements. Principal component analysis was performed on the training set to improve data 
visualization. Histopathological gradings were coded as follows: (1) normal/no lesion, (2) benign, 
(3) mild dysplasia, (4) moderate dysplasia, (5) severe dysplasia or carcinoma in situ, and (6) 
malignant/OSCC. The cell phenotyping algorithms were applied across all cytological 
measurements, and the proportions of each phenotype were compared for each lesion class. 

Model development and statistical analysis 

Detailed methods are provided in the Appendix. Diagnostic accuracy (area under the curve 
[AUC], sensitivity, and specificity) was determined between various histopathology gradings with 
case vs non-case, as indicated by “|”, including models for early and late disease. Here, early 
disease was defined as the distinction of cases with benign lesions from all other more severe 
lesions (i.e., 2 | 3,4,5,6), and late disease was defined as the distinction of cases with lesions of 
moderate severity from all more severe lesions (i.e., 2,3,4 | 5,6). Univariate and multivariate 
adjusted odds ratios (OR), 95% confidence intervals, and p-values (two-tailed) were calculated 
from logistic regression analyses. Pre- and post-test probabilities were estimated by likelihood 
ratios for late disease. The predictors included cell phenotype percentages for types NA-, NA+, 
SR, and ML (log10 transformed); sex; age (10-year increments); lesion area (log10 transformed); 
lesion color (red, white, or red and white); clinical impression of oral lichen planus; and smoking 
pack years (log10 transformed). Lasso logistic regression models were developed, and model 
responses were evaluated for diagnostic performance.  
 

Results 

A total of 486 subjects with histopathology-matched brush cytology measurements were included 
in the analysis. Table 1 shows the characteristics and histopathological diagnoses and Appendix 
Figure 1 summarizes subject accrual. The analysis of each subject considered approximately 
2000 cells and 150 biomarker intensity and morphology-based parameters. All measurements 
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were completed with cytology-on-a-chip prototypes that have recently been translated to POC 
cartridges and instruments (Appendix Figure 2) (McRae et al. 2020). 
 
Cell phenotype classifiers were trained to identify five distinct cellular/nuclear phenotypes (Figure 
1A). The differentiated squamous epithelial cells or mature keratinocytes (DSE cells) were 
broad/flat cells 50-100 µm in diameter with low NC ratio and low cytoplasmic F-actin staining 
intensity. These cells were further differentiated by the presence (NA+) or absence (NA-) of F-
actin localized within or surrounding the nucleus. Immature basaloid keratinocytes (SR cells) were 
small circular cells 12-30 µm in diameter with high NC ratio and strong cytoplasmic F-actin 
staining intensity. Mononuclear leukocytes (ML) appeared as small, brightly stained pink objects 
6-23 µm in diameter. Lone nuclei without a cytoplasm (LN) were objects with DAPI 
counterstaining, but no cytoplasmic F-actin staining, approximately 5-12 µm in diameter.  
 
The latent variable structure of the data was explored with principal components (PC) analysis. 
Scatter plots show that the data varied along three dimensions of cell size (PC1), cytoplasmic F-
actin (PC2), and nuclear F-actin (PC3) (Figure 1B and 1C). These PCs account for 33%, 15%, 
and 14% variance, respectively, and suggest that cell size and nuclear F-actin content/distribution 
may play an important role in distinguishing cell phenotypes. The cross-validated k-nearest 
neighbors algorithm for the cellular phenotypes resulted in overall accuracy of 98.5% and 
accuracy of 100%, 95.1%, 97.4%, and 100% for DSE, SR, ML, and LN, respectively. Similarly for 
the DSE nuclear phenotypes, the overall accuracy was 97.6% with 99.0% and 95.6% accuracy 
for types NA+ and NA-, respectively. Cell phenotype distributions varied with lesion severity 
(Figure 2). In cases with more advanced disease, NA- cells decreased, and SR and ML cells 
increased (Wilcoxon rank sum test, p<0.05). The fraction of NA+ cells increased with disease 
severity (p<0.05) for all diagnostic categories except normal vs benign (p=0.53).  
 
Logistic regression models were developed to discriminate between early and late disease splits 
(Appendix Table 1). Early disease refers to the distinction of cases with benign lesions from all 
other more severe lesions, while late disease refers to the distinction of cases with lesions of 
moderate severity from all more severe lesions. The NA- cells showed a strong protective effect 
(i.e., OR<1) in both early and late disease univariate models. Similarly, the clinical impression of 
oral lichen planus was associated with 85-90% reduction in the odds of high-grade OED and 
OSCC. Multivariate models showed some confounding among the predictors. Unique contributors 
to the early disease model included the presence of NA+ cells, age, and lichen planus. Unique 
contributors to the late disease model included the presence of SR and ML cells, sex, lesion color, 
and lesions with the clinical impression of oral lichen planus. These data highlight the unique 
contribution of cytological analysis to differentiating histopathologically-verified diagnoses of OED 
and OSCC. 
 
Diagnostic performance of a multimodal model was evaluated for various diagnostic cutoffs 
(Table 2). These predictors included: cell phenotype distributions, age, sex, smoking pack years, 
lesion area, clinical impression of lesion as oral lichen planus, and lesion color (white, red, or both 
red and white). The lasso logistic regression model responses were numerical values between 0 
and 100, and model accuracy was determined at a cutoff value that maximized AUC. All models 
assigned the right diagnosis to at least 82% of the sample. Late disease models were more 
accurate than early disease models. The best models properly assigned 95% of the cases.  
 
The improvement in accuracy attributable to the late disease modeling can be summarized by 
comparing pre- and post-test likelihood ratios (Akobeng 2007). Figure 3 (and Appendix Table 
2) shows the conditional post-test probability for distinguishing patients with late disease as a 
function of pre-test probability for patients with presence (solid lines) or absence (dashed lines) 
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of clinical risk factors in the multivariate model. The multivariate model showed the greatest 
change in post-test probabilities, as indicated by the outermost band of both groups of ellipses. 
Among the univariate predictors, NA- cells (negative), SR cells (positive), and ML cells (positive) 
were strongly related to the disease state. Lesions with a white-colored appearance showed a 
strong protective effect (i.e., the probability of severe dysplasia or OSCC was significantly reduced 
for those presenting with homogeneous leukoplakia).  

Discussion 

In the current study reveals the relative importance of cytological and clinical variables in 
predicting early and late disease. We found that cell phenotype distributions from cytology are 
strong predictors of disease. Significantly, we observed that different cell phenotypes were more 
important for distinguishing early vs late disease. As expected, SR and ML cells were found to 
indicate late disease. Small circular cells resembling SR cells were previously found to increase 
in frequency with OED severity (Babshet et al. 2011). Strong evidence for the association between 
chronic inflammation and carcinogenesis has been reported previously, which supports the result 
of elevated numbers of leukocytes in high grade OED and OSCC (Tampa et al. 2018).  
 
Interestingly, the proportion of NA+ cells was a statistically significant factor in predicting early 
disease. The current study is the first to link increased proportions of nuclear F-actin cells with 
early OED (see Appendix for literature review details). It is possible that differentiated squamous 
cells that develop thick perinuclear/nuclear F-actin formations could represent transitional 
phenotypes embodying a morphological transformation from NA+ to SR. More studies would be 
needed to (1) explore the relationships between phenotypes, (2) investigate whether phalloidin-
F-actin staining on NA+ cells reflects binding to nuclear vs perinuclear F-actin, (3) visualize 
subnuclear F-actin features, and (4) advance the understanding of cell phenotypic changes in 
malignant transformation.  
 
In addition to cell phenotypes, six immunofluorescence targets were selected based on their 
capacity to distinguish benign, dysplastic, and malignant oral epithelial cells and were investigated 
in the current study. However, we found that the discriminatory ability of these 
immunofluorescence targets was inferior relative to that acquired using the cell phenotypes 
featured here. The sole biomarker-based exception was nuclear F-actin, which demonstrated 
superior disease discrimination.  

Multivariate and multimodal models combining cell phenotypes from cytology, lesion 
characteristics, and traditional risk factors yielded higher diagnostic utility than any individual 
predictor. Cytological signatures substantially outperformed clinical features (lesion appearance 
and risk factors) in predicting OED and OSCC. While lesion color was a significant factor in late 
disease, it was less useful in distinguishing lesions with low malignant potential that are more 
commonly observed in primary care settings. Although traditional risk factors like tobacco use did 
not play a dominant role for distinguishing any OED/OSCC model, smoking pack years was 
statistically significant in a 2 vs 6 model with OR (95% CI) of 1.97 (1.02–3.97). This result further 
highlights the challenge of lesion diagnosis in a realistic population of patients presenting with 
intermediate histopathological grading as opposed to extreme comparisons (e.g., healthy control 
vs cancer) commonly found in the literature. The clinical impression of oral lichen planus 
demonstrated a strong protective effect in both early and late disease prediction. Motivated by 
this result, plans are now in progress to develop a cytological test for lichen planus in primary care 
settings where the condition may be overlooked or misdiagnosed.  
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Today, remote laboratory cytology services require long delays between sample collection, 
shipment, and obtaining the test results, prolonging patient anxiety and delaying the referral of 
patients with high-risk lesions to specialist care settings. By contrast, a POC test could deliver 
cytology test results within the same visit. 
 
Prior studies of cytology adjuncts had significant methodological gaps. By only performing 
matched gold-standard histopathology on a subset of lesions with a higher index of suspicion for 
malignancy, these studies did not account for lesions with a lower index of suspicion which are 
more regularly encountered in primary care settings (Poate et al. 2004; Sciubba 1999). These 
tests frequently returned an ambiguous “atypical” result (Svirsky et al. 2002). Similarly, many 
studies of adjuncts only compare normal or benign vs malignant lesions and exclude a full range 
of dysplastic lesions, leading to overly optimistic results. For example, an oral rinse adjunctive 
test evaluated control subjects without lesions vs oral cancer subjects (1 vs 6) with an AUC of 
0.76 (Pereira et al. 2016). In the current study, the cytology-on-a-chip approach was assessed 
relative to six diagnostic levels of histopathology. As might be expected, earlier disease was more 
difficult to differentiate than late disease in the current study (AUCs of 0.82 vs 0.93). Likewise, if 
dysplastic lesions are excluded from the current analysis, the diagnostic performance becomes 
optimistic (AUCs of 0.97 and 0.95 for 1 vs 6 and 2 vs 6, respectively). Although there was a small 
proportion of false negative results warranting further investigation, these results were consistent 
with the imperfection of oral cancer related diagnostic adjuncts and suggest that persistent 
mucosal lesions may necessitate subsequent resampling. 
 
One limitation for the current study is that lesions were evaluated by expert clinicians in secondary 
care settings where the prevalence of high-grade OED and OSCC would be higher than in primary 
care. Further, subjects met strict inclusion criteria which may reflect a narrower spectrum of 
lesions than might be clinically diagnosed as PMOLs in a primary care setting. Since prevalence 
of high-grade OED and OSCC is expected to be substantially lower in primary care settings, future 
studies are needed to evaluate the diagnostic performance of PMOLs detected there. Although 
the diagnostic models described here were tuned to optimize AUC and, thus, balanced sensitivity 
and specificity, future implementations may select different cutoffs based on intended use (e.g., 
a diagnostic test for ruling in, with high specificity, high-grade OED/OSCC in secondary or tertiary 
care settings or a screening test for ruling out, with high sensitivity, clinically evident but benign 
lesions in primary care settings). 
 
In closing, this multimodal, POC-compatible cytology-on-a-chip approach has the potential to be 
used as an oral lesion precision diagnostic across the OED/OSCC disease spectrum and in 
various patient settings. Primary care clinicians typically do not have the information needed to 
effectively differentiate the significance of oral mucosal lesions. This automated cytology platform 
will help primary care clinicians perform a more accurate and real-time risk stratification of lesions, 
allowing them to make appropriate referrals. In secondary or tertiary care settings, the cytological 
signatures of patients with a history of OED and OSCC may be monitored longitudinally and have 
the potential to identify progression and malignant transformation/recurrence earlier, and less 
invasively, than current surveillance approaches. It is also feasible that this diagnostic may be 
further developed to identify unique cytological signatures for other mucosal diseases, whether 
immune (e.g., lichen planus) or pathogen-mediated (e.g., candidal leukoplakia). Plans are now in 
place to evaluate the POC oral cytology tool in a clinical trial to validate and assess diagnostic 
performance vs routine care in primary care clinics. Additional plans are in place to follow high 
risk patients longitudinally for malignant transformation and cancer recurrence in secondary or 
tertiary surveillance settings. 
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Figures and Tables 

Table 1. Subject characteristics. Histopathological diagnoses were based on the WHO 
classification (El-Naggar et al. 2017). Average pack years is the average number of cigarettes 
smoked per day times years smoked divided by 20 (interquartile range). Histopathological 
diagnoses were coded 1-6 as referenced throughout this manuscript. 
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 N (%) 

Total 486 

Sex  

  Male 211 (43.4) 

  Female 275 (56.6) 

Age  

  ≤ 60 321 (66.0) 

  > 60 165 (34.0) 

Tobacco  

  Never 213 (43.8) 

  Any Tobacco Use 273 (56.2) 

       Previous Smokers 140 (28.8) 

       Current Smokers 113 (23.3) 

       Average Pack Years in Tobacco Users 13 (1.8–30.0) 

Subject Group  

  Healthy Volunteer 121 (24.9) 

  Patients with Previously Diagnosed Malignant Lesion 36 (7.4) 

  Patients with a Potentially Malignant Lesion 329 (67.7) 

Histopathological Diagnosis  

  1 - Normal 121 (24.9) 

  2 - Benign 241 (49.6) 

  3 - Mild Dysplasia 38 (7.8) 

  4 - Moderate Dysplasia 12 (2.5) 

  5 - Severe Dysplasia 9 (1.9) 

  6 - Malignant 65 (13.4) 
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Figure 1. Development of cellular and nuclear phenotype models. Machine learning 
classifiers were developed to identify five phenotypes (A). Principal component analysis of cellular 
phenotypes show substantial separation between cellular phenotype labels for PC1 vs PC2 (B) 
and PC1 vs PC3 (C), with the majority of the variance explained by cell size (PC1), cytoplasm F-
actin (PC2), and nuclear F-actin (PC3). NA- cells are differentiated squamous cells without 
nuclear F-actin. NA+ cells are differentiated squamous cells with nuclear F-actin. SR cells are 
small round cells. ML are mononuclear leukocytes. LN are lone nuclei. PC is the principal 
component.  
  

A. 

C. B. 

NA- NA+ SR ML LN 

Cellular and Nuclear Phenotypes 
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Figure 2. Application of cellular and nuclear phenotype models. Distributions of NA-, SR, 
and ML cells (top) within the study population, representing the predicted mean cell type 
percentages and 95% CI within each lesion class. Distribution of NA+ cells out of all DSE cells 
(bottom). DSE cells are differentiated squamous epithelial cells. N is normal lesion (n=121). B is 
benign lesion (n=241). Mild+Mod is mild and moderate dysplasia (n=50). S+OSCC is severe and 
oral squamous cell carcinoma (n=74).   
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Table 2. OED spectrum diagnostic models. Sensitivity, specificity, and AUC (95% CIs) are 
shown for the cross-validated dichotomous algorithms for early disease (2 | 3,4,5,6), mild | 
moderate dysplasia (2,3 | 4,5,6), low | high risk (2,3,4L | 4H,5,6), late disease (2,3,4 | 5,6), benign 
vs malignant (2 vs 6), and healthy control vs malignant (1 vs 6) models. 

 Sensitivity Specificity AUC 

Early Disease - 2 | 3,4,5,6 0.72 (0.67–0.76) 0.73 (0.69–0.78) 0.82 (0.77–0.87) 

2,3 | 4,5,6 0.79 (0.74–0.83) 0.85 (0.81–0.89) 0.89 (0.84–0.93) 

2,3,4L | 4H,5,6 0.80 (0.75–0.84) 0.82 (0.78–0.86) 0.89 (0.84–0.93) 

Late Disease - 2,3,4 | 5,6 0.86 (0.82–0.90) 0.84 (0.80–0.88) 0.93 (0.88–0.97) 

2 vs 6 0.89 (0.85–0.92) 0.90 (0.85–0.93) 0.95 (0.91–0.98) 

1 vs 6 0.94 (0.89–0.97) 0.92 (0.87–0.95) 0.97 (0.94–1.00) 
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Figure 3. Pre- and post-test probability. Conditional probability plot for late disease (2,3,4 | 5,6). 
Post-test probabilities are plotted as a function of pre-test probability for patients with positive 
(solid lines) and negative (dashed lines) indications for clinical risk factors (lesion color, lesion 
area, smoking), cellular phenotypes, and the multivariate model.  
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Bouquot, S.S. Modak, G.W. Simmons, and J.T. McDevitt 

APPENDIX 

Study Participants 

The data used in this study originated from a 1053-patient study which aimed to assess the 

diagnostic accuracy of this cytology-on-a-chip system relative to scalpel biopsy and 

histopathology. The methods and preliminary results of this original study were published 

previously (Abram et al. 2016; Speight et al. 2015). Figure S1 shows the criteria for subject 

inclusion/exclusion for the current study, which is a re-analysis of the same data collected 

previously. Subjects from three groups consented to enrollment of the original study. Of those 

1053 subjects, 54 withdrew from the study and, thus, cytology measurements were not recorded. 

Of the 999 remaining enrolled subjects for the original study, 513 were not eligible for the current 

study due to the following reasons: partial cytology measurements (n=21); inadequate number of 

cells in the sample (n=47); samples were used for other purposes (n=2); samples were lost due 

to shipping errors and/or freezer failures (n=44); cytology results were not measured due to 

funding constraints or missing (n=399). All the remaining 486 subjects with complete cytology 

data were included in the current analysis.  

Clinical Protocol 

The clinical protocol for this study was published previously (Speight et al. 2015) and is 

summarized as follows. Patients in group 1 underwent brush sampling of the oral lesion and a 

brush sampling of the contralateral, clinically normal mucosa. The brush cytology sample was 

taken immediately before the same lesion underwent a scalpel biopsy. Patients in group 2 

underwent brush biopsy of the known cancerous lesion, as well as the contralateral, clinically 

normal mucosa. For healthy volunteers in group 3, a brush biopsy of normal appearing tissue on 

the lateral or ventral surface of the tongue and a brush biopsy of normal appearing tissue on the 

left or right buccal mucosa were taken. Brush biopsy samples were taken using a soft Rovers 
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Orcellex oral cytology brush (Rovers Medical Devices B.V., Oss, The Netherlands). The brush 

was applied directly to the lesion or control oral mucosa using mild pressure and rotated 360 

degrees approximately 10-15 times in the same direction to obtain the cytologic sample. 

Histopathological specimens were examined and coded as follows: (1) normal/no lesion, (2) 

benign, (3) mild dysplasia, (4) moderate dysplasia, (5) severe dysplasia or carcinoma in situ, and 

(6) malignant/OSCC.  

Cytology-on-a-Chip Protocol 

The following methods have been published previously (Abram et al. 2016) and are summarized 

here. Immediately after brush cytology samples were collected, cells were harvested by vortexing 

the brush head in minimum essential medium (MEM) culture media, followed by a PBS wash, re-

suspension in FBS containing 10% of the cryo-preservative dimethyl-sulfoxide (DMSO), frozen, 

and stored in a -80°C freezer. Prior to processing on the device, patient samples were thawed 

rapidly in a 37°C water bath, washed with PBS, and fixed for one hour in 0.5% formaldehyde 

prepared fresh from a 16% stock solution (Polysciences, Warrington, PA, #18814-20). After 

fixation, cells were washed twice in PBS, re-suspended in 150µL 0.1% PBS with 0.1% BSA 

(PBSA), and stored at 40°C until ready to process. Before sample delivery, the cell suspension 

was diluted in a 20% glycerol/0.1% PBSA solution to improve cell distribution across the 

membrane and to reduce cell clumping. Using a custom built manifold connecting external fluidic 

tubing to the inlet and outlet ports of the microfluidic device, the assembly was positioned on a 

robotically controlled microscope stage (ProScan II, Prior Scientific, Cambridge, UK) and 

connected to a peristaltic pump (SciQ 400, Watson Marlow, Wilmington, MA) and manually 

controlled 6-position injector valve (Vici, Valco Instruments, Houston, TX). Antibody stock 

solutions were vortexed for 30 seconds and centrifuged at 14,000rpm for five minutes before 

preparing working dilutions to avoid precipitates. All assays contained Phalloidin and DAPI in the 

secondary antibody cocktail, but each was specific for a single molecular biomarker primary-

secondary antibody pair. Working dilutions of antibodies were prepared in 0.1% PBSA with 0.1% 

Tween-20 (EMD Millipore, Billerica, MA, # 655206). Primary monoclonal antibodies were raised 

from either mouse (EGFR [Life Technologies, Carlsbad, CA, #MS-378-P, 10µg/mL]), rabbit (αvβ6 

[Abcam, Cambridge, MA, #Ab124968, 6µg/mL], Ki67 [Abcam #Ab15580, 29µg/mL], and MCM2 

[Abcam #Ab108935, 10µg/mL]), or goat (CD-147 [EMMPRIN] [R&D Systems, Minneapolis, MN, 

#AF972, 20µg/mL]. AlexaFluor-488 conjugated secondary antibodies were specific for F (ab’)2 

fragments of mouse IgG (Life Technologies #A11017, 20µg/mL for EFGR), rabbit IgG (Life 
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Technologies #A11070, 50µg/mL for αvβ6, 64µg/mL for Ki67, and 23.5µg/mL for MCM2), or goat 

IgG (Life Technologies #A11078, 40µg/mL for CD147). A working concentration of 0.33µM was 

used for Phalloidin-AlexaFluor-647 (Life Technologies #A22287) and 5µM for DAPI (Life 

Technologies #D3571). 

In summary, the lab-on-a-chip sample processing was comprised of the following steps: 1) the 

device was primed with PBS at a flow rate of 735µL/min for two minutes, 2) the cell suspension 

in 20% glycerol/0.1% PBSA was delivered at 1.5mL/min for two minutes, 3) cells were washed 

with PBS at 1mL/min for 2.5min, 4) the primary antibody solution was delivered through a 0.2µm 

PVDF syringe filter at 250µL/min for 2.5min, 5) a wash step similar to step 3 was performed, 6) 

the secondary antibody solution was delivered under the same conditions as step 4, 7) a final 

wash step was performed, and 8) automated image capture was performed. 

Sample Digitization 

More complete details on cytology sample digitization and a complete list of intensity and 

morphological parameters can be found in our previous publication (Abram et al. 2016). Images 

were recorded with a motorized reflected fluorescence microscope (Olympus BX-RFAA) 

equipped with a CCD camera (Hamamatsu ORCA-03G) through a 10x objective (10x/0.30NA 

UPlanFl, Olympus). A total of 25 unique fields of view repeated for three different z-focal planes 

were automatically captured across a 20mm2 area using a robotic x-y-z microscope stage. Due 

to the complex three-dimensional morphology of oral squamous cells, multiple z-focal planes were 

captured and subsequently combined into a single, enhanced depth-of-field image to simplify the 

multi-spectral detection of the three fluorescent labels using ImageJ “stack focuser”. 

Combinations of custom macros and the open-source image analysis tools ImageJ (Schneider et 

al. 2012) and CellProfiler (Carpenter et al. 2006) were developed to automatically detect individual 

cells and define their nuclear and cytoplasmic boundaries as individual regions of interest (ROI). 

These ROIs were used to obtain intensity measurements associated with the three spectral 

channels and were used to define morphometric parameters. The DAPI and Phalloidin molecular 

labels served primarily to assist in the automated segmentation of individual nuclei and cytoplasm, 

respectively. 

Cell Identification Model Training and Validation 
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A cell type classification model was explored for its ability to discriminate and quantitate the 

frequency and distributions of four cell types: differentiated squamous epithelial (DSE) cells, small 

round (SR) cells, mononuclear leukocytes (ML), and lone nuclei (LN). An additional model further 

classified DSE cells according to nuclear phenotypes for cells with (NA+) and without (NA-) 

nuclear F-actin (i.e., cells with or without F-actin localized in or around the nucleus). Both cellular 

and nuclear algorithms were trained on a subset of 144 cellular/nuclear features from cytology, 

including morphological and biomarker intensity-based measurements. A training set was 

manually compiled by randomly selecting and labeling cells, resulting in approximately 100-200 

single-cell objects for each of the cell types. All features were log-normalized and standardized 

for zero mean and unit variance. Principal component analysis was performed on the training set, 

and scatterplots of the principal components were generated to visualize the internal data 

structure and variance. A k-nearest neighbors (k-NN) classifier was trained on the standardized 

features using 10-fold cross-validation and configured to find the nearest seven neighbors in 

feature space (Euclidean distance). Cross-validated predicted responses by the k-NN classifier 

were recorded, and accuracy was reported for the overall cross-validation set and individually for 

each of the cell types. k-NN model responses with four or less out of seven similar neighbors 

were labelled “unknown” type, and cross-validated accuracy was reported for the overall training 

set after accounting for unknown object types. The classification models were retrained on the 

entire training dataset, and this final model was applied to the study population and averaged 

across each of the six molecular biomarker assays. Plots were generated to show the distributions 

of cell phenotypes across diagnostic categories as follows: 121 normal/non-neoplastic, 241 

benign, 59 dysplasia, and 65 malignant. Median values of cell phenotypes were compared for all 

lesion determinations using a two-sided Wilcoxon rank sum test at a significance level of p = 0.05. 

Cell phenotype frequencies and distributions for each subject were retained for use in clinical 

algorithm development. 

Lasso Logistic Regression Models 

The analysis of dichotomous outcomes with mutually exclusive levels is common in clinical 

diagnostics, and logistic regression is regarded as the standard method of analysis for these 

situations attributed to its probabilistic interpretation and ability to function as a dichotomous 

classifier. Clinical data are often challenged by high-dimensionality and highly correlated 

predictors that may generate model coefficients with high variance. For these situations, a size 

penalty as implemented by the lasso technique may be applied to shrink the effect sizes and 

reduce coefficient variability. Additionally, the lasso technique performs automatic parameter 
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selection by eliminating predictors with less importance. In high-dimensional data sets, reducing 

the set of predictors often leads to better prediction performance and generalizability and has 

shown improvements over manual stepwise selection methods. This lasso logistic regression 

model is suited to our platform because it is inherently more intuitive than previous methods which 

consider hundreds of measurements from cytology that are difficult to interpret. A lasso logistic 

regression approach was used to prevent overfitting, reduce coefficient variability, and retain a 

sparse model with improved generalizability and interpretability. Diagnostic accuracy (area under 

the curve [AUC], sensitivity, and specificity) for several models was determined between various 

histopathology gradings with case vs non-case, as indicated by “|”. Only subjects with evaluable 

data for all biomarker measurements and potentially malignant oral lesion (PMOL) status were 

considered. The results from six molecular biomarker assays on the cytology-on-a-chip system 

were pooled to obtain final estimates. Non-zero lasso logistic regression coefficients were 

retained for the following predictors: NA+, NA-, SR, ML, age, sex, smoking pack years, lesion 

area, lichen planus, and lesion color (Table S3). AUC, sensitivity, and specificity were reported 

as mean and 95% confidence interval values for the cross-validated test set. 

Literature Review 

We reviewed prior diagnostic studies on PubMed using the search terms “(nuclear OR nucleus) 

F-actin AND cancer” using the narrow filter. The search returned 17 studies with only one study 

investigating nuclear F-actin in cell lines (Hemstreet et al. 1996). There were no previous studies 

that evaluated nuclear F-actin as a clinical cancer diagnostic biomarker. We also reviewed the 

literature for previous studies of oral cancer adjuncts (Huber 2018; Lingen et al. 2017; Rashid and 

Warnakulasuriya 2015). Many adjunct study designs were biased. For example, studies only 

performed matched gold-standard histopathology on a subset of subjects with a higher index of 

suspicion for malignancy, effectively ignoring lesions with a lower index of suspicion which are 

more regularly encountered in primary care settings (Poate et al. 2004; Sciubba 1999). One 

prominent adjunct frequently returned an ambiguous “atypical” result (Svirsky et al. 2002). 

Another study only evaluated control subjects without lesions and oral cancer subjects, leading 

to overly optimistic results by excluding subjects with dysplasia (Pereira et al. 2016). Further, most 

cytological tests were conducted at remote laboratories, resulting in significant delays between 

sample collection and test results.  
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Appendix Figure 1. Study participants 

A total of 1053 subjects from each of the three groups consented to enrollment of the original 

study. Of those 1053 subjects, 54 withdrew from the study and, thus, cytology measurements 

were not recorded. Of the 999 remaining enrolled subjects for the original study, 513 were not 

eligible for the current study due to the following reasons: partial cytology measurements (n=21); 

inadequate number of cells in the sample (n=47); samples were used for other purposes (n=2); 

samples were lost due to shipping errors and/or freezer failures (n=44); cytology results were not 

measured due to funding constraints or missing (n=399). All the remaining 486 subjects with 

complete cytology data were included in the current analysis.   
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  Appendix Figure 2. The Point-of-Care Oral Cytology Tool 

The point-of-care (POC) oral cytology tool allows for the cellular analysis of minimally invasive 

brush biopsy samples. The cell suspension collected in this manner allows for the simultaneous 

quantification of cell morphometric data and expression of molecular biomarkers of malignant 

potential in an automated manner using refined image analysis algorithms based on pattern 

recognition techniques and advanced statistical methods. This novel approach turns around 

biopsy results in a matter of minutes as compared to days for traditional pathology methods, 

thereby making it amenable to POC settings. The POC testing is expected to have tremendous 

implications in the rapid management of patient disease by enabling dental practitioners and 

primary care physicians to circumvent the need for multiple referrals and consultations before 

obtaining assessment of molecular risk of PMOL. 
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Appendix Table 1. Odds ratios 

 Early Disease (2 | 3,4,5,6) Late Disease (2,3,4 | 5,6) 

 Univariate 

OR 

p Multi-

variate OR 

p Univariate 

OR 

p Multi- 

variate OR 

p 

NA+ cells 4.79  

(2.45–9.74) 

< 0.001 2.97  

(1.22–7.41) 

0.018 4.09  

(1.86–9.44) 

< 0.001 2.85  

(0.76–11.16) 

0.124 

NA- cells 0.01  

(0.002–0.04) 

< 0.001 0.22  

(0.03–1.16) 

0.087 0.002 

(0.0004–0.01) 

< 0.001 0.28  

(0.03–2.09) 

0.231 

SR cells 8.84  

(4.94–16.54) 

< 0.001 2.30  

(0.97–5.58) 

0.060 28.48  

(12.48–71.69) 

< 0.001 4.68  

(1.34–17.50) 

0.018 

ML cells 4.45  

(2.86–7.11) 

< 0.001 1.65  

(0.75–3.67) 

0.215 13.77  

(7.50–26.90) 

< 0.001 4.03  

(1.33–12.87) 

0.015 

Sex 1.76  

(1.14–2.74) 

0.011 1.58  

(0.90–2.81) 

0.112 2.65  

(1.56–4.61) 

< 0.001 4.23  

(1.92–9.81) 

< 0.001 

Age 1.18  

(1.00–1.39) 

0.048 1.24  

(1.02–1.51) 

0.037 1.20  

(0.99–1.45) 

0.065 1.36  

(1.04–1.81) 

0.026 

Lesion area 1.48  

(1.23–1.84) 

< 0.001 1.11  

(0.90–1.39) 

0.340 2.31  

(1.61–3.52) 

< 0.001 1.21  

(0.89–1.75) 

0.258 

Lesion color - - - - - - - - 

   White ref. - ref. - ref. - ref. - 

   Red 1.14  

(0.56–2.27) 

0.703 0.63  

(0.26–1.47) 

0.294 5.14  

(1.95–14.59) 

0.001 2.81  

(0.77–10.63) 

0.119 

   Red and white 2.10  

(1.30–3.44) 

0.003 1.59  

(0.84–3.03) 

0.153 9.02  

(4.20–22.43) 

< 0.001 6.95  

(2.58–21.21) 

< 0.001 

Lichen planus 0.13  

(0.06–0.25) 

< 0.001 0.16  

(0.07–0.36) 

< 0.001 0.08  

(0.02–0.23) 

< 0.001 0.12  

(0.03–0.41) 

0.002 

Pack years 1.64  

(1.20–2.23) 

0.002 1.40  

(0.94–2.09) 

0.095 1.60  

(1.12–2.29) 

0.010 1.35  

(0.78–2.33) 

0.285 

 

Odds ratios (95% confidence intervals) from univariate and multivariate logistic regression for 

early disease late disease models. The following predictors were log10 transformed: NA+, NA-, 

SR, and ML cells, lesion area, pack years. Sex corresponds to male (i.e., male=1, female=0). Age 

is in 10-year increments. Lichen planus is the clinical impression of lichen planus.  
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Appendix Table 2. Likelihood ratios 

  Early Disease (2 | 3,4,5,6) Late Disease (2,3,4 | 5,6) 

Predictor LR + LR - LR + LR - 

Multivariate Model 2.70 (2.33–3.13) 0.38 (0.33–0.45) 5.59 (4.77–6.56) 0.16 (0.14–0.19) 

NA- Cells 0.52 (0.38–0.72) 2.62 (1.90–3.59) 0.27 (0.16–0.45) 3.80 (2.29–6.30) 

NA+ Cells 1.63 (1.38–1.94) 0.50 (0.42–0.60) 1.53 (1.20–1.93) 0.55 (0.43–0.70) 

SR Cells 2.03 (1.74–2.38) 0.41 (0.35–0.48) 3.30 (2.71–4.00) 0.30 (0.25–0.36) 

ML Cells 1.85 (1.56–2.20) 0.52 (0.44–0.61) 3.16 (2.59–3.84) 0.30 (0.25–0.37) 

Lesion Color     

    Red and White 1.43 (1.18–1.74) 0.71 (0.58–0.86) 1.88 (1.51–2.35) 0.42 (0.34–0.53) 

    White 0.68 (0.50–0.92) 1.24 (0.92–1.67) 0.21 (0.10–0.43) 1.66 (0.80–3.43) 

    Red 0.78 (0.51–1.19) 1.04 (0.69–1.59) 1.07 (0.65–1.78) 0.99 (0.60–1.64) 

Lesion Area 1.44 (1.21–1.72) 0.53 (0.45–0.63) 1.55 (1.24–1.93) 0.38 (0.30–0.47) 

Tobacco Use 1.44 (1.18–1.76) 0.74 (0.61–0.91) 1.41 (1.08–1.85) 0.73 (0.56–0.96) 

Alcohol Use 0.87 (0.68–1.10) 1.25 (0.99–1.58) 0.82 (0.60–1.10) 1.34 (0.99–1.81) 

Alcohol and Tobacco Use 1.35 (1.06–1.71) 0.87 (0.69–1.11) 1.22 (0.86–1.71) 0.91 (0.65–1.28) 

 

Positive and negative likelihood ratios (95% CI) for clinical and cytological predictors in 

distinguishing early disease and late disease. LR+ is the positive likelihood ratio. LR- is the 

negative likelihood ratio. Lesion area positive was defined as patients with lesion area > 200 mm2. 

Tobacco positive was defined as patients with smoking pack years > 2.5 pack years. Alcohol use 

positive was defined as patients having 12 or more drinks in the past year. Alcohol and tobacco 

positive was defined as patients with both tobacco use and alcohol use. 
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Table S3. Predictor definitions. 

Abbreviation Description 

NA- percentage of differentiated squamous epithelial cells without nuclear F-

actin (i.e., number of NA- cells divided by total cells, where ‘total cells’ is 

the number of cells of type NA-, NA+, SR, and ML) 

NA+ percentage of differentiated squamous cells with nuclear F-actin (i.e., 

number of NA+ cells divided by total cells, where ‘total cells’ is the 

number of cells of type NA-, NA+, SR, and ML) 

SR percentage of small round cells (i.e., number of small round cells divided 

by total cells, where ‘total cells’ is the number of cells of type NA-, NA+, 

SR, and ML) 

ML percentage of leukocytes (i.e., number of leukocytes divided by total 

cells, where ‘total cells’ is the number of cells of type NA-, NA+, SR, and 

ML) 

Age age in years 

Sex male = 1, female = 0 

Pack years average cigarettes smoked per day times years smoked divided by 20 

Lesion area lesion area in mm2 calculated using ellipse formula 

Lichen planus clinical impression of lichen planus--a binary measure completed by 

clinician at time of brush cytology sample collection indicating the 

presence (“1”) or absence (“0”) of the clinical features of lichen planus 

Lesion color variable indicating lesion color; white = 0, red = 1, red and white = 2 
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