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Abstract—The contour tree is one of the principal tools in
scientific visualisation. It captures the connectivity of level sets
in scalar fields. In order to apply the contour tree to exascale
data we need efficient shared memory and distributed algorithms.
Recent work has revealed a parallel performance bottleneck
caused by substructures of contour trees called W-structures.
We report two novel algorithms that detect and extract the W-
structures. We also use the W-structures to show that extended
persistence is not equivalent to branch decomposition and leaf-
pruning.

I. INTRODUCTION

Topology is the basis for persistent homology [17], a

framework for extracting structural information from data, and

Computational Topology [35], which studies how to com-

pute and scale topological structures efficiently. Topological

algorithms and data structures have been applied to various

problems in structural biology [34], [14], computer vision [3],

[23] medical imaging [32] and visualisation [5], [6], [10].

The Contour Tree (CT) is a data structure that captures

the topological connectivity of a scalar field. In scientific

visualisation it is used to identify features of more than local

importance in large scale scientific and engineering simula-

tions [22], [30]. As the size of data sets grows to exascale

there is an increasing demand to develop scalable massively

multicore and distributed algorithms and systems.

The contributions of this paper are to extend the under-

standing of a pathological case, called the W-structure [12],

that emerges in one of the state of the art parallel contour tree

algorithm (Subsection II-B); to demonstrate that W-structures

have implications for parallel algorithmic efficiency (Subsec-

tion II-B) and that they can be detected and characterized

(Subsection III-B); and finally that they can be used to show

that contour tree simplification via persistent homology and

branch decomposition [29] are equivalent (Section V).

II. BACKGROUND

The goals of this work are study how W-structures affect

parallel contour tree computation and how branch decomposi-

tion relates to persistent homology. The relevant background

is split between Section II and Section V because these

two tasks have different prerequisites. In this section, we

introduce methods to compute (Subsection II-B) and simplify

(Subsection II-C) the Contour Tree (Subsection II-A) and leave

the background relating to persistent homology to Subsection

V-A.

e-mail: p.hristov@leeds.ac.uk
e-mail: h.carr@leeds.ac.uk

A. Contour Trees

Given a scalar function f : R
n → R, a level set is the

set of all points with a given isovalue h: f−1({h}) = {x ∈
R

n | f(x) = h}. We refer to individual connected components

of a level sets as contours. As h varies, contours may appear,

disappear, connect or disconnect at critical points where the

gradient vector is zero.

The Reeb Graph of f is constructed by contracting the

contours at every isovalue to a point. The resulting structure

is a graph whose vertices are critical points and whose edges

are families of contours with identical connectivity. Since R
n

is simply connected, the Reeb Graph is connected and acyclic,

also called the Contour Tree [4].

We extend the definition of a level set to a super-level set:

the points with higher values than h, i.e. {x ∈ R
3 | f(x) ≥ h},

or a sub-level set with lower values, {x ∈ R
3 | f(x) ≤ h}.

Contracting the connected components of the super-level and

sub-level set gives two merge trees, also referred to as the join

& split trees.

B. Contour Tree Algorithms

In practice, we assume that the domain is approximated

by a simplicial mesh with a linear interpolant. Under these

constraints, critical points occur at vertices, and we only need

to process the graph composed of the vertices and edges of the

mesh. Although these assumptions can be relaxed [7], they are

the most common in practical data analysis, and they simplify

our analysis without loss of generality.

The standard contour tree algorithm [8] is based on the idea

of an isovalued sweep - i.e. processing the vertices of the mesh

in sorted order from high to low. As each vertex u is processed,

any edge (u, v) to a higher-valued vertex v is also processed.

At each step there is a subgraph representing the super-level

set, whose connectivity can be tracked with an incremental

version of the union-find data structure [33]. In the first stage

of the algorithm we construct the join tree, then repeat with

a low-to-high sweep to compute the split tree. In the second

stage, we construct the contour tree iteratively by transferring

leaves and their adjacent edge from the merge trees, using

induction on a simple invariant to guarantee correctness. As

a result, this algorithm is sometimes referred to as the sweep

and merge algorithm.

There are several approaches to scaling sweep and merge.

Distributed algorithms [27], [22], [26], [28] adopt a divide

and conquer approach where each node computes the con-

tour/merge tree on parts of the data. The scalability of dis-

tributed methods relies not only on minimising node com-
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Fig. 1: A simplicial mesh (a) that generates a W-structure, the corresponding contour tree (b) with the W-structure shown as

thicker edges and the corresponding join and split trees (c) and (d). The vertices are labeled with their height value.

munication but also efficient utilisation of individual nodes.

Efficient utilisation of nodes relies on parallel algorithms using

vector [12], thread [19], [20] or hybrid [31], [2], [24] shared

memory parallelism.

The parallel peak pruning algorithm [12] is the only shared

memory algorithm which parallelises the merge phase. Other

algorithms introduce a novel way of computing the join and

split tree, but combine them in serial. Note that the merge

phase has linear complexity and it is significantly faster to

compute than the join and split trees. Nonetheless, parallelising

the merge phase is important for resource utilisation and

parallel speed up according to Amdahl’s law [20].

In the merge phase of the serial contour tree algorithm [8]

we transfer the leaves and their adjacent edge from the merge

trees to the contour tree. Since this is a local operation all

leaves can be batched and transferred in a single parallel step.

The algorithm alternates between transferring leaves from the

join and split tree until the contour tree is fully constructed.

In the ideal case, each batch transfers at least half of the

vertices, guaranteeing logarithmic performance. In a tree with

no vertices with degree two, half of the vertices are leaves.

Thus we can achieve logarithmic collapse if we remove degree

two vertices in a post process for each batch.

Removing a degree two vertex is straightforward when its

neighbouring vertices have values spanning the value of the

vertex. This is the case when the vertex is connected by a chain

of such vertices to a leaf. In effect, these vertices are regular at

this stage (although they may not have been in earlier stages),

and can be removed. For vertices of degree two whose value

is smaller or bigger than the value of both neighbours, this is

not so easy to perform. We call these vertices forks.

A W-structure consists of repeated forks zigzagging between

upwards and downwards, as illustrated in Figure 1. In order to

collapse the W-structure completely we can only prune from

an endpoint of the W-structure to a fork. The internal vertices

cannot be process until we have pruned all forks. There-

fore computation is effectively serialized along the largest

W-structure in the contour tree. This prevents logarithmic

collapse and complicates the parallel complexity analysis of

the algorithm.

W-structures were first visible in Carr et al. [9], they have

previously complicated proofs [11] and have caused issues

with contour tree parallel algorithm design and analysis [12].

The contribution of this paper is to initiate a systematic study

of these W-structures. A natural starting point is to describe

them mathematically and develop algorithms to detect and

extract them from contour trees. These algorithms will allow

us to quantify the impact they have on computation and

determine whether they are an issue in real life data sets.

Finally we will show that W-structures lead to theoretical

complications as well, by demonstrating that contour tree

simplification via branch decomposition is not equivalent to

persistent homology.

C. Contour Tree Simplification

The principal technique for contour tree simplification is

branch decomposition [29]. The contour tree is partitioned

into a set of disjoint monotone paths (branches). A branch

decomposition is hierarchical when there is exactly one branch

that connects two leaves called the master branch and every

other branch connects a leaf to a saddle. Branches represent

pairs of critical points that can be cancelled [25].

In order to decide the order of cancellation we use the

persistence of the branches [29]. The persistence of a branch

is the greater of the difference between the height value at its

endpoints and the persistence of its children. Simplification

consists of removing branches that do not disconnect the tree

in order of their persistence. This produces a hierarchy of

cancellations as shown in Figure 2. In branch decomposition

we repeatedly pair upper leafs to join saddles and lower leaves

to split saddles in order of persistence until all vertices are

paired.

As an example we consider branch decomposition of the

contour tree from Figure 1 (b). The first two candidate

branches are (6, 3) with persistence 3 and (4, 9) with per-

sistence 5. We take the branch with lower persistence (6, 3).
In the next step the candidates are (1, 5) with persistence 4
and (4, 9) with persistence 5. We take (1, 5). The remaining

candidate branches are (4, 8) with persistence 4 and (4, 9) with

persistence 5. After removing (4, 8) the only remaining branch

is the master branch - (2, 9). To conclude, the pairs of critical
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Fig. 2: Branch decomposition of the contour tree and the two merge trees from Figure 1 with the edges of the master branches

in thicker lines. Vertices are labeled with their height. In both merge trees the master branch is the monotone path from the

global minimum 1 to the global maximum 9. Note that in the absence of a monotone path between 1 and 9 in the mesh and

its contour tree they cannot be paired.

points produced by the branch decomposition of the contour

tree are (3, 6), (1, 5), (4, 8) and (2, 9).
We can also compute the branch decomposition of the

join and split trees. The candidate branches for the join tree

are (3, 6), (4, 8) and (4, 9). We remove them in order of

persistence. First (3, 6), then (4, 8) and finally the master

branch (1, 9). In the split tree the two candidate branches are

(1, 5) and (2, 5). We remove (2, 5) first because it has lower

persistence and then the master branch (1, 9).

III. W-STRUCTURES IN CONTOUR TREES

In this section we will develop the existing understanding

about W-structures and introduce three algorithms to compute

the largest W-structure in a contour tree. The value of these

algorithms will be in that they will allow us to build our

understanding of W-structures and allow us to detect W-

structures in real life data. We adopt the following notation: in

a contour tree T the set of vertices is V and the set of edges

is E. We refer to paths in the contour tree by their first and

last vertex because there is a unique path between any two

vertices.

A. Spatial Characterization

An important property of paths in contour trees is their

monotone path decomposition. This is a sequence of monotone

subpaths that share exactly one vertex and have alternating

direction (Figure 3). We can use the number of subpaths in

the monotone path decomposition to characterize them. To

simplify this characterization we note that the number of

subpaths in the monotone path decomposition is one more

than the number of vertices where an ascending subpath ends

and a descending subpath begins (or vice versa). We will call

these vertices forks.

We define the w-length of a path as the number of forks

in that path and the length of a path as the number of edges.

To avoid ambiguity between w-length and length we will use

(a) Extracted W-structure.

(b) Monotone path decomposition.

Fig. 3: A W-structure and its monotone path decomposition

(forks in solid black).

the term w-path to emphasize that we are referring to a path’s

w-length. Note that if two paths share a vertex it may be a

fork in one of them, but not the other. For example vertex 5
from the contour tree in Figure 1 is a fork in the path from 6
to 9, but not in the path from 1 to 8. This property is crucial

in understanding how we develop algorithms for detecting W-

structures.

In this terminology the largest W-structure in a contour tree

is a path between two leaves with maximum w-length (or

longest w-path). We will call this the w-diameter of the contour

tree. This again is analogous to how the longest path in a tree is

called the diameter of the tree. As there are efficient algorithms

for computing the diameter of a tree a natural question to ask

is whether we can adapt these algorithms to compute the w-

diameter of a contour tree.
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Fig. 4: Execution of the Double BFS algorithm (a) and (b) on an example contour tree and the actual w-diameter (c). Black

edges indicate a path of maximum w-length. Numerical labels next to vertices indicate their w-distance from the start vertex.

In stage 1 we start from an arbitrary vertex s and find the most w-distant vertex from it u. In stage 2 we find the most w-distant

vertex from u and call it v. The w-length of the path from u to v is however suboptimal as demonstrated in the last figure. If

our initial root was a then the algorithm would have obtained the w-diameter.

B. W-Diameter Algorithms

We will begin the development of w-diameter algorithms

by first describing three tree diameter algorithms - brute

force, endpoint search and root based search. The brute force

algorithm computes the lengths of all paths in a tree and

outputs the maximum one. The second algorithm relies on the

fact that the most distant leaf from any vertex is the endpoint

of the diameter [15]. It requires two breadth first searches,

so it has linear running time. The third algorithm is defined

for rooted trees where the longest path may or may not pass

through the root. If it passes through the root then it must

start in a leaf in one of the subtrees of a child of the root,

pass through the root and end in a leaf in another subtree.

If it does not then it must be entirely contained in a subtree

of a child of the root. With the use of dynamic programming

this algorithm has linear complexity as well. In the next three

subsections we will adapt each one of these algorithms to

compute the w-diameter of a contour tree.

C. Algorithm 1 - Multi BFS

The brute force approach to finding the w-diameter of a

contour tree compares the w-lengths of all paths in the contour

tree. To implement it we modify Breadth First Search (BFS)

to traverse the tree and compute w-length (number of forks)

instead of length (number of edges). We then run this modified

BFS from every vertex in the tree and output the maximum

value found. It has quadratic running time and we will refer

to it as Naive BFS.

D. Algorithm 2 - Double BFS

The algorithm works the same as the second tree diameter

algorithm we described in Subsection III-B except we measure

w-distance instead of distance. Consider a contour tree T and

an arbitrary start vertex s. First we find the most w-distant

vertex from s and call it u. Then we find the most w-distant

vertex from u and call it v. After the first search from s we

are not guaranteed that v is an endpoint of a w-diameter. We

are however guaranteed that v is an endpoint of a path whose

w-length is at least that of the w-diameter minus two. We will

demonstrate why that is true in the following two paragraphs.

We illustrate this with an example in Figure 4. In this

example the algorithm does not produce the w-diameter of

the contour tree which is the path from a to b. The mismatch

between the output of the algorithm and the actual w-diameter

is due to vertices which are forks in one path, but not in others.

First consider the black vertex on the path from s to u in Figure

4 a); it is a fork on the path from s to u, but not on the path

from u to v = b (Figure 4 b). Secondly, consider the midpoint

of the path from a to b; it is a fork on the path from a to b,

but not on the path from u to b or a.

Our argument for the general case is based on this example.

In a contour tree T let s be the start vertex and v the most

w-distant vertex from s. During the course of the algorithm

there are two graph searches, one from s to identify v and one

from v. There are at most two turning points which may or

may not be forks during the two searches. One of the turning

points is where the path from s to a (or symmetrically to b)

diverges from the path from s to v. The other one is where

the path from v to a (or symmetrically to b) diverges from the

path from a to b (or symmetrically from b to a). This causes

the w-length of the path we find to vary by at most two from

the w-diameter of the contour tree.

To implement Double BFS we pick a starting vertex and

then run the modified Breadth First Search twice. The first

BFS from the root to find the farthest leaf from it and then

a second BFS from that leaf. The algorithm consists of two

consecutive Breadth First searches and therefore its running

time is O(|V |).

E. Algorithm 3 - Dynamic

The third algorithm works by progressively combining paths

from subtrees of the contour tree to obtain the longest w-path.

For a contour tree T we pick an arbitrary start vertex s to be

the root of the rooted tree Ts. Observe that the w-diameter

of T either passes through s or it does not. If it does pass

through s then it must also pass through two children of s

and be contained in their subtrees. If it does not pass through

s then it must be entirely contained in the subtree of one of the

children of s. We can then extend this reasoning recursively

to all the subtrees of Ts.

For every vertex u in Ts we define Ts,u as the subtree of Ts

with root u. We find the w-diameters of all subtrees of Ts,u
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and use them to compute the w-diameter of Ts,u. We now

demonstrate how to compute the w-diameter of Ts,u assuming

that the optimal solutions for all subtrees of Ts,u have been

found recursively. Note that the base case is at the leaves of

the tree Figure 5 a).

Case 1 - the w-diameter of Ts,u goes through u. To handle

this case we must find two maximum paths contained in two

subtrees whose roots are children of u, say a and b. As we

have recursively found all such maximum paths we only have

to determine how to combine them. When combining them

three vertices can become forks. The first one is u and the

other two are a and b which were previously endpoints of the

maximum paths in their subtrees. To account for u we simply

have to compare its height to a and b. To account for a and b

we must compare their height with u and the previous vertex

in the maximum w-path they are the endpoint of.

An example of where Case 1 holds is in Figure 5 c). Note

that this requires us to not only look at all children of u, but

also to all children of children of u. In addition to this it may

be the case that u is a leaf and has only one child say a. In

this case u must be the endpoint of the w-diameter. In this

case we find all maximum paths that end at a and account for

whether a becomes a fork in them or not.

Case 2 - the w-diameter of Ts,u does not pass through u.

In this case the w-diameter has to be entirely contained in

one of the subtrees whose root is a child of u so we pick the

maximum one. An example of where Case 1 holds is in Figure

5 d).

Let us derive the time complexity of the algorithm. Firstly

it takes O(|V |) time to traverse the tree and root it via

either BFS or DFS. Secondly, we iterate over the children

of all children of all vertices. Since the algorithm operates on

trees, every vertex has a unique grandparent. Therefore every

vertex will be visited exactly once and contribute O(|V |).
Finally we pick all pairs of children of a vertex to find the

maximum w-path that goes through the vertex. Computing

this for all vertices in the graph yields O(
∑

u∈V d(u)2)
where d(u) is the degree of a vertex. To see how we can

evaluate this consider that in a tree d(u) + d(v) ≤ |V |
for any two vertices connected by an edge (otherwise we

would have a cycle). If we sum over all edges we obtain that∑
uv∈E(T ) d(u) + d(v) ≤ |V |2. In the summation on the left

hand side every term d(u) is present d(u) times and therefore∑
uv∈E(T ) d(u) + d(v) =

∑
u∈V (T ) d(u)

2 ≤ |V |2. Therefore

the overall complexity of the algorithm is O(|V |2). Note that

this is formally more complex than the dynamic programming

tree diameter algorithm in Section 3.2. The difference between

the two is that the base algorithm does not need to look at all

pairs of children, it can simply pick the child with the largest

height.

We have shown that the algorithmic complexity of the

Dynamic algorithm is no better than that of the Naive BFS

algorithm. However, the running time of the Dynamic algo-

rithm depends on the average degree of the vertices of the

contour tree. If we assume the function is generic and PL

Morse [16], then the degree of every vertex is bounded and

the running time of the algorithm is linear.

IV. EMPIRICAL STUDY

In this section we supplement the theoretical investigation

of the W-structures with an empirical study. We verify the

correctness and running time of the w-diameter algorithms

and study the W-structures in contour trees of real life data

sets.

We implemented all three w-diameter algorithms in C++.

Their source code is in the supplementary materials. We

avoided a recursive implementation of the Dynamic algorithm

due to excessive overhead caused by recursive calls. Instead

we traversed the tree once with a standard Breadth First Search

to identify the children and parents of all vertices. We then put

them in a list and starting from the leaves we processed all

vertices in the tree making sure their children are processed

beforehand.

The data sets we have used are taken from the Open

SciVis Dataset [1]. The contour tree was computed using the

open source VTK-m implementation. All tests were run on a

Lenovo E550 Laptop with Intel(R) Core(TM) i5-5200U CPU

at 2.20GHz and 8GB DDR3 RAM at 1600 MHz. The running

time of the w-diameter programs was obtained from an average

of five runs on each data set.

A. Results

The results from the empirical tests are shown in Table I.

The first column shows the name of the data set, the second

column the number of vertices and the third the diameter of the

contour tree (not w-diameter). The fourth column shows the

number of iterations in the merge phase of the PPP algorithm.

The following columns show the running times and output of

the Double BFS, Dynamic and Naive BFS algorithms.

From previous work [12] we know that in a contour tree

without W-structures the parallel step complexity of the merge

phase is logarithmic. When W-structures are taken into account

the best formal guarantee that could be given is the tree

diameter. However it was noted that the merge phase usually

takes less than a logarithmic number of iterations. This is

reflected in our results as well - the number of iterations

is always less than log2(|V |) and substantially less than the

diameter.

In this paper we investigate the case where W-structures

are present in the contour tree. The key issue in doing so is to

detect when they are present and to quantify their size. Based

on the results of this empirical study we can confirm that W-

structures do appear in real world data. Fortunately, the size

of the W-structures is relatively small compared to the size of

the data. Furthermore larger data sets do not seem to have a

proportionally larger w-diameter.

A w-diameter of more than 2 log2(|V |) can formally prevent

logarithmic collapse in the merge phase. The maximum w-

diameter in our tests was 7 which is less than 2 log2(|V |) in

all cases. This highlights the importance of parallelising the

merge phase and explains why it performs well in practice.

Finally the running time and correctness of the w-diameter

algorithms is consistent with our theory. The worst case

running time for Dynamic is quadratic, but as predicted it is
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TABLE I: Analysis of the W-Diameter of real life data sets.

Double BFS Dynamic Naive BFS
Dataset Vertices Tree Diameter Merge Iterations Time (s) W-Diam Time (s) W-Diam Time (s) W-Diam

fuel 236 43 6 0.0001 2 0.0003 4 0.0133 4
marschner lobb 1604 371 9 0.0008 3 0.0022 3 0.3881 3
hydrogen atom 13038 3153 6 0.0039 2 0.0139 4 25.382 4
aneurism 65625 23701 10 0.0251 4 0.0671 4 723.39 4
engine 518780 92559 12 0.2183 6 0.5504 6 N/A N/A
foot 870371 133655 14 0.4922 7 1.0342 7 N/A N/A
skull 2199876 340611 14 1.0839 7 2.5048 7 N/A N/A
backpack 7441922 1365783 18 4.2384 7 8.4635 7 N/A N/A
bunny 13078906 1450364 18 8.1435 5 15.903 6 N/A N/A
present 17006950 2349226 16 11.339 5 21.075 6 N/A N/A
christmas tree 24643034 4866458 17 13.399 5 29.015 5 N/A N/A
magnetic reconn 40321359 6401594 18 34.480 6 57.287 6 N/A N/A

not exhibited and in practice it is only around twice as slow

as the Double BFS algorithm. The Dynamic and Naive BFS

algorithms produce the same results, while the Double BFS

algorithm produces a suboptimal w-path in the bunny, present,

fuel and hydrogen atom data sets.

V. W-STRUCTURE SIMPLIFICATION

The topological complexity of a scalar field is largely

governed by the number of critical points. Some methods for

simplification remove critical points in pairs using an auxiliary

topological data structure such as the Morse-Smale Complex,

persistent homology or the Contour Tree. Once selected, pairs

are ranked by persistence, or more advanced metric such as

volume or surface area [9], and cancelled in that order.

It is well know that the sequence of simplifications do not

always agree with persistence. For example in Morse-Smale

complexes there are blocking structures known as strangu-

lations [21] and in ǫ-simplification [18] compound function

value changes can occur when following the persistence order.

W-structures are a similar kind of blocking structures in the

case of contour tree simplification.

What is less well known is the relationship between branch

decomposition and persistent homology (first observed [29]).

In the merge phase, the contour tree is build up of branches

taken from the join and split tree. The critical pairs defined by

those branches in turn correspond to the 0th persistence pairs

of f and −f . In this chapter we will consider whether the

branch decomposition of the contour tree also corresponds to

those persistence pairs.

A. Persistent Homology Overview

The building blocks of persistent homology [17] are se-

quences of nested simplicial complexes called filtrations. In

a filtration we start from the empty set and iteratively add

simplices to obtain the full complex. Throughout this section

will consider the ascending and descending filtrations on

Figure 6 of the simplicial mesh from Figure 1. The ascending

filtration of M is made up of the sub-level sets Mi which

contain all vertices whose value is lower than or equal to i and

all other simplices between them. The descending filtration of

M is made up of the super-level sets M i which contain all

vertices whose value is bigger than or equal to i and all other

simplices between them. In short, this is exactly the same as

the join and split tree computation in the sweep and merge

algorithm we discussed in Section II-B.

Persistent homology describes how the n-dimensional con-

nectivity of the simplicial complexes in a filtration changes.

The n-dimensional connectivity is described by an algebraic

structure called the nth homology group. Since contour and

merge trees only capture connected components and not higher

dimensional connectivity such as holes and voids we will only

need to consider the 0th homology group. When a connected

component appears in the progression of the filtration we

say that a 0th homology class is born. When two connected
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Fig. 6: Ascending c) and Descending d) filtration of Figure 1 (a). Direction of travel of the two filtrations b) and e). Branch

decomposition of the split a) and the join tree f) with additional vertices corresponding to connected components.

components merge together the 0th homology class that corre-

sponds to the younger component dies and the 0th homology

class that corresponds to the older one persists.

The output of persistent homology is the so called persis-

tence pairs. A persistence pair is a record of the birth and death

of a 0th homology class. The persistence pairs of a filtration

give a basis for topological simplification.

B. Comparison of Critical Point Pairs

The proposition we aim to resolve is whether persistence

pairs are equivalent to branch decomposition cancellation

pairs. Since monotone paths in the contour tree correspond
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to monotone paths in the simplicial mesh [8] then branches

obtained via branch decomposition correspond to valid topo-

logical cancellations in the simplicial mesh [29]. Therefore

they are comparable to cancellations given by persistence

pairs.

We start by computing the persistence pairs of the ascending

filtration in Figure 6 c). One connected component appears in

the complex M1, another one in the complex M2 and they

merge in M5. When the two merge the older one born in M1

persists and the younger one born in M2 dies. We record this

with the persistence pair (2, 5). When the filtration is done we

are left with a 0th homology class corresponding to the single

connected component of the mesh. This 0th homology class

is called essential and we give it an infinite persistence pair

(1,∞).
In the descending filtration in Figure 6 d) we can see that

three 0th homology classes are born in the complexes M9,

M8 and M6. The one born in M8 dies in M4 when it merges

with the one born in M9 (because M9 is older). The one born

in M6 dies in M3 when it merges with the one born in M9.

The one born in M9 does not die in the descending filtration

because it represents the connected component of M itself.

Therefore the persistence pairs are (6, 3), (8, 4) and (9,∞).
The two infinite persistence pairs can be resolved with

extended persistence [13]. The idea behind extended persis-

tence is that we take the essential classes from the ascending

and descending pass and pair those which correspond to the

same connected component. More generally we know that

in a simple domain extended persistence always pairs the

global minimum with the global maximum. In our example

the extended persistence pair for the ascending filtration is

(1, 9) and the extended persistence pair for the descending

filtration is (9, 1).
Finally consider the branch decomposition of the contour

tree in Figure 2. While the first produced branch (6, 3) is the

same in the contour tree and in the join tree branch decompo-

sition, the third branch of the join tree branch decomposition

(1, 9) does not occur as a pair in the contour tree. The same

holds for the branch decomposition of the split tree and the

persistent homology pairs of the ascending and descending

filtration - they all pair the global minimum 1 with the global

maximum 9. This cannot occur in the branch decomposition of

the contour tree because branches represent monotone paths.

There is no monotone path between the 1 and 9 in the mesh

and therefore no monotone path in the contour tree. The result

then follows.

VI. CONCLUSION

In this paper we introduced the theory of a pathological case

in contour tree parallel computation called a W-structure. We

developed three algorithms to detect and extract W-structures

and showed that they appear in real life data. We also showed

that W-structures cause fundamental theoretical issues. They

lead to an example that contour tree simplification is not

equivalent to persistent homology.

Future work in this direction will focus on whether there is a

form of persistent homology which matches the branch decom-

position form of simplification, on algorithmic improvements

for which W-structures do not pose a parallel bottleneck, and

if need be, on further empirical studies to inform algorithmic

development.
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