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Abstract—The contour tree is a tool for understanding the
topological structure of a scalar field. Recent work has built
efficient contour tree algorithms for shared memory parallel
computation, driven by the need to analyze large data sets in situ
while the simulation is running. Unfortunately, methods for using
the contour tree for practical data analysis are still primarily
serial, including single isocontour extraction, branch decompo-
sition and simplification. We report data parallel methods for
these tasks using a data structure called the hyperstructure and
a general purpose approach called a hypersweep. We implement
and integrate these methods with a Cinema database that stores
features as depth images and with a web server that reconstructs
the features for direct visualization.

I. INTRODUCTION

Computational scientists use massive numerical simulations

to study physical phenomena. As these simulations increase

in size, techniques for analyzing and displaying the data are

increasingly important. However, due to limited bandwidth to

disk and in the human visual system, this increasingly depends

on running analytics and visualization tools in situ during

simulation rather than post hoc.

An important analytic tool available for scalar fields is the

contour tree, which captures the relationship between the iso-

contours in the data, annotated with geometric measures, such

as volume and intensity, that are of significance to the science

behind the data. In order to apply these tools at scale, recent

work has focused on building parallel algorithms and data

structures for computing, manipulating and interpreting contour

trees, first in data parallel environments, and in the future in

hybrid clusters with heavy on-node data parallelism. Data

parallel algorithms to compute and augment the contour tree

have been reported [6], [11], but not secondary computations.

Those secondary computations are geometric measures, branch

decomposition, simplification and single isocontour extraction.

The first contribution of this paper is to introduce data

parallel algorithms for those secondary computations. To
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compute geometric measures we develop a method we call

a hypersweep that is a modification of the parallel tree

contraction algorithm [21]. The hypersweep method arises

naturally from the computation of the contour tree and unlike

parallel tree contraction it respects the semantics of the

contour tree as a data structure. For branch decomposition and

simplification we replace the standard inherently serial priority

queue computation with a local and trivially parallelisable

algorithm. The second contribution is an implementation of

those secondary measures in the open source VTK-m library.

The final contribution of this paper is to link the resulting

code with the existing in situ Cinema database to demonstrate

viable data-parallel contour algorithms for the entire analysis

and visualization pipeline.

We review the relevant background literature in Section II,

then introduce the hypersweep in Section III, showing how

to adapt branch decomposition to data-parallel computation.

We then describe how to extract significant isocontours in

data-parallel (Section IV), report how we integrated it with the

Cinema database (Section V), and show its application to a

WarpX laser plasma particle accelerator simulation (Section

VI). We then evaluate performance (Section VII) and discuss

conclusions and future research directions (Section VIII).

II. BACKGROUND

Given a scalar function f : Rn → R, a level set is the set of

points at an isovalue h: f−1({h}) = {x ∈ R
n | f (x) = h}. We

call individual connected components of level sets contours. As

h varies, contours appear, disappear, connect or disconnect at

critical points where the gradient vector is zero, which may be

peaks, pits or saddles. If we contract each contour to a single

point, the resulting structure is called a contour tree [5]. For

functions over general manifolds, the structure may have cycles,

and is called a Reeb graph. In both, critical points are known

as supernodes and are connected by superarcs, with regular

(non-critical) mesh vertices represented as nodes strung on

arcs along the superarcs. An augmented contour tree contains

regular nodes, and is more expensive, but often more useful.

If we instead take the connected components of sublevel sets

such that f−1((−∞,h]) = {x ∈R
n | f (x)≤ h} we can construct
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b) Top ten features using a parallel height branch decomposition.

c) Compressed, reconstructed and individually colored features via Cinema.a) Original WarpX Data set.

Fig. 1: a) Isosurface visualization of the transverse electric field Ex of a WarpX laser plasma particle accelerator simulation

[11]. b) Visualization of the ten most-significant contours detected automatically using a branch decomposition of the contour

tree using our data-parallel, height-based simplification method that correctly captures the topology of the data set. c) For

interactive, post-hoc visualization, we compute and store features in a Cinema image database in situ and reconstruct them via a

web interface. We store features individually and this allows us to manipulate their properties such as color, scale, opacity, etc.

a tree known as the join tree. If we take the connected compo-

nents of superlevel sets or f−1([h,∞)) = {x ∈ R
n | f (x)≥ h}

we obtain the split tree. Collectively, the join and split trees are

referred to as merge trees. They are important in computing the

contour tree, but can also be used independently for analysis

[4].

In serial, a single sweep computes the join tree, a second

one computes the split tree, then superarcs are transferred

from the outside of the merge trees inwards to construct the

contour tree [8]. Subsequent work parallelised this in shared

memory [6], [11], [15], [16], in distributed clusters [18], [23],

[24], [26] or on hybrid models [1], [20], [28]. The most

performant shared-memory approach is the PPP algorithm [6],

[11], which we use as the basis for our computations.

The PPP algorithm [11] computes the merge trees in two

phases: topology graph construction and parallel peak pruning

(PPP). In the first phase, the input mesh is abstracted to a

topology graph [7] in which all critical points are represented,

and edges represent monotone paths between critical points.

This is then used as the input to the second phase, where

superarcs from peaks to the topologically nearest saddle are

found and added to the merge tree in parallel, then removed

from the topology graph. What remains of the topology graph

now has new peaks which used to be saddles, but some saddles

become regular and can be collapsed out. As a result, the join

(or split) tree can be computed in a logarithmic number of

passes, and in later passes, large numbers of superarcs are

transferred at once.

PPP batches superarc transfers from the merge trees to the

contour tree, alternating between maxima and minima. In every

stage leaves can be transfered in parallel because that is a local

operation. To speed up computation long chains of degree two

vertices are transfered in a single stage. Due to the specifics

of the computation those chains need to be monotone in the

function values at the vertices.

The original PPP algorithm has been recently extended

to compute the augmented contour tree efficiently [6]. The

extension was to record the monotone chains from the merge

phase to guarantee the ability to search for regular nodes in

logarithmic time. The endpoints of the monotone chains are

recorded as hyperarcs, similary to the already existing superarcs

and regular arcs. The hyperarcs of the contour tree form what

we call the hyperstructure [6].

We illustrate the idea of the hyperstructure with the right

hand subfigure of Figure 2. The supernodes of the contour tree

are labeled with the number of the iteration they are transfered

in the merge phase of the algoritm. The supernodes in the tree

are connected by superarcs and hyperarcs with small and large

arc widths respectively. The hyperarcs store a monotone path

of supernodes (sorted by value) that are collapsed in a single

iteration of the merge phase.

We can think of hyperarcs as shortcuts for more efficient

computation. Since the supernodes in a hyperarc are in

monotone order we can insert regular nodes by comparing

against the endpoints of the hyperarc. If the regular node’s

value is not in that interval, we move along the next hyperarc

and skip a potentially large number of supernodes. Otherwise

we use binary search on the supernodes in the hyperarc. In
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this paper we’ll describe how we can use the hyperstructure to

speed up secondary computations such as geometric measures

and contour extraction.

Since the merge phase of the contour tree algorithm and the

hyperstructure process monotone paths an issue emerges with

non-monotone paths. Non-monotone paths in the contour tree

are refered to as W-structures [17] because of the way they

zig-zag up and down. We refer to the size of a w-structure

as the number of maximal monotone paths. W-structures are

significant because they serialize the computation of the merge

phase and can be used to show that persistent homology differs

from branch decomposition [17].

A. Simplification and Branch Decomposition

Once the contour tree has been computed, it can be simplified

so that only significant features are represented. This is usually

done by removing the least significant leaf edge in the contour

tree, collapsing regular nodes if necessary, and iterating until

only one master branch remains [27]. Note that this is an

inherently serial computation.

This simplification process forms a hierarchy of branches

called the branch decomposition. For this purpose, “least

significant” can be interpreted by computing the difference

in function value between an extremum and a saddle, or

by computing geometric measures [9] such as volume or

integrated function value (hypervolume) for the set of contours

corresponding to a given superarc or subtree.

A related idea is present in persistent homology [12], where

the difference between a peak and a saddle in the sort order of

the mesh vertices gives the persistence, and is used to pair, or

cancel, peaks and saddles (or pits and saddles), or alternately,

the difference in function value between peak and saddle.

Recent work has confirmed [17] however that the cancellation

pairs from persistent homology are only guaranteed to match

branches in the branch decomposition if no W-structures are

present. In practical data, W-structures exist (as we will see in

Section VII) and persistent homology gives a different result

from branch decomposition. We use the term height of a feature

to refer to the difference in value along a superarc to avoid

confusion with the formal definition of persistence.

Given a simplified contour tree, visualization interfaces can

be built that show only the most significant features or contours,

and allow visual manipulation [9] of the remaining features, or

extraction for subsequent processing with other algorithms. In

essence, the goal of this paper is to replace the previous serial

algorithms for geometric measure computation, simplification,

branch decomposition and single isosurface extraction with

data-parallel equivalents so that they can be run in an in situ

environment efficiently.

B. Parallel Tree Operations

A fundamental parallel tree algorithm is parallel tree con-

traction [14], [21]. Parallel tree contraction is a bottom up

technique where we start at the leaves of a rooted tree and

move inwards in stages. In every stage all leaves with a different

parent are processed independently in parallel. Once all leaves

are processed they are discarded (raked) and new vertices

become leaves. If the tree is unbalanced the rake operation

serializes the computation along chains of vertices of degree

two. Those chains can be contracted using pointer doubling or

a prefix scan. After a logarithmic number of rake and contract

operations the whole tree is contracted to its root. At the

end every vertex accumulates the value that corresponds to

evaluating the expression over the subtree whose root is that

vertex.

As we have noted above, the merge phase of the PPP

algorithm [10] is a variation of parallel tree contraction, but

with several differences. First, the hyperstructure only collapses

chains whose vertices are monotone in value: this property

is required to support binary search for data values along a

path in the tree. Second, due to the need to keep intermediate

results updated, the hyperstructure transfers upper leaves and

lower leaves in alternating passes. While it is tempting to view

each pair of upper and lower iterations in the hyperstructure

as equivalent to the contraction phases, variations are visible

even in small trees, as shown in Figure 2.

C. The Cinema In Situ Database

Advances in processing power for extreme scale scientific

computation have greatly outpaced data bandwidth and I/O,

impeding visualization and analysis. A Cinema database [2]

is a large collection of images which are sampled based on

time, visualization object and camera position, and stored along

with metadata that allows interactive querying [25]. Cinema is

used with image processing techniques to combine images to

obtain new camera and time locations or even to reconstruct

the original object using Depth Image Based Rendering [19].

Cinema has been implemented in ParaView as well as the

open source Topology Toolkit TTK [30]. However, since the

images and the metadata are orders of magnitude smaller

than simulation raw output they can be transfered for post

hoc analysis and visualization. This requires sophisticated

techniques for identifying features of interest, hence the interest

in contour trees for analysis at scale. Our approach allows us

to compute the triangles of connected components in situ and,

by storing them as Cinema image collections, reduce their

size and visualize large-scale simulation runs interactively on

commodity hardware.

III. HYPERSWEEPING GEOMETRIC MEASURES

The first contribution in this paper is to describe data-

parallel computation of geometric measures such as volume and

height (if not persistence), and to use them to construct branch

decompositions. Geometric measures describe properties of a

region bounded by a given contour, i.e. a region corresponding

to a subtree of the original tree. This means that the volume

(for example) is determined by all superarcs in the subtree,

not just the final superarc at which the subtree is rooted. We

will need to evaluate arithmetic expressions over subtrees of

the contour tree and so we look to the parallel tree processing

technique we discussed in Section II-B.

Since parallel contraction is well-established, we will not

illustrate the process in detail, restricting ourselves to the com-

putations of interest, and commenting on how the variation of
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PARALLEL CONTRACTION:
R0 R0
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3L

3L

1L 3L

3L

1L 1L

0U

0U

0U

2U

1L

1L

2U

2U

0U

0U

1L

R0 Rake 0

HYPERSWEEP:

Contraction 0

R1 Rake 1

Contraction 1

C0

C1

R2 Rake 2

Root of Tree

0U Iteration 0 (Upper)

1L Iteration 1 (Lower)

2U Iteration 2 (Upper)

3L Iteration 3 (Lower)

4 Iteration 4 (Final)

Fig. 2: On the left is a contour tree whose vertices are annotated based on how and when they’re processed by the parallel tree

contraction algorithm. On the right is a hypersweep of the same contour tree annotated with the hyperstructure. While the two

methods are substantially similar, minor differences arise because PPP [11] alternates upper and lower leaves, and because only

monotone chains can be compressed. Even in a small tree, this leads to differences between the two methods, as can be seen in

the operations Rake 2 and Iteration 3 (Lower).

the hypersweep from parallel contraction affects the algorithmic

analysis. We illustrate this in the left-hand column of Figure

3, where we compute an approximation of contour volume

by counting the number of contained regular nodes [29]. In

this image, we use shading to indicate which nodes belong to

which iteration of the contraction. Each pair of iterations in

the hypersweep normally corresponds to a single iteration of

the parallel contraction, although there are edge cases where

the exact order is different.

In the absence of W-structures [17], the chains in each pair of

sweeps will remove the same supernodes as a single iteration of

the parallel tree contraction: since this is a constant factor, the

overall analysis is unchanged. In the presence of W-structures,

however, the hypersweep cannot be bounded by O(lg t) time

complexity and O(t lg t) work where t is the tree size. We

have demonstrated elsewhere [6], [17] that in practice the work

is still bounded by O(t lg t), and that the time complexity is

typically better than O(lg t).

Subtree Volume: We know [9] that the number of regular

nodes in a subtree approximates the volume of the regions

represented by branches of the contour tree. While we could

do a hypersweep with regular nodes rather than supernodes,

it is less efficient. We therefore use prefix sum operations to

compute the number of regular nodes on each superarc as the

initial value at each supernode, as shown in the left column

of Figure 3. We use shading to indicate the iteration in which

these values are propagated inwards by prefix sums, resulting

in the final tree sizes visible in the lower register.
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Initialised to Value + Tiebreak
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3 Iteration 0 1 Iteration 1 20 Iteration 2 112 Iteration 3 450 Iteration 4 869 Iteration 5

Redirected Hyperarc to Global Minimum Redirected Hyperarc to Global Maximum

Fig. 3: Hypersweep Computation of Geometric Measures based on the Parallel Tree Contraction [21]. Vertices are labeled with

their scalar value. Those with equal value are also labeled with a letter indicating their order using simulation of simplicity [13].

For volume approximation (Left), we initialize each supernode to the number of regular nodes on its superarc, then propagate

towards the root with a prefix-sum. For sub-tree minimum and maximum (Centre and Right), we re-root the tree to the global

minimum (maximum), initialize to the supernode’s data value, then propagate by prefix-minimum (maximum). Shades of grey

are the iteration in which a node gets a final value.

A. Branch Decomposition and Subtree Height

Once we have established subtree volume, we build branches

by having each vertex choose locally the superarc with the

highest ascent and descent. The branches are then groups of

adjacent superarcs that greedily maximize subtree volume or
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Fig. 4: Branch Decomposition By Volume. Different geometric

measures lead to different branch decompositions. Notice the

master branch is different from the one in Figure 5.

for that matter any geometric measure we have defined on the

subtrees. We demonstrate this in Figure 4 with a black dots

on the edge adjacent to the best up and best down of each

supernode. After each vertex chooses the “best” ascent and

descent, we use pointer-doubling to collect the branches.

Building the standard branch decomposition [27] based on

branch height is more difficult. When there are no W-structures

in the contour tree each vertex can select the highest (or lowest)

reachable maxima (or minima). In the presence of W-structures

we need to compute the longest branch in every subtree. This

makes the existing branch height decomposition difficult to

compute in parallel. We will deal with this in more detail in

Section VII-B. Now we will introduce an alternative geometric

measure that is readily parallelizable.

Instead of branch height, we consider subtree height for the

branch and all child branches. We define subtree height as

the difference in function value between the maxima and the

minima of a subtree. This means that we need the minimum

and maximum values in every subtree from the root outwards.

As we will see later Figure 10, this gives a slightly different

branch decomposition than previous definitions, but only in

the presence of W-structures.

We can now frame this in terms of a hypersweep operation:

to find the minimum value in each subtree, we re-root the

hyperstructure at the global minimum, then apply a hypersweep

with the minimum operator. Re-rooting the hyperstructure is

fairly straightforward: we select the global minimum m, and

identify the hyperarcs along the path P between it and the

previous root r, at a cost of at most |P|.
All paths from the leaves to the root terminate at the root

r or at this path P. We convert this path to a new hyperarc

(which may not be monotone) with at most the same number

of iterations as before. This new hyperac is shown in the upper

register of the middle column in Figure 3 as a thick red edge.

We then hypersweep to propagate minima through the tree

towards the minimum m, as shown. Similarly, the right column

of Figure 3 shows the re-rooting and hypersweep to compute

subtree maxima.

In the next stage of the computation, shown in Figure 5, we

annotate every edge in the tree with two values: the minimum

in the direction of the hypersweep, and the minimum in the

other direction. Of these, the minimum in hypersweep direction

is set to the value just computed. The minimum in the other

direction will always be the global minimum, since it is the

new root of the tree.

For example, in the left top corner, the vertex with value

86 forms a subtree, and the propagated minimum value, 86, is

the value we use when pruning towards the root: the global

minimum value, 0, is the value when pruning away from the

root. Now, for each possible pruning (i.e. at each end of the

superarc), we add the value of the supernode itself, then take

the maximum and minimum of the three values: thus, if the

supernode value is the lowest, it replaces the minimum, if

the highest, it replaces the maximum. Finally, we subtract

minimum from maximum to get the subtree range.

Considering vertex 86 once more, pruning at the lower end of

superarc 86−55 gives a subtree minimum of 86 and maximum

of 86. We substitute 55 for the minimum, and compute a subtree

height of 31. Further in, at the lower end of superarc 30−4, the

maximum is 86 in the upwards subtree and the minimum 30.

Replacing 30 with 4, we compute an upwards subtree height

of 82.

B. Simplification

Having computed our geometric measures and branch

decomposition, simplifying to a threshold amounts to ignoring

branches of the contour tree that fail a logical test. For example,

suppose we want to ignore all branches that involve less than

1% of the data. This is achieved by testing all superarcs to see

whether their volume (or height) is over the threshold, which is

trivial to do in parallel. If desired, the “weight” of the pruned

branch can be retained by keeping the terminal superarc as an

augmenting node in the simplified tree.

IV. FEATURE EXTRACTION

Once the contour tree has been computed, decomposed and

simplified, visualization interfaces extract contours correspond-

ing to selected superarcs. In prior work [9], the user interactively

selected contours and manipulated them visually. While this

is still possible with the data-parallel contour tree, one goal
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Fig. 5: Computing Branch Decomposition. After computing minima and maxima per subtree (Figure 5), each superarc is

annotated with the best available min/max from each end (the first and second contour trees). At each vertex, the incident

superarc with highest value is chosen (third tree). For W-free contour trees, the result is guaranteed to be identical to the

standard branch decomposition and persistent cancellation. For trees with W-structures, a side tree may have a larger range of

values than the obvious choice, so some arcs will differ.

of in situ visualization is to defer user interaction until later.

We adopt an alternate solution - local contours [9], where we

choose a relative isovalue on each branch - normally 50%, or

halfway along it.

Previous work [9] adapted the continuation method [32] to

extract single contours, but this approach is essentially serial.

Instead we extract a contour for a branch using marching cubes

and a method based on searching the contour tree [31]. First

we use a parallel implementation of marching cubes to extract

an isosurface for the isovalue of that branch. Next we filter out

the triangles produced by marching cubes that do not belong

to the branch.

To determine if a triangle belongs to a branch consider a

mesh edge u,v that intersects the triangle. Since the path from u

to v in the mesh is monotone there is monotone path from u to v

in the contour tree. Therefore along that path there is a superarc

whose endpoints’ values contain the isovalue for the branch.

We search for that superarc with the hyperstructure because

it supports efficient search for regular points at logarithmic

cost [6]. If that superarc belongs to the branch we keep the

triangle, otherwise we discard it.

Each such contour can be extracted in O(k lgT ) time, where

k is the size of the entire isosurface, and O(lgT ) is the cost of

searching the hyperstructure to find the corresponding superarcs.

For a small number of contours (e.g. 10 or 20), we iterate over

their superarcs and values to generate them, with the advantage

that we will extract them as separate surfaces and can render

them accordingly. For large numbers of contours, each mesh

cell (or mesh edge) can search for the corresponding path(s)

in the contour tree and compare them all at once, but we have

not yet implemented this variation.

V. CINEMA INTEGRATION

To demonstrate integrating our parallel methods into a full

visualization pipeline, we developed the “contour visualizer”

application prototype. Our goals in developing this application

were: (i) to extract a representative set of contours from the

scalar field with minimal user interaction; (ii) utilize high-

performance computing to handle large-scale data sets; (iii) to

use standard scientific visualization libraries for easy integration

into existing project.

We implemented the hypersweeps described in Section

III as part of the VTK-m project, and integrated them with

the existing Cinema database application, using a two stage

visualization pipeline. In the first stage, we extract, compress

and store features from scalar fields in a Cinema database. In the

second stage, we read images from this database, reconstruct

features from depth images and visualize them. All of the

methods developed have been contributed to the development

branch of VTK-m, and are available for use.
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Our input is assumed to be a standard VTK image format.

While our current implementation works with regular, recti-

linear grids, the underlying algorithms employ the topology

graph abstraction referred to in Section II, and are valid for

any simply connected mesh, subject to writing suitable adaptor

classes.

We compute the contour tree of the scalar field, assum-

ing marching cubes connectivity, using the VTK-m [22]

implementation of the parallel peak pruning algorithm [6],

[11]. Subsequently, we compute the branch decomposition

(as described in Section III) either using subtree height or

volume as the simplification measure and simplify the branch

decomposition to a specified number of branches.

As described in Section IV, we then simplify the contour

tree to the top 10 most important branches, and extract one

representative contour per branch in local contour mode. At

present, we usually choose the 50% isovalue on each branch,

but we have also used the 1% isovalue to select contours

very close to the critical point: in future we expect to choose

multiple contours along each branch.
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sweep (blue) on Pawpawsaurus. While the scaling plateaus after

8 cores, the performance is overall good especially compared

to contour tree computation (see Table 1).
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Hypersweep (HS) and branch decomposition (BD) are related

and have similar scaling patterns: it is possible that the cause

is external (VTK-m).

Fig. 8: Scaling using 1 to 64 threads on the 2D Scaled GTOPO

Datasets (log/log). The grayed out polygon is perfect weak

scaling.

After single contour extraction in situ, the first stage is

complete, and we save depth images from varying camera

positions for later reconstruction [19] based on a TTK [30]

implementation in order to avoid saving large meshes of

millions of triangles.

The second stage supports post hoc exploration of the data

artifacts stored in the Cinema database. We first read all

depth images in the cinema database and reconstruct each

feature individually using the TTK [30] implementation of the

VOIDGA algorithm [19]. The quality of the reconstruction

depends on image resolution, camera placement and number

of viewpoints in the Cinema database.

As with the Cinema database in general, our project can use

different front ends. For some purposes, we use ParaView and

TTK, but for others, we implemented a simple web server and

web interface to reduce the learning curve for end users. We

implemented this using node.js for the server and Three.js for

the front end.

The quality of the reconstruction can vary but does not need

to be perfect, only good enough for the user to get a general

idea of the data. Should the user require the original features

they can be retrieved at a higher bandwidth and time cost,

and we will explore the best parameter choices for in situ

visualization in the future.

This visualization pipeline is an improvement upon previous

ones such as [3]. Every step in our pipeline is fully data-parallel

and it is implemented using popular open source visualization

libraries such as VTK-m and TTK. Furthermore our pipeline

adds the additional step of reconstructing the depth images in

3D.

VI. APPLICATION EXAMPLE - WARPX

Figure 1 shows the application of the automatic contour selec-

tion to the transverse electric field (Ex) of a WarpX laser plasma

particle accelerator simulation. Plasma-based accelerators use

short (≤ 100 f s) ultrahigh intensity (≥ 1018W/cm2) laser pulses

to drive waves in a plasma. Electrons that become trapped in

the plasma (or externally injected electron or positron beams)

are then—much like a surfer riding a wave—accelerated by the

wave to high energy levels. Understanding the structure of the
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electric forces generated by the plasma wave is critical to the

design and optimization of plasma-based particle accelerators

and understanding of the fundamental physical phenomena.

In this context, the difference in function value (i.e., height

of arcs in the contour tree) is an important measure of the

strength of the electric forces generated by the corresponding

feature (i.e., contour) in the electric field. As Fig. 1b shows,

using height as importance metric allows us to automatically

identify the features with the largest focusing gradients in the

transverse electric field Ex, describing the primary structures of

the electric field generated by the plasma wave driving particle

acceleration. By rendering the contours in situ and storing for

each contour a separate depth-image in a Cinema database,

users can interactively explore, visualize, and compose the

features post-hoc. By storing the additional metrics computed

from the contour tree (e.g., volume and persistence of contours)

alongside the generated depth images, enables quantitative

analysis of the contour-based features and interactive query of

the Cinema database to search for relevant contours.

VII. EVALUATION

Next we evaluate the compute performance of our imple-

mentation (Sec. VII-A) and how well it picks out significant

contours (Sec. VII-B).

A. Performance

As noted above, our implementation is freely available

in the open source VTK-m library [22]. However there is

no implementation of branch decomposition in any other

actively maintained visualization library (TTK and VTK).

To ensure consistency between methods, we re-implemented

branch decomposition in serial. It performed with about the

same running time as the parallel branch decomposition on a

single core. We have not included those specific running times

because our serial branch decomposition was implemented as

reference for comparison not with performance in mind.

We ran tests on standard data sets well known in the

visualization community or that we have used previously [6],

[11], and refer the reader to the appendices of those papers for

full details. The Asteroid dataset is freely available courtesy

of LANL, the WarpX dataset is not freely available at present.

Our primary test system is the NERSC Cori supercomputer

at Lawrence Berkeley National Laboratory, whose Haswell

compute nodes have two 16-core Intelr Xeon TM E5-2698 v3

CPUs with two hyperthreads per core, clocked at 2.3 GHz and

with 128GB DDR4 main memory at 2133Mhz. We compiled

and used the VTK-m library with Intel’s Thread Building

Blocks (TBB) threading API.

We first computed the augmented contour tree for each data

set using VTK-m’s contour tree filter [6]. Next we compute

the branch decomposition of every data set with a range of 1,

2, 4, 8, 16, 32 and 64 cores. Finally we compute the branch

decomposition over the GTOPO30 data set with 64 cores, but

with different scales of the data. This way we can study scaling

on a set of related data sets.

In Figure 6, we show timings for the Pawpawsaurus data

set. We have chosen Pawpawsaurus because it is one of the

largest data sets we have available in terms of regular and

super node count. We therefore expect to see the scaling of the

hypersweeps, rather than the cost of initialising parallel data

structures. Here, we see the most performance gain in going

from 1 to 2 cores and then to 4 cores and 8 cores. This is also

visible in Figure 7 where the speedup of the hyperswep and

the branch decomposition is 3.1 and 6.8 respectively.

Similarly Figure 8 suggests that while the scaling is not

linear (gray area in the plot) the performance is still good in

practice. This is further supported by Table I where we can

clearly see that the hypersweep and branch decomposition are

only a small fraction of the computation time of the contour

tree. On average the branch decomposition is only 1.76% of

the contour tree computation time, so we do not yet see the

need for further optimization.

An important reason for the good practical performance of

our methods is the topological complexity of the data sets.

Remember that our methods do not scale with size of the input

mesh, but rather the number of supernodes of the contour tree

of the mesh, As we can see in Table I the number of supernodes

in most tests is roughly an order of magnitude smaller than the

number of regular nodes. Even though a serial method would

have sufficed in some tests the need for parallelization will

become even more apparent in the future with data sets with

more topological complexity or sampling noise.

Furthermore (as pointed out by a reviewer) there are many

practical situations, such as time varying domains or ensemble

runs, where multiple contour trees need to be computed. For

each contour tree we may need multiple branch decompositions

if we do not know which geometric measure would be most

useful beforehand. Those computations add up and any speedup

over a serial implementation with optimal work complexity is

valuable. Finally when accelerator devices such as GPUs are

used for contour tree computation our parallel implementation

allows us to avoid the high cost of inter-device data transfers

to CPU for secondary computations.

B. Feature Significance

In this subsection we’ll consider how the difference between

our subtree height decomposition and the standard branch

height decomposition impacts feature selection. In Table II

the two branch decompositions typically differ in only a small

number of branches. Moreover, we know from Section III that

the two are identical in contour trees with no W-structures (i.e.

those with W diameter of 2 or less. In the table, we see that

this is the case, and that in fact, the smallest W-diameter where

different decompositions emerge is 5.

Figure 9 shows the effect of choosing the top 10 contours

from the aneurism data set, suppressing noise components.

Here, both volume and height choose similar top 10 contours.

In general, as before [9] volume can be more effective than

height, but not always.

In some data sets, the standard branch decomposition is

less effective than our new parallel-friendly subtree height

decomposition. In Figure 10 we show the result of choosing

the top 20 features with the two methods. A large boxy object

is visible when subtree height is used, but not when branch
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Contour Tree Compute Tree Hypersweep Branch Decomp Ratio Ratio

Dataset Dimensions Supernodes seconds seconds seconds HS / CT BD / CT

Hydrogen Atom 128x128x128 13,038 0.399 0.001 0.025 0.33% 6.47%
Aneurism 256x256x256 65,625 2.793 0.003 0.039 0.12% 1.39%
Bonsai 256x256x256 192,067 3.153 0.007 0.072 0.23% 2.30%
WarpX E x 6791x371x371 288,807 317.191 0.005 0.055 0.01% 0.01%
Asteroid 500x500x500 881,831 23.160 0.018 0.258 0.08% 1.11%
Backpack 512x512x373 7,441,922 27.990 0.118 1.431 0.42% 5.11%
Spathorhynchus 1024x1024x750 44,554,912 330.926 0.459 7.299 0.13% 2.20%
Kingsnake 1024x1024x795 55,778,125 268.833 0.589 8.887 0.21% 3.30%
Pawpawsaurus 958x646x1088 89,117,386 352.491 0.979 13.841 0.27% 3.92%

GTopo30 at 0.03125 675x1350 72,276 0.236 0.002 0.014 0.98% 6.21%
GTopo30 at 0.0625 1350x2700 271,772 0.735 0.004 0.036 0.65% 4.95%
GTopo30 at 0.125 2700x5400 991,480 2.571 0.004 0.036 0.18% 1.41%
GTopo30 at 0.25 5400x10400 3,579,117 10.387 0.012 0.108 0.12% 1.04%
GTopo30 at 0.5 10800x21600 12,688,670 44.054 0.038 0.353 0.08% 0.80%
GTopo30 at 1.0 21601x43201 36,912,523 172.301 0.381 3.981 0.22% 2.31%

TABLE I: Once the contour tree and hyperstructure have been computed, hypersweeps to compute secondary properties are

highly efficient, adding less than 1% extra time. Our modified branch decomposition, which uses multiple hypersweeps, is a

negligible additional cost. Note that the number of supernodes and timings for all data sets differ from the ones reported in [6]

because we are using marching cubes connectivity.

(a) Isosurface of the Aneurism data set. (b) Feature extraction based on height. (c) Feature extraction based on volume.

Fig. 9: In an isosurface of the scalar field a) we can observe a lot of sampling noise. To remove the noise we use branch

decompositions based on height b) and volume c). Both branch decompositions pick out a similar set of features with varying

significance ranking.

height is used. The relevant structures in the contour tree

are the six illustrated branches (out of over 3,000,000 total

branches). Notice that the W-structure rooted at 0b means that

the standard branch decomposition treats this feature as less

important, but the new subtree height decomposition, which

looks at the height of the entire subtree, displays it.

This does not indicate that the branch height decomposition

is invalid, merely that it is imperfect, and that the subtree

height is similar and similarly imperfect. However, the new

height decomposition is easier to compute in parallel, which

is worth having.

VIII. CONCLUSIONS AND FUTURE WORK

We have now completed the first stage of our research into in

situ topological analysis - the construction and implementation

in data-parallel of the full set of algorithms needed to apply

topological analysis at scale on a single computer. This involved

the initial work on the PPP algorithm [11], the extension to fully

augmented contour trees [6], the implementation of geometric

measures, simplification and branch decomposition, and of

integration with the Cinema database, including single contour

extraction.

As part of this, we introduced the hypersweep - a data-parallel

method for computing properties in contour trees, based on

parallel tree contraction. We implemented the hypersweep in

the open source VTK-m library and used it to develop a proof

of concept in situ visualization pipeline using the Cinema

database.

Our main research focus in the future, however, will be

to continue the task of scaling up topological analysis by

developing hybrid algorithms for use on distributed clusters of

massively multicore data parallel nodes, such as exemplified

by the Summit supercomputer.

This research was supported by the Exascale Computing

Project (17-SC-20-SC), a collaborative effort of the U.S.

Department of Energy Office of Science and the National
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Fig. 10: W-structures in the Backpack data set. Because of a W-structure ending in 0b, the left subtree at 934 has a larger

overall height than the right subtree, giving a different branch decomposition than Pascucci’s [27]. On the right: the top 20

features chosen with each method. While the standard branch decomposition detects the box as feature 39, the subtree height

decomposition works better in this instance.

Dataset Branches W Diam Difference

shockwave 333 3 0 0.0000%
marschner lobb 810 4 0 0.0000%

neghip 976 4 0 0.0000%

hydrogen atom 6,532 4 0 0.0000%
aneurism 33,139 4 0 0.0000%

bonsai 96,993 5 8 0.0082%

tooth 151,302 5 4 0.0026%
statue leg 223,469 6 13 0.0058%

foot 444,616 7 44 0.0099%

mri ventricles 1,159,963 6 77 0.0066%
skull 1,130,490 7 155 0.0137%

backpack 3,813,085 7 315 0.0098%

TABLE II: Differences from the standard branch decompo-

sition [27]. Both decompositions have the same number of

branches, but some leaves can be paired differently. This is

due to differences between branch height and persistence in

the presence of W-structures [17].

Nuclear Security Administration under Contract No. DE-AC02-

05CH11231 to the Lawrence Berkeley National Laboratory and

under Award Number 14-017566 to the Los Alamos National

Laboratory, and subcontract 7452335 to the University of Leeds.
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[13] H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: A Technique
to Cope with Degenerate Cases in Geometric Algorithms. ACM

Transactions on Graphics, 9(1):66–104, 1990.

[14] J. Gibbons, W. Cai, and D. B. Skillicorn. Efficient Parallel Algorithms
for Tree Accumulations. Science of Computer Programming, 23(1):1 –
18, 1994.

[15] C. Gueunet, P. Fortin, and J. Jomier. Contour Forests: Fast Multi-
threaded Augmented Contour Trees. In 6th IEEE Symposium on Large

Data Analysis and Visualization (LDAV), pages 85–92, Oct 2016.

[16] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Augmented
Merge Trees with Fibonacci Heaps. In 2017 IEEE 7th Symposium on

Large Data Analysis and Visualization (LDAV), pages 6–15, Oct 2017.

[17] P. Hristov and H. Carr. W-Structures in Contour Trees. In Proc. of

TopoInVis, 2019.

[18] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla, J. Chen,
and P. T. Bremer. In-Situ Feature Extraction of Large Scale Combustion
Simulations Using Segmented Merge Trees. In SC14: International

Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1020–1031, Nov. 2014.

[19] J. Lukasczyk, E. Kinner, J. Ahrens, H. Leitte, and C. Garth. VOIDGA: A
View-Approximation Oriented Image Database Generation Approach. In
8th IEEE Symposium on Large Data Analysis and Visualization (LDAV),
pages 12–22, 2018.

[20] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A Hybrid Parallel
Algorithm for Computing and Tracking Level Set Topology. In High

Performance Computing (HiPC), 2012 19th International Conference on,
pages 1–10. IEEE, Dec. 2012.

[21] G. L. Miller and J. H. Reif. Parallel Tree Contraction Part 1:
Fundamentals. In S. Micali, editor, Randomness and Computation, pages
47–72. JAI Press, Greenwich, Connecticut, 1989. Vol. 5.

[22] K. Moreland, C. Sewell, W. Usher, L.-T. Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K. L. Ma, H. Childs, M. Larsen, C. M. Chen,
R. Maynard, and B. Geveci. VTK-m: Accelerating the Visualization
Toolkit for Massively Threaded Architectures. IEEE Computer Graphics

and Applications, 36(3):48–58, May 2016.

[23] D. Morozov and G. Weber. Distributed Merge Trees. ACM SIGPLAN

Notices, 48(8):93–102, 2013.

[24] D. Morozov and G. Weber. Distributed Contour Trees. In P.-T. Bremer,
I. Hotz, V. Pascucci, and R. Peikert, editors, Topological Methods in

Data Analysis and Visualization III, Mathematics and Visualization, pages
89–102. Springer, 2014.

[25] P. O’Leary, J. Ahrens, S. Jourdain, S. Wittenburg, D. H. Rogers, and
M. Petersen. Cinema Image-based in situ Analysis and Visualization
of MPAS-ocean Simulations. Parallel Computing, 55:43 – 48, 2016.
Visualization and Data Analytics for Scientific Discovery.

[26] V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the
Topology of Level Sets. Algorithmica, 38(2):249–268, 2004.

[27] V. Pascucci, K. Cole-McLaughlin, and G. Scorzell. Multi-Resolution
Computation and Presentation of Contour Trees. In Proceedings of the

IASTED conference on Visualization, Imaging and Image Processing

(VIIP 2004), pages 452–290, 2004.

[28] P. Rosen, J. Tu, and L. A. Piegl. A Hybrid Solution to Parallel Calculation
of Augmented Join Trees of Scalar Fields in any Dimension. Computer-

Aided Design and Applications, 15(4):610–618, 2018.

[29] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuermann.
Interactive Comparison of Scalar Fields Based on Largest Contours with

Applications to Flow Visualization. IEEE Transactions on Visualization

and Computer Graphics, 14(6):1475–1482, 2008.
[30] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The

Topology ToolKit. IEEE Transactions on Visualization and Computer

Graphics (Proc. of IEEE VIS), 2017.
[31] G. Weber, S. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology-

Controlled Volume Rendering. IEEE Transactions on Visualization and

Computer Graphics, 13(2):330–341, March/April 2007.
[32] G. Wyvill, C. McPheeters, and B. Wyvill. Data Structure for Soft Objects.

Visual Computer, 2:227–234, 1986.


