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Grid-Supporting Three-Phase Inverters with
Inherent RMS Current Limitation Under

Balanced Grid Voltage Sags

Seyfullah Dedeoglu, Student Member, IEEE, George C. Konstantopoulos, Member, IEEE,

and Alexandros G. Paspatis, Member, IEEE

Abstract—In this paper, a novel nonlinear droop con-
trol method is proposed for three-phase grid-supporting
inverters that rigorously guarantees limited RMS value of
the inverter current and closed-loop system stability under
both normal grid conditions and balanced voltage sags.
Contrary to the traditional dq frame approaches which align
the inverter output voltage with the d axis, the proposed
controller aligns the inverter current with the d axis result-
ing in the desired current limitation and detailed closed-
loop system stability conditions. Inspired by the recently
presented state-limiting PI controller and using nonlinear
invariant set theory, it is rigorously proven that the RMS
value of the inverter current is always limited below a given
value, even during transients or faults, without requiring
additional adaptive saturation units, as commonly applied
in conventional approaches. Furthermore, analytic condi-
tions for the controller parameter selection are provided to
ensure asymptotic stability for the entire closed-loop grid
supporting inverter for the first time without depending on
particular values of the filter and line parameters. To verify
the effectiveness of the proposed controller compared to
existing current-limiting control methods, extensive simu-
lation and experimental results of a three-phase inverter are
provided under a normal grid and under different balanced
voltage sag scenarios.

Index Terms—Droop control, voltage sag, nonlinear con-
trol, RMS current limitation, stability analysis, three-phase
inverter.

I. INTRODUCTION

THE increasing integration of distributed energy resources

(DERs) into the electricity grid, mainly through power

inverter devices, is expected to significantly affect the grid

strength and stability in the near future [1], [2]. Thus, more

stringent requirements have been set by the grid operators that

require inverter-interfaced DERs to provide ancillary services

to the grid, by supporting the grid voltage and frequency [3],

[4]. Since the desired operation of the inverter devices depends

on their control mechanisms, advanced control schemes have

been proposed for grid-connected inverter-based DER units
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to achieve a seamless integration and provide the necessary

support under both normal and abnormal grid conditions, i.e.

during grid faults [5]–[8].

The control operation of grid-supporting inverters is mainly

based on the droop control concept which aims to contribute

to the system stability, by regulating the grid voltage and

frequency [7], [8]. Droop control is one of the most commonly

used control methods for inverter-interfaced DERs, since it of-

fers a communication-free operation, and mimics the working

principle of the synchronous generators in terms of voltage

and frequency regulation [9], [10]. Nevertheless, the required

power measurements for the droop control operation introduce

nonlinearities, which complicate the stability analysis of the

closed-loop system [11]. Hence, when analytically assessing

the closed-loop stability of a droop-controlled inverter, a root-

locus analysis of the small-signal inverter model is widely con-

sidered [12]. However, root-locus analysis refers to a specific

inverter application since it requires particular information on

the inverter and filter parameters.

Furthermore, the stable and reliable operation of a grid-

supporting inverter has to be guaranteed under both normal

and abnormal grid conditions, especially during transients.

When a sudden voltage sag occurs at the grid, the injected

current by the inverter unit rapidly increases and can reach

high values that can cause damage to the inverter device.

To realize a current-limiting property, an adjustment of the

reference inverter current is usually applied into the current-

controlled inverters [5] and an adjustment of the reference

powers (real and reactive) in inverters that follow low-voltage

ride-through (LVRT) requirements is often employed. Never-

theless, the majority of these techniques ensure the desired

current limitation only at the steady-state and not during

the transient response [13], [14]. In grid-supporting inverters,

the most common approach is the use of saturation units

in the output of the inner-loop voltage controller [15], [16].

However, this approach causes a deactivation of the voltage

controller during abnormal grid conditions, which can lead to

integrator wind-up and instability [17], [18]. To address the

issues mentioned above, a nonlinear current-limiting droop

control technique, which does not utilize saturation units,

thus avoiding the integrator wind-up, has been proposed in

[19], [20] for single-phase grid-connected inverters and in

[21] for three-phase rectifiers. However, this controller intro-

duces additional integral states, which makes the hardware
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implementation a difficult task. In the same framework, a

nonlinear current-limiting controller is proposed in [22] using

optimization techniques, but this scheme requires knowledge

of the system parameters for the controller implementation

and intensive computational effort. It should be highlighted

that the majority of the current-limiting control approaches

for three-phase inverters are designed on the synchronously

rotating dq frame and aim to limit the d and q−axis of the

inverter current separately [5], [12], [23]. Then, in order to

ensure RMS current limitation, adaptive saturation units are

utilised, which further complicate the implementation of the

controller [24].

In this paper, a novel nonlinear control approach for three-

phase grid-supporting inverters that inherently limits the RMS

inverter current without the need of saturation units is proposed

and analyzed. Inspired by the recently developed state-limiting

PI controller in [25], the proposed controller is formulated

to incorporate the widely used droop control concept and

provide the necessary ancillary services to the grid. Then,

using invariant set theory, it is rigorously proven for the first

time that the proposed scheme ensures a desired limitation

of the RMS inverter current below a given maximum value

during the entire operation, i.e. during transients and at steady-

state, irrespective of the grid conditions that might include grid

faults (voltage sags). Opposed to the common droop control

techniques, which align the inverter output voltage with the d
axis [12], the novel idea of the proposed approach is based

on the alignment of the local inverter current with the d axis

using a suitable formulation of the inverter control input. The

special structure of the proposed controller ensures that the

desired RMS current limitation is maintained at all times, even

during the transient response of a balanced grid voltage sag.

This idea was first proposed by the authors in [26], but

implemented with a more complicated structure that included

additional controller states. The main technical novelties

and new contributions compared to [26] include: i) a new

structure of the proposed controller which introduces less

dynamic states, thus leading to a simplified implementation,

ii) rigorous closed-loop system stability for the entire grid-

supporting inverter without depending on the exact values

of the inverter and filter parameters, iii) detailed comparison

with conventional current-limiting control methods, and iv)

extensive experimental results under a normal grid and under

balanced voltage sags, to validate the proposed approach on a

real setup.

Overall, compared to the existing droop control and current-

limiting techniques, the proposed droop control approach for

three-phase grid-supporting inverters inherits a desired RMS

current limitation at all times, even during transients, without

additional saturation units, while guaranteeing a stable closed-

loop system. This is accomplished in a unified structure,

without the need of modifying the controller during a grid

voltage sag, as often required by LVRT methods, causing

the RMS current to violate its desired maximum threshold

during the transient [13], [14]. Furthermore, since no saturation

units are required, contrary to conventional approaches [17],

[18], the proposed method does not suffer from integrator

windup, thus simplifying its implementation and facilitating
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Fig. 1: Grid-connected three-phase inverter.

the desired stability analysis. A thorough comparison with the

conventional LVRT and current-limiting methods is presented

in this paper to highlight the novelty of the proposed control

approach, followed by an experimental validation.

II. DYNAMIC SYSTEM MODELLING AND PROBLEM

DEFINITION

The system under consideration is a three-phase inverter

which is connected to a point of common coupling (PCC)

via an LC filter, as shown in Fig. 1. The filter inductance and

capacitance are denoted as Lf , Cf , respectively, while the line

resistance and inductance are expressed as Rg and Lg . Let

vpccabc be the balanced three phase voltages at the PCC, where

Vrms and θg are the PCC RMS voltage and phase angle,

respectively. Assuming the global dq frame PCC voltages

are given as V pcc
d and V pcc

q , following the axis transformation

in [26], the local dq frame PCC voltages are calculated as
[

V pcc
dl

V pcc
ql

]

=

[

V pcc
d cosδ + V pcc

q sinδ
−V pcc

d sinδ + V pcc
q cosδ

]

. (1)

where δ = θ−θg describes the phase angle difference between

the inverter and the PCC. Thus, the dynamic equations of the

three-phase inverter are given as

Lf

did
dt

= Vd + ωLf iq − V pcc
dl (2)

Lf

diq
dt

= Vq − ωLf id − V pcc
ql (3)

where id, iq and Vd, Vq denote the dq frame local inverter

currents and voltages, while ω = θ̇ is the inverter angular

frequency.

Considering the global PCC voltages V pcc
d , V pcc

q and the local

currents, then the inverter active and reactive power can be

computed as

P = 3
2

[

cosδ
(

V pcc
d id + V pcc

q iq
)

+ sinδ
(

V pcc
q id − V pcc

d iq
)]

Q = 3
2

[

cosδ
(

V pcc
q id − V pcc

d iq
)

− sinδ
(

V pcc
d id + V pcc

q iq
)]

(4)

To achieve the voltage and frequency regulation for grid

support when required, the universal droop controller, with

droop expressions P ∼ V and Q ∼ −ω, which can be

applied independently of the inverter output impedance [10],

will be used in this paper. Since the power expressions (4) are

clearly nonlinear, the closed-loop system introduces nonlinear

dynamics, which increase the difficulty in proving stability and

ensuring a reliable and safe operation under both normal and

faulty grid conditions. To this end, the main objective of this

paper is to propose a novel control approach for implementing

the droop functionality in three-phase grid-supporting inverters
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that guarantees an RMS current limitation under both a normal

grid and under balanced grid voltage sags, while rigorously

ensuring closed-loop system stability.

III. PROPOSED CONTROLLER AND RMS CURRENT-

LIMITING PROPERTY

A. Proposed nonlinear controller

In order to ensure that the RMS value of the inverter current

remains limited at all times, the proposed novel controller is

based on the idea of orienting the inverter current to the local

d axis, i.e. iq = 0, and then implement a bounded dynamic

controller that limits the d axis inverter current to a range

of positive values and inherits the desired droop expression.

In order to accomplish this task, the inverter voltage, which

is the control input, is separated into two parts: a) a feed-

forward term vpccabc that contains the PCC voltage in the abc
frame and b) a feedback control term v̄abc, obtained from a

dq/abc transformation that implements the bounded nonlinear

controller dynamics.

It should be underlined that the dynamic feedback term v̄abc
is disabled when the relay is open, i.e. when the PCC is

disconnected, and enabled only when the relay is closed; hence

the controller includes only the feed-forward term vpccabc before

connection, thus leading to a smooth grid connection and

simultaneously avoiding the presence of circulating currents.

Hence, the proposed controller is introduced in the follow-

ing scheme

vabc = vpccabc + v̄abc (5)

where the feedback term v̄abc is calculated from a dq/abc
transformation using the angular frequency θ obtained consid-

ering the Q ∼ −ω droop

θ̇ = ω = ω∗ +m (Q−Qset) (6)

where ω∗ represents the rated grid angular frequency. Qset

is the reactive power reference and m indicates the reactive

power droop coefficient. Consequently, the dq frame feedback

term takes the form

v̄d = −rvid +
rvI

max
rms√
2

(1 + sinσ)− ωLf iq (7)

v̄q = −rviq + ωLf id (8)

where rv is the constant virtual resistance, σ is the dynamic

controller state, ωLf id and ωLf iq are decoupling terms. In

addition, Imax
rms is the maximum rated inverter RMS current

which is defined by the user or the technical limitations of the

inverter. Motivated by the recently proposed nonlinear state-

limiting PI controller structure presented in [25], the dynamics

for the controller state σ are given as

σ̇ =

√
2c

rvImax
rms

[

(E
∗ − Vrms)− n(P − Pset)

]

cosσ (9)

where c is the positive integral gain. By selecting the initial

condition of σ to satisfy σ0 ∈ [−π
2 ,

π
2 ], then it is guaranteed

that σ(t) ∈ [−π
2 ,

π
2 ], ∀t ≥ 0. As it is explained in [25], the

nonlinear dynamics have been carefully designed to avoid a

continuously oscillating behavior of the controller state σ and
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Fig. 2: Implementation diagram of the proposed controller.

additionally ensure that the controller dynamics slow down,

i.e. σ̇ → 0, as σ → ±π
2 (near the limits of the state σ),

which illustrates an inherent integrator anti-windup property.

Hence, the proposed controller does not result in any nonlinear

phenomena that can lead to instability for the inverter system.

Note that if initially σ0 is selected as σ0 = −π
2 + ǫ, for an

arbitrarily small ǫ > 0, then at the moment of the connection

with the grid, since the inverter currents are very small before

the connection, then both v̄d and v̄q will be very close to zero

from (7)-(8), and a smooth transient can be achieved.

Since the controller state σ represents an integral action,

it leads to the regulation of the function (E
∗ − Vrms) −

n(P − Pset), which describes the P ∼ V droop control

that should be regulated to zero at the steady-state. In this

droop function, E∗ indicates the nominal RMS grid voltage,

Vrms represents the RMS PCC voltage, which can be com-

puted as Vrms =

√

(V pcc

d
)2+(V pcc

q )2

2 , while Pset and n stand

for the active power reference value and the active power

droop coefficient, respectively. Note that by removing the

term (E
∗ − Vrms) in (9), the controller can easily switch its

operation from droop control to real power regulation. In order

to illustrate the implementation of the proposed controller, a

detailed diagram of its structure is provided in Fig. 2.

B. RMS current-limiting property

By implementing the controller dynamics (7) and (8) into

the original inverter dynamics (2) and (3), the closed-loop

inverter current equations can be written as

Lf

did
dt

= −rvid +
rvI

max
rms√
2

(1 + sinσ) (10)

Lf

diq
dt

= −rviq (11)

By defining is = id − Imax
rms√

2
, then the equation (10) becomes

Lf

dis
dt

= −rvis +
rvI

max
rms√
2

sinσ (12)

where is is the shifted d axis current, which is defined

to ensure the positiveness of the d axis current. This is

necessary to ensure closed-loop asymptotic stability, as it will

be explained in the next section. As it is clear from (11), the q
axis current dynamics are independent providing the solution

(iq(t) = iq(0)e
−

rv
Lf

t
), and therefore if initially iq(0) = 0,

then iq(t) = 0, ∀t ≥ 0. Thus, it is sufficient to prove that only

the d axis current will be limited below a given maximum
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value for guaranteeing the RMS current-limiting property at

all times. Then, for system (12), the following continuously

differentiable function can be considered:

V =
1

2
Lf i

2
s, (13)

while its time derivative can be computed by utilizing (12) as

V̇ = −rvi
2
s +

rvI
max
rms√
2

issinσ

≤ −rvi
2
s +

rvI
max
rms√
2

|is|

≤ −rv|is|(|is| −
Imax
rms√
2

). (14)

Hence, it becomes obvious from (14) that

V̇ < 0, ∀ | is |>
Imax
rms√
2

(15)

This means that the set S = {is ∈ R : |is| ≤ Imax
rms√

2
} is

invariant (since V̇ < 0 outside of S) [27], [28]. Hence, if

initially |is(0)| ≤ Imax
rms√

2
, then

|is(t)| ≤
Imax
rms√
2

, ∀t ≥ 0. (16)

Since is = id − Imax
rms√

2
, then (16) can be rewritten as

−Imax
rms√
2

≤ id −
Imax
rms√
2

≤ Imax
rms√
2

, ∀t ≥ 0, (17)

or equivalently

0 ≤ id ≤
√
2Imax

rms , ∀t ≥ 0. (18)

Note, however, that by projecting the inverter current vector

with amplitude
√
2Irms, on the d and q axes, there is

√

i2d + i2q =
√
2Irms. (19)

Since iq = 0, then id =
√
2Irms and consequently from (18),

it is proven that

Irms ≤ Imax
rms ∀t ≥ 0, (20)

which results in the desired RMS current-limiting property.

As can be understood from the analysis provided above, the

current-limiting property is proven independently of the grid

variables such as voltage, frequency, and angle, the droop

functions, and the nonlinearities in the power expressions

(4). Hence, this mathematical proof ensures a safe inverter

operation under grid variations/faults or under unrealistic Pset

values. In addition, contrary to [22], the proposed controller

ensures that the system current will be limited at both tran-

sients and steady-state, and in contrast to [17], the integra-

tor windup problem is inherently addressed using the state-

limiting PI controller dynamics (σ̇ → 0 when σ → ±π
2 ,

or equivalently when Irms → Imax
rms ) without the need for

saturation blocks which might lead to system instability.

IV. STABILITY ANALYSIS

In the previous section, it was proven that the RMS inverter

current remains bounded below a given value regardless of

the grid parameters or the active and reactive power set

values. However, closed-loop system stability, in the sense

of convergence to a desired equilibrium point, has not been

guaranteed yet. Therefore, this section focuses on proving

the asymptotic stability of the complete system. Taking into

account that the power angle is given as δ = θ−θg , then from

(6) it yields

δ̇ = ω∗ − ωg +m (Q−Qset) , (21)

where ωg is the PCC angular frequency. The closed-loop

system dynamics are given now from (9)-(11) and (21).

Without loss of generality, as done in [5], one can consider that

V pcc
d =

√
2Vrms and V pcc

q = 0 are constant (or equivalently

close to the grid voltages at the global reference frame), and

since it was proven in the previous section that the local q axis

current of the inverter iq remains at zero at all times, then the

power expressions (4) can be simplified to

P =
3√
2
Vrmsidcosδ

Q = − 3√
2
Vrmsidsinδ.

(22)

Considering (9)-(11), and (21), the closed-loop state vector

becomes x = [id σ δ iq]
T . Let Vrms and ωg take some

constant (or piece-wise constant) values, not necessarily equal

to their rated ones. Then the equilibrium point vector xe =
[ide σe δe iqe]

T can be calculated as

a) ide =
Imax
rms√
2

(1 + sinσe) (23)

b) σe = sin−1

(

2

3VrmscosδeImax
rms

(

E∗ − Vrms

n
+ Pset

)

− 1

)

(24)

c) δe = tan−1





−
(

ωg−ω∗

m
+Qset

)

(

E∗−Vrms

n
+ Pset

)



 (25)

d) iqe = 0 (26)

where Pset and Qset are active and reactive power set values,

which can be changed by the control operator.

Now, the closed-loop system stability can be summarized

in the following proposition.

Proposition 1. Every equilibrium point xe = [ide σe δe iqe]
T

of the closed-loop system (9)-(11), and (21), given by (23)-

(26), with σe, δe ∈ (−π
2 ,

π
2 ), is asymptotically stable when rv

is chosen as

rv > 3mLfVrmsI
max
rms , (27)

and Pset and Qset are selected to satisfy the inequality

∣

∣

∣

∣

ω∗ − ωg

m
−Qset

∣

∣

∣

∣

≤
∣

∣

∣

∣

E∗ − Vrms

n
+ Pset

∣

∣

∣

∣

. (28)
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Proof: Given the equilibrium point xe = [ide σe δe iqe]
T , the

Jacobian matrix of the closed-loop system takes the form,

J =

[

JT 03x1

01x3 − rv
Lf

]

, (29)

where

JT =













− rv
Lf

rvI
max
rms cosσe√

2Lf
0

−3Vrmscncosσecosδe
rvImax

rms
0 3Vrmscnidecosσesinδe

rvImax
rms

− 3√
2
mVrmssinδe 0 − 3√

2
mVrmsidecosδe













.

(30)

Due to the block diagonal structure of matrix J in (29) and

since − rv
Lf

is negative, for the stability of the closed-loop

system, it is only required to find the eigenvalues of JT in

(30). The characteristic equation of (30) can be formed as

λ3 +

(

3√
2
mVrmsidecosδe +

rv
Lf

)

λ2

+

(

3√
2Lf

Vrmscosδe
(

rvmide + cncos2σe

)

)

λ

+
9

2Lf

cnmidecos
2σeV

2
rms = 0

(31)

By applying the Routh-Hurwitz criterion, in order for all

eigenvalues to have negative real parts, the following 3 stability

conditions are obtained:
(

3√
2
mVrmsidecosδe +

rv
Lf

)

> 0 (32)

9

2Lf

cnmidecos
2σeV

2
rms > 0 (33)

3√
2Lf

Vrmscosδe
(

rvmide + cncos2σe

)

>

9
2Lf

cnmidecos
2σeV

2
rms

(

3√
2
mVrmsidecosδe +

rv
Lf

) . (34)

Since σe ∈ (−π
2 ,

π
2 ), then from (23) there is ide > 0, while

from the current-limiting proof in the previous section, ide ≤√
2Imax

rms , i.e. ide ∈ (0,
√
2Imax

rms ]. As a result, condition (33)

always holds. Note also that from (22) there is:

|Pe| =
∣

∣

∣

∣

3√
2
Vrmsidecosδe

∣

∣

∣

∣

≤ 3VrmsI
max
rms . (35)

Given the selection of rv according to (27) and taking into

account (35), one can easily see that condition (32) is also

satisfied.

Finally, condition (34) can be rewritten as

3√
2Lf

Vrmscosδe
(

rvmide + cncos2σe

)

(

3√
2
mideVrmscosδe +

rv
Lf

)

− 9
2Lf

cnmidecos
2σeV

2
rms > 0. (36)

By using the trigonometric property cos2δe = 1−sin2δe, after

some calculations, (36) results in

9
2Lf

V 2
rmsm

2ide
2rv +

3√
2Lf

Vrms

(

rvmide + cncos2σe

)

·
rvcosδe

Lf
− 3m√

2
Vrmsidesin

2δe > 0. (37)

Fig. 3: Regions for selecting Pset and Qset to ensure closed-loop
stability.

In order for the above inequality to hold, it is sufficient to

show that
(

rvcosδe
Lf

− 3m√
2
Vrmsidesin

2δe

)

≥ 0, (38)

Now, by combining (27) and (35), it is guaranteed that

rv
Lf

>
3√
2
mVrmsidecosδe. (39)

Taking into account that δe ∈ (−π
2 ,

π
2 ), i.e., 0 < cosδe ≤ 1,

the following relation can be obtained

rv
Lf

cosδe >
3√
2
mVrmsidecos

2δe. (40)

By combining (38) and (40), then to complete the stability

analysis, it is sufficient to show that

3√
2
mVrmside(cos

2δe − sin2δe) ≥ 0. (41)

Given that Pset and Qset are selected according to (28), then

from (25) it holds true that −1 ≤ tanδe ≤ 1 which yields that

δe ∈ [−π
4 ,

π
4 ] or δe ∈ [ 3π4 , 5π

4 ]. Hence, it holds true that

cos2δe − sin2δe ≥ 0, (42)

which ensures that (41) is always satisfied. This completes the

proof. �

Remark 1. Proposition 1 provides a useful guidance for

the selection of the controller parameter rv . Note that if Vrms

and Lf are not accurately known but vary within some given

ranges, i.e. Vrms ∈ [V min
rms , V

max
rms ] and Lf ∈ [Lmin

f , Lmax
f ],

then rv can be selected as

rv > 3mLmax
f V max

rms Imax
rms , (43)

which still satisfies (27). Similarly, the range for the values of

Pset and Qset can be calculated from (28), given that Vrms and

ωg can vary within some given ranges Vrms ∈ [V min
rms , V

max
rms ]

and ωg ∈ [ωmin
g , ωmax

g ].
Fig. 3 provides a guidance on how to select the values

of Pset and Qset for different values of Vrms and ωg to

ensure closed-loop system stability, taking as an example the

parameters of Table II. In particular, in Fig. 3, it can be

observed that with Vrms = 1.1E∗, the Pset and Qset values

can be selected anywhere within the green area, while for

lower voltage and frequency values, the Pset and Qset values
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are restricted to the red or blue area. Note that these areas

represent the sufficient conditions to ensure closed-loop system

stability, i.e. the system may still be stable even if Pset and

Qset are selected outside of the provided ranges. However,

these sets provide a useful guidance to the control operator to

ensure stability is guaranteed at all times, based on the proof

of Proposition 1.

It should be underlined that Proposition 1 guarantees closed-

loop system stability for the inverter currents and the control

dynamics. In order to prove closed-loop stability for the entire

grid-connected inverter system, the dynamics of the remaining

system, which include the capacitor voltages and grid side

currents, should be investigated as well. These are given in

the global dq frame as

Cf

dVCd

dt
= idcosδ − iqsinδ + ωgCfVCq − igd (44)

Cf

dVCq

dt
= idsinδ + iqcosδ − ωgCfVCd − igq (45)

Lg

digd
dt

= −Rgigd + ωgLgigq + VCd − Vgd (46)

Lg

digq
dt

= −Rgigq − ωgLgigd + VCq − Vgq (47)

where ωg is the grid frequency and Vdg , Vgq are the dq-

axis components of the grid voltage, which can be considered

constant as in [5], to define the equilibrium point in (23)-

(26). This system can be viewed as a linear-time invariant

system and can be written in the standard form ẋ = Ax+Bu
with state vector x = [VCd VCq igd igq]

T and input vector

u = [idcosδ idsinδ iqcosδ iqsinδ Vgd Vgq]
T . Then, the A

and B matrices can be constructed as

A =













0 ωg − 1
Cf

0

−ωg 0 0 − 1
Cf

1
Lg

0 −Rg

Lg
ωg

0 1
Lg

−ωg −Rg

Lg













B =













1
Cf

0 0 − 1
Cf

0 0

0 1
Cf

1
Cf

0 0 0

0 0 0 0 − 1
Lg

0

0 0 0 0 0 − 1
Lg













.

One can easily see that matrix A is Hurwitz independently of

the filter, line and grid frequency parameters. Hence, system

(44)-(47) is bounded-input bounded-state (BIBS) stable. Since

the inverter currents (id, iq) are proven to be bounded in

Section III and the grid side voltages (Vgd, Vgq) are also

bounded (constant or piecewise constant), then both the ca-

pacitor voltages VCd, VCq and the grid currents igd, igq are

guaranteed to remain bounded at all times.

To complete the stability analysis of the entire closed-

loop system, it should be proven that x converges to xe =
[VCde VCqe igde igqe]

T , which corresponds to id = ide,

iq = iqe from (23)-(26) and constant Vgd and Vgq (not

necessarily equal to their rated values). By setting x̃1 =
x1−x1e = [id σ δ iq]

T −[ide σe δe iqe]
T and x̃2 = x2−x2e =

[VCd VCq igd igq]
T − [VCde VCqe igde igqe]

T , then the entire

TABLE I: System and Controller Parameters for Comparison Studies

Parameters Values Parameters Values

Power System Parameters

Lf 2.2mH Lg 0.028mH
Rf 0.5Ω Rg 0.04Ω
ω∗ 2π50 rad/s Imax

rms 20A
S 13200VA Vdc 800V
E∗ 220V Cf 1µF

Proposed Controller Parameters

n 0.0017 m 0.0012
rv 20Ω c 3000

Saturation and LVRT Controller Parameters

kpi, kii 4, 200 kpv , kiv 0.03, 1.2
n 0.0047 m 0.0012
rv 0.7Ω kpfrt, kifrt 0.04, 2.5

closed-loop system given from (9)-(11), (21), (44)-(47) can be

written in the form of two interconnected systems as

˙̃x1 = f(x̃1) (48)

˙̃x2 = g(x̃1, x̃2). (49)

Based on Proposition 1, system (9)-(11), (21) is asymptotically

stable at [ide σe δe iqe]
T , then equivalently (48) is asymptot-

ically stable at the origin. In the same framework, since the

linear system (44)-(47) is BIBS with respect to the input u,

and Vgd, Vgq are constant, then consequently (49) is BIBS

with respect to x̃1. Then, according to Lemma 5.6 in [27],

it is proven that the interconnected system (48)-(49) is also

asymptotically stable at the origin, yielding that the remaining

system states [VCd VCq igd igq]
T asymptotically converge to

[VCde VCqe igde igqe]
T . This completes the stability analysis

of the entire closed-loop system.

V. PERFORMANCE COMPARISON WITH CONVENTIONAL

CONTROL METHODS

In order to evaluate the proposed controller performance and

highlight the novel contribution compared to other recently

proposed methods, in this section, comparative simulation re-

sults are presented using the Matlab/Simulink environment. In

particular, the proposed control scheme is compared with two

widely used current-limiting methods for inverter-interfaced

DERs. Both benchmark schemes are based on the cascaded

droop control scheme presented in [12], while adopting the

P ∼ V and Q ∼ −ω droop relations proposed in [14] to have

a direct comparison. The simulation parameters are shown in

Table I. Regarding the conventional current-limiting methods,

the first benchmark scheme (Benchmark Ctrl 1) uses saturation

units at the output of the voltage controller, as explained in

[17], while the second method (Benchmark Ctrl 2) follows an

LVRT technique to limit the injected power (thus limiting the

inverter current as well), as in [13], [14].

Initially, the proposed controller is compared with the

Benchmark Ctrl 1, with the performed scenario being as

follows: At the beginning, the inverter is not connected to

the grid, since the relay is open. At t = 0.2s, the relay closes

and the inverter is connected to the grid, with Pset and Qset

having initially the values of 4000W and 0Var, while they

are changed to 8000W and 2000Var at t = 0.5s and t = 1s,

respectively. As it is depicted in Fig. 4a and Fig. 4c, both the

Benchmark Ctrl 1 and the proposed controller regulate their
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Fig. 4: Performance comparison between the Benchmark Ctrl 1 (a)-(b) and the Proposed controller (c)-(d) under a three-phase short circuit
fault.
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Fig. 5: Performance comparison between the Benchmark Ctrl 2 (a)-(b) and the Proposed controller (c)-(d) under a 30% balanced grid voltage
sag.

output powers to the desired values according to droop control.

From the same figure, it can be understood that the operation

of the inverter under the two control schemes is similar under

normal grid conditions. However, at t = 1.5s, a bolted short

circuit occurs at the grid voltage and last for 0.2s. During

this fault, it can be seen in Fig. 4b that the Benchmark Ctrl 1

fails to limit the inverter current during the fault appearance

and clearance transients, while during the steady state, the

maximum available power is not utilized, since the d and q
axis inverter currents are limited independently to ensure in

the worst case that Irms ≤ Imax
rms . In contrast, the proposed

controller effectively limits the inverter current during both

the transient and the steady-state as shown in Fig. 4d, while

the inverter current is maximized during the fault to provide

maximum voltage support.

Next, the proposed controller is compared to the Benchmark

Ctrl 2. While the normal grid operation is the same with the

previous comparison as shown in Fig. 5a and Fig. 5c, here

a balanced 30% voltage drop is applied at the grid voltage

at t = 1.5s and lasts for 0.5s. It is highlighted in Fig. 5b

that even if the LVRT limitation technique of the Benchmark

Ctrl 2 manages to provide maximum voltage support during

the fault, the maximum inverter current threshold is again

violated during the fault appearance and clearance transients.

On the other hand, using the proposed controller in the same

faulty conditions, the current is again safely regulated to its

maximum value as shown in Fig. 5d. Hence, as it is illustrated

in the presented simulation study, the proposed controller

outperforms the benchmark control schemes, in terms of its

transient current-limiting property and the maximization of the

injected power during balanced grid faults.

VI. EXPERIMENTAL VERIFICATION

In order to further validate the effectiveness of the proposed

controller, a 660VA three-phase grid-connected inverter was

DC power source 
3 phase inverter 

Oscilloscope 

Power analyser 

Chroma 61830 grid 

simulator 

Fig. 6: Experimental setup.

TABLE II: Experiment and control parameters

Parameters Values Parameters Values

Lf 5.7mH Lg 4.4mH
Rg 0.5Ω Cf 1µF
ω∗ 2π50 rad/s Imax

rms 2A
n 0.0117 m 0.0033
S 660VA Vdc 350V
E∗ 110V fsw 16kHz
rv 20Ω c 50

experimentally tested. The inverter was connected to a Chroma

61830 grid simulator via an LC filter and a line, as shown in

Fig. 6. The controller was implemented as in Fig. 2 using

a dSPACE 1104 control card with a sampling frequency of

15 kHz, while the system and controller parameters are given

in Table II. The droop coefficients were chosen as in [10],

[19].

A. Normal grid operation

Initially, normal grid conditions are considered and in Fig.

7a, the following scenario is performed. At t1 = 0.6s,

the inverter is connected to the grid, with the real power

regulation mode is initially enabled and the real and reactive

power reference values being 300W and 0Var, respectively.

At t2 = 6.6s, the real power reference value is increased

to 500W and at t3 = 12.6s, the reactive power reference is
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P: [150 W/div] 

f: [0.2 Hz/div] 

Q: [150 Var/div] 

Irms: [ 0.5 A/div] 

 Time:[3 s/div] 

0 A 

Vrms: [2 V/div] 

110 V 

50Hz 

0W, 0Var 

t1 

t2 t3 t4 

t5 

(a) Time response of P , Q, Irms, Vrms and f

 

va: [100 V/div] 

 Time:[50 ms/div] 

 

ia: [2 A/div] 

(b) Current transient when Pset is increased from 300W to
750W

 

vb: [60 V/div]  Time:[5 ms/div] ib: [2 A/div] 

(c) Steady-state inverter voltages and currents

Fig. 7: Grid-supporting inverter operation under the
proposed controller during normal grid conditions.

changed to 150Var. As it can be seen in Fig. 7a, the proposed

controller quickly regulates P and Q to their desired reference

values. Note that small inaccuracies are present at the reactive

power measurement near the zero value due to limitations of

the power analyser in low values (near zero). To verify the

droop control operation, the active power droop is enabled at

t4 = 18.4s and P is quickly regulated at its new steady-state

value, which can be calculated as E∗−Vrms

n
+ Pset from (9),

to regulate the inverter output voltage closer to its rated value.

Likewise, to verify the reactive power droop control operation,

a drop from 50Hz to 49.95Hz is applied to the grid frequency

using the grid simulator, at t5 = 24.3s. Thus, the reactive

power drops in accordance to the frequency difference with

respect to its nominal value. In order to validate the current-

limiting property of the proposed controller, at t = 75ms in

Fig. 7b, the active power reference is increased from 300W to

750W with reactive power reference value being 0Var, which

represents a demand higher than the maximum apparent power

of the inverter. However, as shown in Fig. 7b and proven in

the theoretic part of this paper, Irms is limited to 1.84A, thus

limiting the real power to 607.2W, which is slightly below

the maximum inverter apparent power. It is underlined that

the RMS inverter current is limited to a slightly lower value

than Imax
rms because in the theoretic design of the controller,

the parasitic resistance of the filter inductor was neglected.

In fact, if the filter inductor Lf introduces a small series

resistance rf , then from the resulting closed-loop inverter

current dynamics at the steady-state, given similarly to (10),

one can calculate the maximum steady-state RMS value of

the current as Imax
rmse = rv

rf+rv
Imax
rms . In order to fully utilise

the inverter current-limiting capability, the virtual resistor rv
can be selected to dominate the parasitic resistance rf (i.e.

rv >> rf ) or the d-axis dynamic feedback term (7) can be

modified as

v̄d = −rvid +
(rf + rv)I

max
rms√

2
(1 + sinσ)− ωLf iq (50)

Note that this modification does not affect the theoretical proof

provided above and Irms < Imax
rms will still hold, which is

required for the safe inverter operation. However, even with the

proposed control design, which does not require knowledge of

this parasitic resistance, the RMS current is limited below the

maximum value as desired, offering a more robust controller

implementation.

Furthermore, Fig. 7c shows the steady-state inverter current

and voltage measurements when Irms has reached Imax
rms . The

visible ripples in the current waveforms are expected as these

represent the inverter-side currents. In fact, a 10% THD has

been calculated for these waveforms using the Yokogawa

WT1800 power analyser. Nevertheless, since the THD of the

grid-side currents is more important for a grid-connected in-

verter case, this has been calculated as 4.5%, which falls within

the acceptable range according to the IEEE 519-2014 standard

for low grid voltage applications [29], [30]. A further reduction

of the THD can be achieved if inner current control loops

are adopted or a different filter is selected. It is underlined

that even if a different filter is selected, the RMS current-

limiting property and the stability analysis presented in this

paper are still valid, as they do not depend on the particular

values of the filter parameters Lf , Cf or Lg . However, in

the case where inner current control loops are added to the

controller implementation, further investigation is required for

the stability analysis of the entire system. Nevertheless, the

purpose of this work is to propose for the first time this novel

control structure and simultaneously guarantee the stability

in a rigorous manner. Thus, it has been verified that the

proposed controller supports the grid via the desired droop

control operation and additionally offers an inherent protection

of the inverter against excessive power demands.
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P: [150 W/div] 

f: [0.2 Hz/div] 

Q: [150 Var/div] 

Irms: [ 0.5 A/div] 

 Time:[3 s/div] 

0 A 

Vrms: [35 V/div] 

50Hz 

110 V 

0W, 0Var 

t1' 

t2' 

(a) Time response of P , Q, Irms, Vrms and f

va: [50 V/div] 

ia: [2 A/div] 

(b) Inverter currents and PCC phase-a voltage when the fault
occurs

va: [50 V/div] 

ia: [2 A/div] 

(c) Inverter currents and PCC phase-a voltage when the fault
is cleared

Fig. 8: Grid-supporting inverter response under the
proposed controller when a balanced voltage sag
110V→70V occurs.

B. Operation under balanced grid voltage sags

To further validate the performance of the proposed control

scheme, grid fault cases in terms of balanced voltage sags are

examined in this section, while the inverter is operating in the

desired droop control mode.

Initially, the grid voltage drops from 110V to 70V at

t
′

1 = 11.6s in Fig. 8a. During the fault, the RMS value of

the current increases to its maximum value without violating

the desired upper threshold. Hence, the proposed controller

maximizes the power injection, while inherently protecting the

inverter device. This operation can be theoretically explained

as follows: when the fault appears, the controller state σ

 

P: [150 W/div] 

f: [0.2 Hz/div] 

Q: [150 Var/div] 

Irms: [ 0.5 A/div] 

 Time:[3 s/div] 

0W, 0Var 

0 A 

Vrms: [35 V/div] 

50Hz 

110 V 

t1'' 
t2'' 

(a) Time response of P , Q, Irms, Vrms and f

va: [50 V/div] 

ia: [2 A/div] 

(b) Inverter currents and PCC phase-a voltage when the fault
occurs

va: [50 V/div] 

ia: [2 A/div] 

(c) Inverter currents and PCC phase-a voltage when the fault
is cleared

Fig. 9: Grid-supporting inverter response under the
proposed controller when a balanced voltage sag
110V→55V occurs.

converges to its maximum value, which is π
2 . In that case,

the integration (9) tends to zero due to the cosine term in

the dynamics, and therefore, acts like an inherent integrator

anti-windup technique. As it is clear in Fig. 8a, when the

current is limited at 1.85A, P increases to 384.6W, which can

be calculated as (
√

S2 −Q2 =
√

(3× 1.85× 70)2 − 552).

When the fault is cleared at t
′

2 = 21s, the real and reactive

powers return to their original values, according to the droop

control. In Fig. 8b and Fig. 8c, the transient response of the

inverter current and the PCC voltage are depicted during the

fault appearance and the fault clearance. It is underlined that

due to the limited number of the channels available in the

oscilloscope (4 in total), only one voltage (phase a) and three
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current measurements are shown in the Figures 8b, 8c, 9b, and

9c. Since the paper examines balanced voltage sags, the other

phases (b and c) of the grid voltage follow the same drop ratio

as phase a. As it is clear, the RMS value of the inverter current

never violates its maximum value, as desired.

In order to test the controller performance under larger

grid voltage sags, experimental results where the grid voltage

drops from 110V to 55V are provided in Fig 9a. When

the fault appears at t
′′

1 = 11.9s, Irms increases again to

1.85A (i.e. very close to Imax
rms ), while the reactive power

remains at its steady-state value. Hence, the real power during

this voltage drop can be calculated as 300W (
√

S2 −Q2 =
√

(3× 1.85× 55)2 − 552), as depicted in Fig. 9a. When the

fault is cleared at t
′′

2 = 21.3s, the real and reactive powers

return to their former values, after a short transient. Fault

appearance and clearance under the 50% grid voltage drop

can be observed in detail in Fig. 9b and Fig. 9c. As a result,

the desired grid support capability of the inverter and its

inherent RMS current-limiting property have been confirmed

under both normal and faulty grid conditions that include

balanced voltage sags verifying the theoretic contribution and

the stability analysis presented in this work.

VII. CONCLUSION

A novel nonlinear current-limiting droop controller for

three-phase grid-connected inverters has been introduced in

this paper. The limitation of the RMS value of the inverter

current was guaranteed for the first time without requiring

adaptive saturation units through a rigorous analysis based

on invariant set theory, under both a normal grid and under

balanced voltage sags. A detailed proof of the closed-loop

asymptotic system stability was presented without requiring

full knowledge of the inverter filter parameters, which also

provides a useful guidance on the selection of the controller

parameters for the control implementation. To emphasize the

superiority of the proposed controller over existing current-

limiting methods, extensive comparison studies have been

realized. The theoretic contributions of the paper and the

effectiveness of the proposed control scheme were confirmed

using an experimental setup consisting of a three-phase grid-

connected inverter operating under a normal grid and under

different levels of balanced voltage sags.

Future work will focus on the investigation of the proposed

current-limiting control scheme in different faulty grid scenar-

ios that include short circuits of line-to-ground and line-to-line

(with and without ground), with the inclusion of a rigorous

stability analysis for every individual case. Furthermore, inner

current loops will be added to the controller implementation

in order to further decrease the grid current THD and the

stability of the complete system that includes the additional

control loops will be examined.
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