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‘Less is more’ - Mining Useful Features from Twitter User Profiles for User Classification in the
Public Health Domain

Abstract

Purpose - This work studies automated user classification on Twitter in the puddithhdomain, a task that is
essential to many public health related research on social media but has not beeadaddraisss to obtain
empirical knowledge on how to optimise the classifier performance stetk.

Design/methodology/appr oach - A sample of 3,100 Twitter users who tweeted about different healtliticorsd
were manually coded into six most common stakeholders. We propossimgle features extracted from the short
Twitter profiles of these users, and compare a large set of classificati@tsr{indluding statef-the-art) that use
more complex features and with different algorithms on this dataset.

Findings- We show that user classification in the public health domain is a very diatigask, as the best result
we can obtain on this dataset is only 59% in terms of F1 score. Conpatatkef-the-art, our methods can obtain
significantly better (10 percentageints in F1 on a ‘best-againstbest’ basis) results when using only a small set of
40 features extracted from the short Twitter user profile téxtiginality/value - Our work is the first to study the
different types of users that engage in health related communicationiahrsedia, applicable to a broad range of
health conditions rather than specific ones studied in the previous@urknethods are implemented as open
source tools, and together with data, are the first of this kind. We b#iiese will encourage future research to
further improve this important task.

Keywords: public health, deep learning, social media, Twitter, machine learning, data science
Paper type: original research

1. Introduction

In recent years, social media platforms such as discussion forunmsg@aldnetworks, have been growing rapidly
as a channel for the communication and engagement of public health related watterg these, Twitter has
become the most commonly used platform for this purpose (Ttegckerl. 2012), due to its support for real-time
dissemination of information and personal opinions. Twitter is a saefiatonking and microblogging platform
where users post and interact with messages, or ‘tweets’. It enables its users to engage in effective and real-time
information sharing and dialogic relationship building with each othek @aal., 2016). It offers interactive
features such as the ability to ‘follow’ users to form networks, retweet (i.e., republish and reshare), quote, like and
reply to tweets, and to embed rich media including hyygeslmultimedia, hashtags (a notion of ‘topic’) as well as
symbols within tweets.

Due to the potential of Twitter to provide insight into public views and opimelased to health and the ability to
retrieve data at little cost, it has become a valuable resource for research (Moorhe28X8)alCurrently, research
based on Twitter in the health domain can be generally divided intypes:tone that studies health-related
content shared on Twitter, and the other studies users who engage Wwitostent.

The majority of previous work belong to the researcbootent analysis. This covers work that apply data mining
to discover novel patterns that predict future events such as diseasak8romszor et al., 2010), or enhance our
existing knowledge such as pharmacovigilance (Ginn et al., 2014); studierdahgeethe nature (e.g., content,
qguantity) of information sharingoncerning particular health conditions on Twitter (Thackeray et al., ZGL®a et
al., 2014; Rosenkrantz et,@016) and research that aims to understand the impact of such shared cotetens in



of engaging audience and growing communities (Ferguson 20a#; Singh and John, 2015; Brady et al., 2017;
Rabarison et al., 2017).

In contrast, work omiser analysisin the health domain is very limited. This typically involves ywefiling based

on demographic characteristics or interests. We argue that this is an @agpalifant area since the identification
and characterisation of different user types allow us to understand dormieamtrging topics, influential users, the
composition of a community and the information exchange patterrerth8uch knowledge will allow us to better
connect information seekers with providers, which will be of key interesthiicchealth stakeholders. For example,
public health agencies and healthcare providers can better target their audi¢meg@fomotion of information and
services; information seekers and service users can better find credibleatidarta fulfill their informational

needs. While there exists a wealth of literature on social media user priofiiegeral, these are limited to either
non-health context (Tinati et al., 2012; Uddin et al., 2014), or specific heddtkd issues such as smokers ang dr
users (Kim et al., 2017; Kursuncu et al., 2018). Methods and figdiiog) these studies are ad-hoc and not directly
applicable to the general public health domain.

In this work, we study the empirical task of automatically classifymwgter users that engage in health related
information sharing, using natural language processing (NLPjnactiine learning techniques. We refer to the
different types of users as stakeholders, representing different interestéoamdiion needs. Our contributions are
empirical and include: 1) the first study on the automatic user classificatiom getieral public health domain,
while previous work only tackled single health conditions where the classificatimes are non-applicable to
other problems. We propose a generic classification scheme, releasertmitieoand data to foster further research
in this area; 2) a comparative analysis of the popular machine learning agogitiol features used for social media
user classification on this specific task. We show that empirically, thiggs/achallenging task, as many well-
established methods in other domains are shown to obtain only medisaits;r3) a new method to capture useful
features based on the short Twitter profile texts of different stakeholderpa@aihto statef-the-art, such features
are easier to extract, and shown to be significantly more effective ondbificsfask. As one of our models using
only 40 features has significantly outperformed the best perforrateyes-the-art (10 percentage points) that uses
thousands of features extracted by complex processes (e.g., topic mgydedin tweets, as well as additional
corpora.

The rest of the paper is organised as follows. Section 2 presents a brief litenatwe Section 3 describes our
methodology in detail. This is followed by Section 4 that presents andssiescthe results. Then Section 5
discusses the limitations of this work, and Section 6 concludes this papdutwie research directions.

2. Background

We firstly discuss literature in the context of public health related communicatidmitter. This includes studies
of both content analysis (Section 2.1) and user analysis (SectiokV& 2hen review related work from a
methodological point of view, to cover automated user classification on soci@ imggneral (Section 2.3).
Finally, we discuss limitations in the state of the art to motivate our research (Red}ion

2.1 Content analysis of public health related communication on Twitter

As mentioned before, a large number of previous studies focus orstamiting the content created by Twitter
users on different health related issues. Among these, many appbechiding to Twitter streams to discover new
knowledge or patterns for predicting future events. Examples incliwi pnealth surveillance based on Twitter, by
tracking and mining tweets of particular topics (e.g., HIN1) to discoseddrand make predictions of disease
outbreaks (Szomszor et al., 2010; Zhang et al., 2017); topic (Paul and ,2@#¥pand opinion mining such as
patients’ perception of drug safety and adverts (Curtis et al., 2017); and pharmacovigilance (Ginn et al., 2014).



Another group of work analyse the nature (e.g., content, quantityipofriation sharingoncerning particular

health conditions on Twitter, by studying variables such as the tweetpgeincy, topics indicated by keywords

and hashtags, and the geographic and temporal dynamics of the twebtngbrs (Thackeray et al., 2012, Tsuya
et al., 2014; Rosenkrantz et al., 2016). For example, Tsuya et al. @@l Rosenkrantz et al. (2016) analysed what
and how cancer patients tweeted about their experience; Xu et al. (2016)etnet lab. (2017) examined different
tweeting behaviours between breast and prostate cancers communitigiten

In addition, some work looked at the impact of content sharing in teremmafing audience and growing
communities (Ferguson et al., 2014; Singh and John, 2015; Brady2€1ai;,Rabarison et al., 2017), or providing
emotional support to patients (Pagoto et al., 2014; Reavley and Pilkingtdi), E6dexample, Reavley and
Pilkington (2014) investigated tweets discussing mental health related isdussnéirmed the potential of Twitter
as a channel for providing effective social support to patients.

2.2 User analysis of public health related communication on Twitter

User analysis typically involves user profiling based on demographic tf@stcs or interests. As discussed
before, we found such work in the context of public health communicagignscarce. Ferguson et al. (2014)
studied Twitter conversation collected during a cardiac society conference and cléissifisdrs into nine types,
such as company, PhD candidates, research fellows and nursing prafiss@orgmann et al. (2016) classified
users who tweeted about urologic oncology into categories such as indidiolttak, patient, spammer, and health
organisation. Kim et al. (2017) classified users that tweeted about e-cigarettidgeitypes specific to the domain.
Rabarison et al. (2017) identified individual and organisational usergydufiwitter chat session focused on health
and wellness in New Orleans. Kursuncu et al. (2018) classified Twites imsthe marijuana community into retail,
informed agency and personal accounts.

The methods used by these studies can be broadly divided into treeeTip first (Kim et al., 2017; Kursuncu et
al., 2018) uses NLP and machine learning to train a model on samples labelldtveitpected user types (called
‘labelled data”). The trained model can then be used to classify new data. There exists a wide range of studies of

such methods in other context, which will be discussed in details b8kxtign 2.4). The second adopts manual
analysis (Ferguson et al., 2014; Rabarison et al., 2017) which isuitalyle for small datasets. And the last
(Borgmann et al., 2016) uses proprietary tools such as Syinfgiuwhich there is no information available on what
algorithms or user information are used for classification.

2.3 Automated user classification on the social mediain general

Broadening to other domains, there is a significant number of studiegaimadic classification of users on social
media. These studies find thetigin in the research on ‘user profiling’ (Kanoje et al., 2015), often used in
recommender systems. The goal is to identify specific groupsof based on certain attributes. Due to the large
amount of studies in this broader context, below we only briefly dgpéaral studies based on Twitter.

In terms of the target classes, in the general domain, Tinati et al. (201Padddu and Fischer (2017) categorised
Twitter users based on their role in information diffusion (e.g., sti@er, viewer, and amplifier). Uddin et al.
(2014) classified Twitter users into six types including personal, profedstusiness, spammer, news feed, and
marketing services. Other studies addressed the detection of automated Twitter dbots)rftem human users
(Chu et al., 2012), organisations from individual users (McCorrist@h, 2015), students from non-students (Al-
Qurishi et al., 2015), users of different occupations (Preotiuc-Pietro et al., 2015), and social classes (Filho et al.,
2014). In sports, Yang et al. (2013) classified Twitter followers oftsmtubs into fans and non-fans. In politics,
many studied the classification of users based on gender, age, ethmigitglgical orientation (Rao et al., 2010;
Pennacchiotti and Popescu, 2011; CohehRanhs, 2013; Preotiuc-Pietro et al., 2017).

Ahttps://www.symplur.conp/Last retrieved in September 2018
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In terms of methods, they are predominantly based on NLP ardviagrl machine learning techniques. During this
process, a user (called ‘instance’) is represented by a set of ‘features’, which are individual measurable properties of
instances in order to differentiate them. It is also assigned one or mutédkfiped categories (classes, labels, or
types). A set of such instances then comprise a ‘training data set’ that is used by a ‘supervised’ machine learning
algorithm that examines the features observed in the training data, and genga#tiésas that can represent most -
if not all - instances of each class. These patterns are then used to diadsifymnseen instances in new data.

Previous methods have used a wide range of features, that carebalgalivided into content- and behaviour-
based. Content-based features make use of the texts generated byiusaib; fheir tweets collected over a
period of time. Sometimes, an additional preprocess may be applied to exteatiofip more representative
features from content. For example, some used statistics to capture ‘class-biased” words or hashtags from the tweets
associated with particular types of users (Pennacchiotti and Popescu, 20d1 a@diRuths, 2013; McCorriston et
al., 2015). Some used ‘topics’ or ‘clusters’ that emerge from users’ tweets (Yang et al., 2013; Preotiuc-Pietro et al.,
2015), while others also used sentiment (Pennacchiotti and Popescup@itdi)arities (Kim et al., 2017)
captured from tweets. Behaviour features capture how users intetacowient and other users, and can include
their frequency of tweets, retweets, likes, network structure lmastdlowers, etc (Rao et al., 2010; Cohen and
Ruths, 2013; Filho et al., 2014). Almost every study made fuserixture of both types of features.

The task can be dealt with any supervised machine learning algorithmagAhese, the most popular are Support
Vector Machines (SVMs, Rao et al., 2010; Cohen and Ruths, 2013; Yang e13].Ffifo et al., 2014; Uddin et

al., 2014; Preotiuc-Pietro et al., 2015), decision trees (Pennacchiotti and Popescu, 2011; Goliutlas, 2013;

Kim et al., 2017), Logistic Regression (Preotiuc-Pietro et al., 2015; Preotiuc-Pietro et al., 2017), Naive Bayes (Yang
et al., 2013; Filho et al., 2014), Latent Dirichlet Allocation (Cohen and R2@8), and Bayesian classification
(Chu et al., 2012).

2.4 Limitations of state of the art

We identify two limitations that motivated this research. First and foremost,tfre task point of view, there is a
lack of studies on the automatic classification of users interested in public dwalthunication on Twitter. Work
such as Kim et al. (2017) and Kursuncu et al. (2018) studied popujatiops that are too specific to be
generalisable. While work in non-health domains studied user gtioatpare of little interest to the health domain.
We argue there is a need to analyse general user types that engadie imepith communication on Twitter. As
this will enable studies of the motivations and informational needsfefelit user types, the information flow and
interactions between user types, and emerging trends and opihlwalth related topics. Practically, the benefits
can be many-fold. For example, the general public may be enabled toedispedible sources of information to ask
questions and fulfill their informational needs. Healthcare providershethgr target their services at the right
audience, or better understand their followers. Public health agencies mexeanore effective health surveillance
as they are supported to discover needs from better targeted population thes sEquice delivery.

Second, from a methodological point of view, despite a range of well-estabigiproaches, there is a lack of
evidence that they are directly transferable across domains, as we abattlie same algorithms and features
perform differently on different tasks. It is unclear that empiricallyatdeatures and classification algorithms work
best for a similar task in the health domain. In particular, existing metiene primarily used features extracted
from the tweet texts posted by users, but rarely used their profite @xmplex processes such as topic modelling,
sentiment analysis, clustering, and similarity measures are used to edtact$ from tweets, but it is unclear if the
benefits of these features are transferable. Practically, feature extractisghfsdrprofile texts can be much more
efficient, as it requires less data collection and processing compared to tweet basexi feature



3. Method

We adopt the typical workflow for the text classification task. Starting with ddiectton and annotation (Section
3.1), we manually analyse a Twitter user dataset to derive common weseatyplabel each user with these types.
Then using this dataset, in the second and third steps, featumdraxted (Section 3.2) to represent each user, and
classification models are implemented (Section 3.3), trained and evaluated (S€Qtimsing these features on the
labelled data. We also describe a set of baseline andb$tiite-art methods for comparative evaluation (Section
3.5).

3.1 Data collection and annotation

To create a Twitter user dataset related to health conditions, we use a sampie fdataset collected in Zhang and
Ahmed (2018). The original dataset was collected by filtering tweets usings&&&e hashtags that are believed to
represent different health conditions or diseases (e.g., #Colitis) over a @eoivel month. It consists of around 1.5
million English tweets, from which we derived over 450,000 ustesrefer to this dataset as the ZA2018 dataset.

We took a random sample of 3,100 users from this dataset, thaoters reviewed the profiles of these users
using their bio (i.e., their Twitter profile text), or the most receni&ts in case their bios were absent. Using a
grounded theory approach informed by literature review, a protocol was plegidtbcategorise these users into six
types of stakeholders (listed below). The annotation process lasted tws whéh involved an initial phase where
the coders met frequently to discuss and resolve as many discrepanciestds. poer annotator agreement was
assessed on a subset of 100 users that were duplicated between the tsyaoddee obtained a Kappa statistic
score of 0.86. This measures the extent to which different annotalicckassify users in the same way, and the
figure can be considered to be ‘near perfect’ agreement (Viera and Garrett, 2005). This is the typical data annotation
practice commonly used in machine learning research, and is consideredeoaliaale labelled data. It is used in,
e.g., Kim et al. (2017) and Kursuncu et al. (2018) during theirestuaf health related conversations on Twitter. As
it is infeasible to reach each individual Twitter user to obtain their true stialezhype.

This dataset is called the ‘gold standard’, which is to be used for the training and evaluation of the classification
model. The six types of stakeholders include:

e Advocate (892): individuals or organisations that mainly promote awarefhesgain health conditions.

e Individual Health service Providers (IHP, 365galth professionals such as doctors, physicians, nurses,
carers etc., who may offer advice and promote awareness. Their paodilesually personal, rather than
representing the organisations they may be affiliated to.

e Organisational Health service Providers (OHP, 273): organisations protieitiy services, such as
hospitals, and companies selling products and services.

e Patient (274)people who suffer from certain health conditions themselves o tieir personal
experiences of some diseases.

e Researcher (333)ndividuals or organisations that are interested in advancingdtéite-art. They share
useful information about diseases and engage in discussion related &vetaeif interest and expertise.

e Other (963):a broad category including users whose tweets do not have a heakheftlsame. They may
have tweeted occasionally health related content, but also pay equal attention affaitiser

Our classification scheme represents the general stakeholders in the public health the identification of

which could potentially benefit each other. For example, Patients mayonsésiek professional advice or treatment
from IHPs and OHPs; IHPs and OHPs may be interested in Researchers to teedptapwith recent findings;
Advocates may want to connect with Patients for real life stories, or conta&biHPHPS to seek support in raising
awareness.



3.2 Feature extraction

To train classification models using the labelled data, we need to represent eack instlae data (i.e., a user)
using features. Following previous research, we experiment with bethnt@nd behaviour based features. Unlike
previous methods whetentent based features are mostly extracted from a user’s tweets, we propose to extract
features from their short profile text. Further, we introduce a new mathedract a small set of class-biased
features from the content, and we refer to this as ‘dictionary’ based features.

Content based features. Due to the colloquial nature of Twitter, we firstly applied a tweet normalistiafto
preprocess the text. This involves, for example, spelling correction, elongated word normalisation (‘yaaaay’

becanes ‘yay’), and word segmentation on hashtags (‘#bowelcancer’ becomes ‘bowel cancer’). Next, the text is
tokenised, with each word further lemmatised to return to its dictionary form (e.g., ‘“years’ becomes ‘year’).

Stopwords such as English determiners and prepositional words wereeteibe remaining words were weighted
and used as content based features for the user. The specific word wefgdtiog depends on the machine
learning algorithms and will be detailed in Section 3.3.

For users without a bio (about 5% in the dataset), we collected and concatenatedshedcemt 20 tweets as their
bio. Empirically, this resulted in better classification accuracy.

Behaviour based features. These include the number of tweets created by the user, favoritee byger, number of
friends, followers, and number of ‘lists’ a user has. Then from the set of tweets collected for each user found in the
original ZA2018 dataset, we obtained the number of new tweets and retweets, number of the user’s tweets that were
retweeted, or favorited by somebody else, number of URLs, mentiooth@fusers), media (e.g., pictures, videos),
and hashtags. Also, we calculated the fraction of tweets that contained ahéhasbtag, and number of different
hashtags mentioned in their tweets. These are selected as a subset otthos&ins et al. (2017), Pennacchiotti
and Popescu (2011), and Uddin et al. (2014), as they are suppotted2’2018 dataset.

Dictionary based features. We propose to extract stakeholder-specific dictionaries and use themnatx éedtures
from users bio. In Pennacchiotti and Popescu (2011), a method was introduced to extract ‘prototypical words’ from
each class of Twitter users. The intuition is that a particular class of usertsenayset of typical lexical
expressions that distinguish themselves from other classes. Givenas eladsach classhas Susers, a
‘prototypical’ score of a word w for the classids calculated as:

ws i |

proto(w,c ;) = [1]
j=1

where |wS] is the number of times the wordisvused’ by all users for class ¢i, and specifically, this means that
they searched for each word in the tweets created by the userstfidrs ahose top k words for each classnl
then for each user, its frequencies of using each of these wordsandritof frequencies per class are used to
calculate its “prototypical word’ features. .

w,s  jl

We introduce a new approach that is different in four wBiyst, we use users’ bio (as collected before) for each
stakeholder, instead of their tweets. On the one hand, bio is argonatdyinformative, while a user may retweet or
tweet things that are not always relevant to the stakeholder that it represeiis.obrer hand, collecting bio is
programmatically more efficient than collecting tweets (for which a peridicdnef must be defined and can impact
on both the data quantity and quality).

Second, empirically, we notice that equation [1] often extracts words that are uniguelass but have very low
frequencies, as these words are used by only a small number of usegingdiora class. Such features will have

4 https://github.com/cbaziotis/ekphralsiast accessed: August 2018
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poor generalisation power. To address this, we compute a ‘goodness’ score that scales the prototypical score of w by
its relevant frequency to the sum of frequencies of all words yseddenoted by W

,Si
goodness(w, c;) = proto(w, c;) X w54l

2]

ZWIEWi [wr,Si

Third, we apply the metric to two word classes only and treat them separateig:amaliverbs. On the one hand,
we observe such words to be the most informative and distinctive in a user’s bio. For example, Advocates often say

they want to ‘raise awareness’ and ‘provide support’; while IHPs often mention their occupations with keywords

such as ‘Doctor’, ‘MD”’, ‘therapist’. Other word classes are more diverse and less consistent. On the other hand, the
frequency of these two word classes may not be on a comparable scaleorEh#rey should be treated separately.

Thus for each stakeholder type excluding ‘Other’ (which can include a very broad range of general users and
therefore, lack consistent patterns in their vocabulary usage), we calculabednesgs scores of the nouns and
verbs used by them, and select the top 100 highest ranked to creatgob@ries (5 stakeholders, 2 word classes
each). Table 1 shows examples of these dictionaries.

Fourth, we represent a user using the above-created dictionaries in a different evaye Wach dictionary to match
against the bio of a user, then calculated the sum and the max of g@sdaees of the matched nouns/verbs, the
number of matches, and a boolean feature to indicate if at least one nfiatetdisThis gives us a total of 40 (4
feature per dictionary) stakeholder dictionary based features.

Stakeholder | Top 5 nounsranked by goodness score Top 5 verbsranked by goodness score

Advocate health, advocate, awareness, support, ca| helping, dedicated, supporting, raising, save
IHP nurse, health, consultant, specialist, coac| certified, eating, med, working, personalised
OHP care, quality, provider, service, product | providing, tracking, assisted, pen, specialising
Patient survivor, fiboromyalgia, spoonie, ptsd, cfs | diagnosed, trying, fighting, hoping, know
Researcher |research, phd, researcher, university, scid leading, improve, developing, reviewed, researcl

Table 1. Example top 5 ranked nouns and verbs extracted for eashodtek type

3. Classification algorithms

We compare seven different classification algorithms, including five popnés used in the state of the art, and
two DNN based algorithms that have not been reported for such tasks. We describe them under ‘classic machine
learning algorithms’, and ‘DNN based algorithms’ below. Further, for classic algorithms, we also study the effect of
dimensionality reduction using Principal Component Analysis (PTk gives us a total of 12 algorithms for
comparison.

Classic machine learning algorithms. We chose five classic machine learning algorithms, including a lineaelker
SVM (SVM-l), a non-linear (Radial Basis Function) kernel S\VB¥ ¢ -rbf), Logistic RegressiorL[R), Stochastic
Gradient Descent classifieGD), and Random ForedRF). Among them, SVM-I and LR are the most popular
ones, used in Uddin et al. (2014) and Preotiuc-Pietro et al. (2017). Others are also very popular for classification
tasks (Zhang et al., 2017).

When using content-based features with these algorithms, features are waygieted frequency inverse
document frequency, which assigns a higher weight to features (irds)wioat have high frequency in a focused
subset of bios. This is often referred to as the weighted ‘bag of words’ representation in the literature (Preotiuc-
Pietro et al., 2017).



Classic machine learning algorithmswith PCA. A common problem with the bag of words representation is the
high dimensionality and sparsity in the feature space, whichnoidlye effective for learning. A popular approach is
therefore to apply feature dimensionality reduction techniques, such as R@Astorm the feature representations
before passing them to an algorithm for learning. Thus we couplen®@A&ach of the five algorithms before, and
refer to them as PCA+?, where ? can be any one of the algorgtgnsRCA+SVM-I). We configure the PCA
algorithm to reduce the number of features by half in all casésisTan arbitrary decision, as our goal is not to find
ways to optimize the performance of any algorithm.

DNN based algorithms. We use two DNN structures, both of which can be generalised and illustré&tigdre 1.

In general, an input instance is represented using the three kifedduwes described before: content, behaviour,
and dictionary based. Both behaviour and dictionary based features are useehéds-ike text content is processed
by a SUbBDNN structure to extract ‘advanced’ features. We use two popular architectures for this purpose, to be

detailed below. These extracted features are then concatenated with the behawdaiiosady features into a
single feature vector, that is then passed into the final softmax layieh prioduces a probability distribution over
the six target classes. The class with the highest probability is themawtee label for the input instance.

Output: {Advocate=0.9, IHP=0.02, OHP=0.03, Patient=0.0, Research=0.5, Other=0.0}

Softmax
Concatenate
La_yer
Sub-DNN
structure
Input: | Contnt " Beraviour | | Dicionary |
features | features Features

Figure 1. The generic architecture of the two DNN based classification algorithms.

We experiment with two recent DNN structures in text classification as our sub-fituge. The idea of these
structures is to act as ‘feature extractors’ that prove to be effective at transforming raw, input text features into more
complex, abstract features that are more effective for classification.

The first is the CNN (Convolutional Neural Networks) +‘skipped” CNN structure introduced in Zhang and Luo
(2018). We refer to this a&NN. This starts with a ‘word embedding’ layer that assigns weights to each word in the
input text using a fixed dimension, real-valued vector. Each diimemndicates the relative weight of the word for a
‘latent’ concept. These weights and latent concepts are typically pre-trained on very large text corpora. Then a
dropout layer (dropout rate of 0.2) follows to ‘regularise’ training. The same output from the dropout layer is then
passed as input to seven parallel convolutional layers, each to extract differeesfdatiare concatenated
together (‘joined’ features). Three of these can be considered to scan a consecutive n-word sequence (a.k.a. ‘window
size’, where n=2, 3, 4 respectively) from the input text, while the other foans a m-word sequence (where m=3
and 4) but ignores one or two words in the middle. As an example, given a sentence containing five words ‘A patient
with type2 diabetes’, with n=3 and m=3, the CNN layers will learn to transformusaces including ‘A patient

with’, ‘patient with type2’, ‘with type2 diabetes’, ‘A _ with’, ‘patient _ type2’, ‘with _diabetes’ into different
features. Each of the parallel CNN layers uses 100 filters with a stride o joifiad features are then further



down-sampled by a max pooling layer with a pool size of 4 and a efrileAll parameters of this sub-DNN
structure are the same as in Zhang and Luo (2018), which weeadimrs to for details.

The second is a bi-directional Long-Short Term MembiLSTM) network based on Lai et al. (2015). This is a
type of Recurrent Neural Network (RNN) that captures long distance dependeatgiesrbwords in sentences. It
simulates our reading of ordered words to incrementally develop ringedar the sentences. Bi-LSTM also starts
with a word embedding layer same as that in SCNN. This is then folloyadi-LSTM layer with 100 neurons.

For the word embedding layers in both SCNN and bi-LSTM, we usBlt\ée word embedding vectors pre-trained
on the Common Crawl corpus with 300 dimensfof®r both, we use the categorical cross entropy loss function
and the Adam optimiser to train all models with an epoch of 20 udiatrh size of 100.

3.4 Implementation, training and evaluation

All algorithms described above are implemented using the Scikit-Learn, Re@a8)(and Theartd0.9.0) libraries.

Unless otherwise stated above, we used the default parameters implemehtskbjpraries. We share our code

online to enable reproducible experimé&ntsl experiments reported in this work were conducted on a seitleaw
maximum of 8 CPU cores and 128GB memory.

For each algorithm, we also study the impact of different types of featurdsevity, we use letters b, d to refer
to content, behaviour, and dictionary based features. For each of thifedghtalgorithms, we test them with 6
different feature combinations; b, d, ctb, c+d, c+b+d. We refer to these 72 combinations as ‘proposed models’ .
As an example, SVMcIldenotes the model using the linear SVM algorithm with only content bagacefeavhile
PCA+LR:++adenotes the model using PCA with Logistic Regression, with all threls kirnfeatures.

To measure performance, we use the standard Precision, Recall, @adrikdnic mean of Precision and Recall)
metrics used for classification tasks, calculated as below:

# of true positives

Precision = [3]

# of true positives + # of false positives
# of true positives [4]

Recall = — -
# of true positives + # of false negatives

2 X Precision X Recall
F1 = - [5]
( Precision + Recall)

Given a target class A, a true positive is an instance of A that is cookdbified by the model. A false positive is
an instance that does not belong to A but incorrectly classified as so bgdeé i false negative is an instance of
A that the model fails to identify (i.e., it may be incorrectly classifigs@dnother class). Precision, Recall and F1
were calculated for each stakeholder type, and were then averaged t@olztearage score for the entire dataset
(called ‘macro-average’).

There are two common approaches evaluating (i.e., testing) supervised classification methods. The first is ‘hold-out’
evaluation, where the gold standard dataset is split into two parts, one uséd aoniodel, the other used for
evaluating the trained mel The other is ‘k-fold crossvalidation’, the process that splits the gold standard into k
different training-evaluation pairs. The model is then trained and evaluatedskdn all the pair, and then the
average performance is calculated over these k runs. Practically, thia givee reliable estimate of performance
than hold-out evaluation. In this work, we use 10-fold cross-validatienaluate all model variants. This means

.stanford.edu/data/glove.840B.300d|. fast accessed in September 2019

4 Scikit-Learnfhttps:/scikit-learn.org/stablKearsfhttps://keras.id/Theandhttp://deeplearning.net/software/ |
[theanof all of these were last accessed in September 2019

5 Anonymised for review. Link will be shared if published.
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that each model variant is trained and evaluated 10 times, each time trained on9@Yotd standard while
evaluated on the other 10%. The final model performance is the averagdighites obtained from the 10 runs.

3.5 Basdline and state-of-the-art

A major difference in our work from the previous studies is tteaewtract features from Twitter user profile texts
instead of their tweets. To understand whether profile texts areuseid for this task, we create baseline models
below. First, for each user in our dataset, we retrieve their tweets collected iigthal @A2018 dataset, and
concatenate them into a single text to be called ‘merged tweets’. Second, we extract content based and dictionary

based features from users’ merged tweets instead of their bio, giving us five alternative feature combinations: ¢, d,

ctb, c+d, andctb+d. Finally, we apply the same classification algorithms described beforest® fiatures, giving
us 60baseline models.

Further, we compare our methods against four sthtke-art methods. None of the studies discussed in S&tion
released their tools or data. Therefore, we re-implement some of these naetth@giply them to our dataset.
However, Twitter user classification is typically domain- and task-speiifibe sense that both data and methods
can be biased specificalfy the task. For example, Pennacchiotti and Popescu (2011) extracted user’s gender and
ethnicity information, which are useful in political orientation detection but ahguals informative for our task.
They also used network based features that require collecting the Twitterkistructure of users. This
information is not in the ZA2018 dataset. Due to the dynamic natureitteT,vgome user accounts were deleted
while for many, their networks have changed over time since thegalédseir dataset. Therefore, re-creating
network information retrospectively will likely generate a dataset that is incompletkawdd. In some extreme
cases, certain metadata are no longer supported by the current Twitter ARdrefateh cannot be obtained. For
these reasons, we highlight that our re-implementations and their evalumtipm®t be fully representative of the
methods in their original published form. Nevertheless, we have madgeafiort to ensure our re-implementations
are as close as possible. We detail them with the adaptations below. Where featxelsided or adapted, this is
because the ZA2018 dataset did not collect them or does not support the compithéon anless otherwise
stated.

e Kim2017 (Kim et al., 2017) - a method using the Gradient Boosted Regrdsees (GBRT) algorithm
with 73 features, some of which are based on pairwise similarities between a user’s tweets. ‘Verified’ is
excluded for the reasons above, while ‘contributors enabled’, ‘geo enabled’, ‘is translator’, ‘profile
background tile’ are no longer supported by the current Twitter API.

e Uddin2014 (Uddin et al., 2014 )a-method using the linear SVM algorithm with 17 features. ‘Verified’,

‘life time’, and ‘promotion score’ were excluded. ‘Tweet spread’ is modified as the average frequency of a
user’s tweet being retweeted.

e Preo2015 (Preotiuc-Pietro et al., 201H)eir best performing model “W2V-C-200’ is implemented. This
clusters words in a ‘reference’ Twitter corpus into 200 clusters, then represents each user as a weighted
vector based on the distribution of words found in their tweetstbese clusters (i.e., 200 features). A
Gaussian Process classifier is then used for classification. This refergmag @od the parameters used
for extracting these word clusters were not made available to us at thefghiatveork. Therefore, we
used the 1.6 million public Twitter dataset for Sentimentid€tead, and restricted candidate words to be
the most frequent 40,000 words with at least a document frequency bis5vas the highest possible
subject to our hardware limitation.

e Penn2011 (Pennacchiotti and Popescu, 203idceunt creation data’, ‘fractions of truncated tweets” and
network features (‘Social network: who you tweet’) are excluded. For ‘generic LDA’ features, we used the
same Sentiment140 dataset above to train 100 topics. For ‘domain-specific LDA’ features, we used the 1.5
million tweets from the ZA2018 dataset, excluding those belongingtodérs of our dataset. For
‘sentiment words’, we segment the hashtags used by Zhang and Ahmed (2018) for data collecti@8#to

8 http://help.sentiment140.com/for-studeptast accessed in September 2019
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words as terms, and VaderSentinientclassify sentiment polarity for each tweet, and associate terms
found in that tweet with the polarity. GBRT is the classification algorithinis method generates around
2,800 features.

Kim2017 studied user classification in the health domain so can baleoed a very similar task to ours. Penn2011,
Uddin2014, Preo2015 dealt with multinomial classification (as are us) whitedfweity of statesf-the-art dealt

with binary classification. All methods used users’ tweets to extract features. Except Uddin2014, they all processed
tweets to extract complex features. Penn2011 also used an additional corpus

4. Findings and discussions

In the following, we firstly discuss findings from the evaluatiesults. We then conduct an error analysis to
discover the common mistakes made by the classifiers and discuss sttatadir®ss them in the future work.

Models Advocate IHP OHP Patient | Researche|  Other Average

P R FIP R F1lP R F1{P R FIP R F1l]P R F1|P R F1
LRc .56 .37 .49.35 .37 .3¢4.30 .43 .39.25 .43 .3].41 .39 .40 .58 .56 .57.41 .43 .41
LRo .35 .78 .49.36 .01 .03.00 .00 .04 .00 .00 .04 .29 .01 .01.57 .65 .6].26 .24 .1€
LRg .58 .61_.59.60 .51.55|.64 .41 _.5(0 .58 .33_.423.69 .56_.64.57 .73_.64.61 .53 _.5F
LRc+b .56 .39 .44 .34 .36 .39.30 .44 .39.24 .42 .3].40 .38 .39.61 .58 .59.41 .43 .41
LRc+d .58 .40 .47.36 .40 .34.30 .47 .37.26 .48 .34.48 .49 .49.65 55 .6( .44 .47 .44
LRc+b+d .58 41 .44 .37 .42 .39.30 .47 .37.27 .49 .394.49 49 .49.68 .57 .64.45 .48 .4t
RF .50 .67 .57.51 .24 .39.51 .22 .31 .42 .14 21.65 .44 53.60 .80 .69 .53 .42 .44
RF, .37 58 .45.21 .11 .14.28 .14 .19.16 .05 .04.22 .08 .13.59 .71 .64.30 .28 .27
RFy .53 .66_.59.52 .40_.44 .54 .34_.43 .43 .24 .3].63 .63.63|.62 .68 .64.55 .49_.51
RFc+p 46 .69 .55 .44 15 .24 .53 .18 .27.24 .03 .04 .62 .31 .434.59 .83.69 (.48 .37 .37
RFc+q .51 .72_.59.54 .31 .39.56 .22 .31.49 .14 .21.65 .57 .61 .62 .74 .64 .56 .45 .47
RFc+b+d .50 .73 .59.52 .28 .31.57 .23 .33.48 .11 .14.67 .50 .57.63 .78 .69.56 .44 .45
SGLI 52 43 47.47 24 34.19 .33 .24 .30 .10 .19 .45 .38 .41 .54 .75 .64 .41 .37 .37
SGDhy .32 41 .39.20 .14 .14.18 .09 .14.16 .12 .14.14 .15 .14 .47 51 .49.25 .24 .24
SGDy 48 53.60|.44 42 _.49 .41 47 _.5(0.35 .34_.34 .54 55 _.55.53 .47 .5( .46 .46_.4¢€

SGD.  |.52 .47 .50.45 .29 .39.18 .34 .24.27 .09 .14 .50 .33 .39.57 .73 .64.41 .38 .3¢
SGD.s  |.53 .53 .54.46 .33 .39.23 .41 .29 .34 .12 .1§.57 .43 .49.63 .69 .6q.46 .42 .4<
SGDup+a |55 .52 .54 .43 .31 .3¢.23 .43 .34.36 .17 .23 .56 .47 .5].64 .72 68|.46 .44 .44
SVM-.  [.55 .34 .44.32 .35 .33.25 .41 .31.23 .35 .2§ .41 .38 .39.56 .56 .5§.39 .40 .3¢
SVM-l,  [.39 .50 .44.28 .14 .1§.20 .43 .2§.21 .06 .04 .21 .11 .14 .61 .60 .6].32 .31 .2¢
SVM-lg  |.61 .51_.54.51 .61.,55|.47 .63.54|.44 .58.50|.63 .62_.64.65 .58_.61.55 .59.56
SVM-lew, |.55 .35 .49.33 .35 .34.24 .40 .3d.24 .36 .29 .40 .38 .39.59 .59 .59.39 .40 .3¢
SVM-le.s |57 .39 .47.35 .38 .39.26 .45 .33.25 .43 .33 .48 .46 .47.63 .55 .59.42 .44 .4z
SVM-lcsp+a | .57 .39 .47.35 .39 .37.26 .45 .33.26 .44 .33 .48 .46 .47.66 .57 .61.43 .45 .4C
SVM-rbf. |.43 .32 .34.05 .00 .01.33 .01 .03.00 .00 .04 .32 .02 .03.35 .87 .50.25 .20 .1E
SVM-rbf, |.34 .83 .44.33 .01 .01.00 .00 .04 .00 .00 .04 .00 .00 .0q.62 .58 .6(.22 .24 .1€
SVM-rbfy |.57 .61 .59 .58 .50 .54 .62 .38 _.471.59 .32_.41].71 .55 _.64.59 .78 .61 .61 .52 .5¢
SVM-rbf.. | .43 .36 .39.05 .00 .09.33 .01 .0].00 .00 .04 .32 .02 .03.36 .86 .51].25 .21 .1€
SVM-rbfe.q |41 .63 .50 .10 .01 .07 .43 .01 .03.00.00.00 |.35 .02 .04 .46 .81 .59.29 .24 .1¢

“https://github.com/cihutto/vaderSentimplaist accessed in September 2019
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SVM-
rbfcibd
Table 2. Precision (P), Recall (R) and F1 scores obtained by the prapodels using classic machine learning
algorithms, without using PCA. For each class, the highest F1 dighigd inbold. For each algorithm on each
class, the highest F1 are highlighted with underline.

35 .02 .oz1 48 .80 .6(1 .30 .25 .2C

42 .66 .51|.1o 01 .01| 43 .01 .01 .00 .00 .00

4.1 Classification performance

Effects of different classic machine learning algorithms. Table 2 shows the Precision, Recall and F1 scores
obtained by our proposed models that use the LR, RF, SGD, SVM-| and S\&obithms with different feature
sets. We summarise three patterns by comparing these algorithms infteétim§&iost, it was impossible for any
model to consistently outperform others on every class, indicatindfticellty of the task. SVM-} obtained the
highest F1 on the IHP, OHP and Patient classes, whiley®6Gained the highest F1 on Advocate, and &t

RF:+» performed best on the Research and Other classes respectively. Second, onSktdgis, the best
performer (0.56 F1), marginally beating d&d SVM-rbfiby 1 percentage-point. Third, SVM-I models consistently
outperformed SVM-rbf models regardless of the features useduéedsignificantly when using feature sets other
thand (dictionary based). This suggests that on this task, the linear kéthel VM algorithm is more robust than
the non-linear, RBF kernel.

M odels Advocate IHP OHP Patient Researcher] Other Average

P R F1|P R F1{P R FJP R F1|P R F1|P R F1{P R F1

LRc .49 53 51 |.41 .33 37 (.40 .32 .36(.32 .18 .22(.48 .38 .41|.61 .54 .58(.39 .59 .48
LRb .35 .80 .49 (.00 .00 .00|.00 .00 .00j.00 .00 .00[.00 .00 .00|.55 .61 .59|.15 .24 .18
LRd .53 .63 .59 |.57 .51 .54].60 .38 .47/.55 .30 .39(.67 .52 .59(.57 .67 .62/.59 .50 .53
LRc+b .49 53 51 |.40 .33 .37 |.39 .32 .35(.32 .18 .22(.45 .38 .41(.58 .70 .64 (.43 .41 42
LRc+d .49 53 51 |.44 40 42 |.31 .35 .37(.36 .22 .28(.51 .47 .49(.62 .71 .65 (.47 .44 .46
LRc+b+d .52 57 55|.43 .39 41 |.44 .38 42 (.39 .25 .30(.55 .50 .52 .64 .72 .67 {.50 .47 .48
RFc .37 .58 .45.30 .07 .12/.35 .04 .09(.12 .01 .01{.35 .08 .13[.48 .74 .58/.33 .26 .23
RF .35 .49 41].18 .10 .13(.17 .12 .14{.06 .02 .03(.14 .07 .09(.53 .66 .60(.21 .21 .20
RFd .51 57 53.48 44 46 |.46 .35 .39 (.43 .27 .33 [.63 .53 .57|.59 .68 .63|.52 .47 .49
RFc+b .39 .60 .47|.27 .06 .11{.30 .06 .10[.00 .00 .00{.37 .06 .09.49 .74 .59/.30 .26 .22
RFc+d 42 71 53.38 .12 .19(.60 .11 .18(.24 .03 .06|.55 .28 .37|.57 .73 .64|.46 .16 .22
RFc+b+d 43 .74 53 |.41 .16 .22(.42 .07 .13/.09 .00 .02[.60 .29 .38/.50 .67 .57|.52 .39 .42
SGIx 44 56 50 (.49 25 .33 |.54 .18 .27 (.32 .08 .12|.56 .23 .32(.50 .78 .61 (.48 .35 .36
SGDy .33 .35 .33|.17 .16 .16 |.22 .13 .16 |.09 .00 .02|.11 .16 .14 |.49 55 52 (.24 .22 .22
SGDy 49 52 .60|.40 44 42|42 .38 .46|.33 .30 .32|.52 .50 .51|.53 .51 .52 |.45 44 .44

SGD:+b .45 .60 .52 .49 .30 .37 |.56 .16 .25 .33 .08 .13|.52 .23 .32|.52 .77 .63 (.48 .36 .37
SGDx+d .49 .63 56 (.51 .36 42 |.61 .21 .31 |.41 .13 .19 (.66 .38 .49|.59 76 .67 |.55 .42 .44
SGDw+b+a  |.48 .68 .56 |.44 .33 .42 |.56 .21 .30(.36 .13 .19|.63 .36 .46(.71 .69 .67|.43 .49 .44
SVM-Ic .52 51 51 (.42 .38 .40 |.40 .37 .39 |.31 .19 .25(.47 .39 42 |.57 .71 .63 |45 43 .43
SVM-Ib .35 .73 48 |.18 .03 .04{.16 .12 .14|.00 .00 .00[{.00 .00 .00|.57 .58 .58.21 .24 .20
SVM-lg .58 .50 .54/.47 .61 .53/.42 .56 .48|.39 .55 .46|.64 .58 .61|.64 .52 .58.52 .55 .53
SVM-lesv  [.50 52 .51 .43 .38 .40 |.43 .39 .41(.32 .18 .22|.47 .39 .43 |.59 .73 .64 |.46 .43 .44
SVM-le+a  [.55 55 .54 (.44 .44 44 |45 44 44 |41 .28 .34 | .55 54 54 |.64 .72 .67 |.51 .50 .50
SVM-lesb+d [ .55 55 .54 .47 .42 45 |.46 .45 45 [.37 .27 .31|.53 .52 .52 |.65 .74 .69 |.50 .49 .50
SVM-rbfe .44 .38 .41 .30 .02 .04 |.50 .01 .03|.05 .00 .01 |.33 .02 .04 (.35 .83 .50[.33 .21 .16
SVM-rbfs (.34 .82 .48.50 .00 .01|.00 .00 .00|.00 .00 .00/.00 .00 .00[.59 .58 .58/.24 .22 .18
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SVM-rbfs .54 .60 .57|.54 .48 .51).54 .33 .41{.54 .27 .36|.69 .56 .62 |.59 .76 .66|.58 .50 .52
SVM-rbfews (.44 .47 .45 (.33 .03 .05 |.43 .01 .02 |.05 .00 .01 |.41 .03 .05 (.38 .82 .52 (.33 .22 .18
SVM-rbfewa |.42 .72 53 [.51 .09 .15 |.64 .05 .09 .22 .02 .04 |.67 .15 .25 .52 .74 .61 .50 .30 .28
SVM-rbfesn+d .42 75 54 |54 .09 .17 .66 .06 .11 |.27 .03 .05 |.69 .16 .25 |.55 .74 63 |.52 .31 .29
Table 3. Precision (P), Recall (R) and F1 scores obtained by the prapodel$ using classic machine learning
algorithms with PCA. If a score is higher than its correspondingeinithout PCA, it is highlighted ibold.

Effects of PCA. When PCA is used, we could not consistently obtain better performzarcéhe highest F1

observed before. In the cases where an increase in F1 was noticeg, ugtaitent based) features were used. This
could be due to two reasons. On the one hand, feature sets withaytalready have low dimensionality. For
example, as discussed before, d has only 40 different featuresitfiensinality of 40). Thus further reduction
could have resulted in the loss of useful information for distingustiie classes. On the other hand, content based
features may be very high dimensionality due to the bag of wepidesentation. As a result, they benefited from
PCA. However, overall, we do not see strong benefits of using PCGhiotask.

Effects of different DNN algorithms. Table 4 shows the Precision, Recall and F1 scores obtained by the two DNN
algorithms using different feature sets. We summarise three patterns in té&ring-wst, same as before, no single
model can consistently outperform others on all classes. SCNN obtained the twesOFIP (using c+b or c+b}d

and Other (c+b+d), while bi-LSTM obtained the best F1 on Advocate (c+H@).c+b+d), Patient (c+d) and
Researcher (c+d). Second, on average, bi-L&J&hd bi-LSTM.y+q Obtained the best F1 (0.59), marginally

beating SCNN using the same feature sets by 1 point. Third, compaiaeddic algorithms, both DNN models
performed much better when content based features are used (i.e., amysetsteontaining c). This suggests their
superior ability to capture useful features from very short text conterisitagk.

M odel Advocate IHP OHP Patient | Researchel  Other Average

Variants |p R F[P R F1|P R F1{P R FlP R F1l{P R Fi|P R F1
SCNN: .59 .60.59|.54 .50 .54 .62 .48 .54 .35 .31 .33.58 .57 .54.73 .82 .79 .57 .55 .5€
SCNN, .36 .76 .41.37 .02 .04.16 .01 .04.07 .00 .01].14 .01 .01.55 .66 .6( .27 .24 .1¢
SCNN .57 .60 .5.58 53_.5¢4.61 .47 .53 .54 .35_.43.68 .55_.61.59 .72 .69 .60 .54 .5€

SCNN:+p .58 .62 .6{.54 52 .53 .64 53 58(.36 .29 .34.58 .56 .51.75 .80 .71.57 .55 .5€
SCNN:+g .59 .63_.6].57 .52 .54.63 .53 .57.40 .33 .3¢4.59 .61 .6(0.75 .80 .71.59 .57 _.5¢
SCNN+p+g |.61 .60 .6(.55 .52 .53.66 .52 58|.38 .36 .39.59 .60 .59.74 .83.79|.59 .57 _.5¢
bi-LSTMc .61 .59 .6{.56 .53 .59.57 .56.56|.40 .34 .3 .60 .58 .59.72 .80 .74 .58 .57 .57
bi-LSTMp .35 .76 .44.25 .02 .04.08 .00 .03.00 .00 .04 .15 .01 .01 .56 .66 .61.23 .24 .1¢

5

6

6

bi-LSTMq .57 .59 5{.60 .50 .54 .63 .47 .54 .53 .32 .44 .66 .55 .6( .58 .73 .64.59 .53 .5t
bi-LSTMc+, |.61 .62 .6].59 .52 .54.57 .55 .5¢ .44 .36 .4( .62 .59 .6(.74 .82_.74 .59 .58 .5¢
bi-LSTMc:+a |.61 .62 .6].56 .53 .54 .60 .55 _.57.48 .42.45|.65 .60.62 (.73 .79 .7¢4 .60 .58.59
bi-LSTMc+p+d| .62 .62.62|.59 .56.58 (.60 .52 .5¢ .50 .39 .43.63 .59 .6].71 .82 .74 .61 .58.59
Table 4. Precision (P), Recall (R) and F1 scores obtained by the propodeld using DNN algorithms. For each
class, the highest F1 are highlightedoitd. For each algorithm on each class, the highest F1 are highlighted with
underline.

Effects of features. From the observations before we summarise three patterns regardingtte aftlifferent
features. First, we notice the particular effectiveness of the dictionary-based featimenslaf F1 on individual
classes, almost every classic machine learning algorithm obtained their best F{SeiéhTahble 2, the only
exception being RF). The two DNN based algorithms also obtained competitive wémritenly usingl features.
In particular, with SCNN, d features alone contributed to the highest F1 orctasses: IHP, Patient and
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Researcher. Also notice that the highest F1 scores are always obtained whsedddgiether with other features.
Second, b (behaviour based) features are the least useful for this tasktisgdtat posting patterns of Twitter
users are not indicative of their stakeholder classes. Third, combinimd) & features leads to the best F1 by both
SCNN and bi-LSTM.

Comparison against basdline and state-of-the-art. Compared to the baseline models, overall all of our proposed
models that use features extracted from profile texts outperformed theispanding baseline model that uses
features extracted from user merged tweets. To avoid presenting aatinfdrmation, we only show in Table 5
results of the baseline models using DNN algorithms. Results of othemeaseldels can be found in the
Appendix, while we summarise the same patterns here. In terms of aFérame proposed models obtained
significantly better results than their corresponding baseline models. Oswtlagebasis, for classic machine
learning algorithms, baseline models only performed better in very feag.chn terms of the effect of PCA on
classic machine learning algorithms, we observe the same patterns describedrbefolN algorithms, all
baseline models performed significantly worse in all occasions on Predigoall and F1,

M odel Advocate IHP OHP Patient | Researchel  Other Average

Variants |p R F[P R F1|P R F1{P R FlP R F1{P R Fi|P R F1
SCNN .39 .38 .3¢.17 .16 .17.22 .10 .13.17 .18 .17/.22 .22 .22.48 57 .52.28 .27 .27
SCNNy .38 .41 .3¢.25 .07 .11].25 .07 .1(|.38 .16 .23.33 .26 .29 .39 .64 .48.33 .27 .27

SCNN:+p .39 .40 .4(.15 .08 .11}.22 .15 .1§.15 .16 .15.24 .26 .25.52 .61 .56 .28 .28 .27
SCNN:+g .38 .48 .41.15 .12 .13.28 .11 .1€.16 .10 .12.23 .21 .22/.51 .59 .54 .29 .27 .27
SCNNp+g |.38 .44 4]1.18 .16 .17[.23 .10 .14 .15 .16 .16.25 .23 .24.55 .58 .57.29 .28 .28

bi-LSTM, 35 .42 .3(.21 .16 .1§.23 .16 .1¢.23 .17 .19.26 .24 .24.48 .53 .50 .29 .28 .28
bi-LSTMq .38 .43 4(.27 .08 .12/.31 .08 .13.36 .13 .19.35 .25 .29.39 .63 .48.34 .27 .27
bi-LSTMc+y |.37 .45 .4(.26 .16 .2(|.23 .18 .2(|.23 .21 .22.26 .20 .23.52 .57 .54 .31 .29 .3C
bi-LSTMc+q |.35 .41 .3{.18 .12 .14.26 .17 .2(|.20 .20 .2(|.26 .24 .25.47 .50 .49.29 .27 .28

bi-LSTMcib+d .39 .43 .4].22 .16 .19.27 .19 .22/.24 .17 .20/.28 .28 .2§.50 .58 .54.32 .30 .31
Table 5. Precision (P), Recall (R) and F1 scores obtained by the baseline usodgBNN algorithms. All scores
are significantly lower compared to the corresponding proposed modelle4.ab

Table 6 compares the results of the four stédithe-art methods against our proposed models that use d features
only (without PCA for classic algorithms). In terms of average F1, aluofnodels obtained higher F1, with six of
our models (i.e., except SGD) significantly outperforming the haseldn a ‘best-againstbest’ basis, our SCNNy

and SVN-} models outperform Penn2011 by 10 percentage-points. On a perasdasolr models also perform
significantly better in F1 in the majority of cases.

Methods | Advocate IHP OHP Patient | Researchel  Other Average

P R FlP R F1{P R F1{P R FIP R F1l{P R Fi|P R F1
Penn2011 |.45 .61 .5{.58 .37 .44.65 .32 .44.53 .29 .34 .51 .29 .37.54 .66 .59.54 .42 .Ac
Uddin2014 (.41 .28 .3{.20 .21 .21.18 .35 .29.24 .06 .09.15 .02 .09 .43 .65 .54.27 .26 .24
Preo2015 |.35 .24 .2{.14 .07 .09.08 .03 .04.20 .06 .09.09 .17 .14.39 .58 .4¢.20 .19 .1€
Kim2017 .37 .60 .4{.25 .13 .17 .44 .25 .34.20 .05 .09.27 .10 .14.60 .69 .64 .35 .30 .3C
SCNNy .57 .60 .5{.58 .53 .5¢.61 .47 .59.54 .35 .494.68 .55 .61.59 .72 .64.60 .54 .5€
bi-LSTMg [.57 .59 .5{.60 .50 .54.63 .47 .54 .53 .32 .40 .66 .55 .60 .58 .73 .64 .59 .53 .5t
LRy .58 .61 .5{.60 .51 .54.64 .41 .5(].58 .33 .44.69 .56 .64.57 .73 .64 .61 .53 .5t
RFq .53 .66 .5{.52 .40 .44.54 .34 .44.43 .24 .3].63 .63 .69.62 .68 .64.55 .49 .51
SGDy 48 .53 .6{.44 42 44 .41 47 5(.35 .34 .34.54 55 .54.53 .47 .5( .46 .46 .4¢
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SVM-ly  |.61 .51 .5{.51 .61 .59 .47 .63 .54 .44 .58 .50.63 .62 .64.65 .58 .61 .55 .59 .5€
SVM-rbfs  |.57 .61 .5{.58 .50 .54 .62 .38 .471.59 .32 .41.71 .55 .64.59 .78 .67.61 .52 .5t
Table 6. Precision (P), Recall (R) and F1 scores obtained by thettatart compared to our proposed models
that use d features only.

Lessonslearned. We discuss three lessons learned from the observations above. Firsppmsedrfeatures

extracted from Twitter users’ profile texts (i.e., ¢ and d features and excluding b) work much better than features
based on users’ tweets. This is particularly encouraging, as compared to the baseline models and state-of-the-art, our
methods have three advantages. First, it only uses short Twitter user’s profile text and does not require the collection

of tweets over time. Second, it does not rely on external corpora forefextaction. Third, it uses an arguably
lighter process to extract features from texts, while Kim2017, Penn26d Rreo2015 make use of computationally
expensive processes such as pairwise similarity, clustering (which éaseireven 128GB memory was
insufficient), topic modelling and sentiment analysis. Overall, this sugtpedtn the one hand, we can extract
more effective features from Twitter users’ profile texts than from their tweets. On the other hand, morerésaaind
particularly more complex features do not always translate to better pemfmrnia the latter case, we have shown
that ‘less is better’: when using only 40 dictionary-based features, our proposed models are able to outperform the
above mentioned methods significantly. However, we reiterate that aupternentations of statef-the-art cannot
fully represent their original form due to the inevitable reasons detailed bafiok¢éhat model performance can be
task- and domain-specific..

Second, among the popular machine learning algorithms used in the lgevegudentify the linear SVM algorithm
(SVM-I), sCNN and bi-LSTM to be the most effective. SCNN and bi-LSTMeappo be more robust than SVM-,
as their performance is less sensitive to the feature sets used, exeefilrdbased features that are ineffective for
this task with all algorithms. In particular, they work much better wottitent based features. This suggests that, in
situations where dictionary based feature extraction method isn’t applicable (e.g., when no Twitter bio is available),
SCNN or bi-LSTM will be much more reliable than other algorithms as they are abtgacot highly useful features
from text content only.

Finally, our results show that despite numerous methods proposBdifter user classification in different

contexts, the task remains a very challenging one in the genéliagl pealth domain, as our best average F1 is only
0.59 or 59%. This is comparatively much lower than figures reportether domains (e.g., >70% in Uddin et al,
2014) or more specific health context (e.g., >85% in Kursuncu et 4B).20

4.2 Error analysis

To better understand the difficulties in this task, we conduct error @afythe classification results. We use the
classification output from the bi-LSTd model, which obtained the best average F1. We firstly create the
confusion matrix, shown in Figure 2. We then select a random safiplis-classified instances for manual
inspection.
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750
Advocate 43 45 152 69 33

HP 54 192 18 41 18 42 600
OHP 58 17 150 32 2 14 450
Other 107 26 20 765 32 13 300
Patient 96 1 1 44 115 7
150
:searcher 4 51 16 20 5 199

Advocate [HP OHP Other PatientResearcher

Figure 2. Confusion matrix of the output from the bi-LSTMnodel. The y-axis shows the true labels; the x-axis
shows the predicted labels.

Figure 2 shows that one of the most difficult tasks is to distingdistocate from other classes or vice versa. For
example, 152 Advocate instances were misclassified as Other, while 107nStheces were misclassified as
Advocate. Patient and Advocate was the next most difficult pair to distindeiisived by IHP, OHP and Research.
The classifier also appeared to be confused very often between Patient andiRlesearch and IHP.

We took a random sample of 100 misclassified instances covering alis;lassl manually coded them into
different error types. We did not notice particular class-specific bias to error tymsetrwords, all types of errors
were found in all classes. First, there are many cases of sparse (or laskwBd. For example, a very sinal
percentage of Patients used the word ‘patient’ explicitly in their bio. Instead, some would say that they ‘struggle

with’, ‘suffer from’, ‘fight’, ‘live with’, ‘battle’, ‘experience’, or ‘have’ certain conditions; and some would use
expressions that implheir status, such as ‘wheelchair user’, ‘on med(ication)’ etc. This made it difficult for
classifiers to generalise effective patterns. There are also cases where theobébdsttand therefore does not
include useful features.

One may argue that one way to address is to bring additional text contdénasstweets created by users. However,
this may not be so straightforward, as our second type of ereodaiarto cases where no bio is available for a user,
but its most recent tweets are used instead by the classifier. In suchweaebsgerve that often, the content of the
tweets are not necessarily indicative of the stakeholder types. Thetefaddress these two error types, a more
careful design will be needed to expand a user’s Twitter bio by, possibly adding the user’s tweets in a very selective

way. For example, focusing on original tweets rather than retwaetdweets that are long and contain more
contextual information (e.g., URLs, hashtags, mentions).

Third, our dataset contains a notable portion of instances that are assigned stakgtelder classes. This is
reasonable as for example, a Patient could also be an Advocate for the hedittbreothat he/she is suffering
from; while an OHP may be conducting Research at the same time. Inédagipdiof these instances have used
words that are are indicative of their mulliss status (e.g., ‘Parkinson’s specialist, patient, caregiver, [content
anonymised], & research advocate [content anonymised]’). However, our classification algorithms were designed to
assign a single class to each instance. This is a rather challenging sddeets, because the true number of
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classes varies for each instance and is unknown a-priori. Thus a multisstfication algorithm need to both
correctly predict the true number of classes for instance and also the class labsté/dem

Further, there are a few cases of non-English profiles. These wécaltiff remove during data collection as the
Twitter users may have tweeted in English, and their bio could regeaicombination of English and other
languages.

Finally, we observe that the Other class represents a substantial part of the dataseteamidour models have
performed reasonably well on this class (e.g., 0.79 by sGNN In theory, we may consider a two-stage process
that begins with binary classification to separate it from all other clasfiesydd by the training of a multi-
classifier on the remaining data. In practice, there is the risk of ‘cascading’ errors in the first stage into the second,
potentially damaging the overall results. We will explore this in future work

5. Limitations of thiswork

Our work is still limited in a number of ways. First, our classificaticimesne could have been more fine grained.
For example, some advocates could be merely raising awareness, while sopnevadte financial or emotional
support (e.g., charities offering financial support to certain patients). ©dilR$ be further classified based on
organisational types, such as hospitals, or companies. To do see@éorfurther annotate additional data in order
to have a sufficient sample to train machine learning models.

Second, the performance of our classification models is far from pekfediscussed before, a significant amount
of work needs to be conducted in the future to develop other waypttoeaseful features for this classification
task. Possible venues could be the selective use of a user’s tweets, considering a user’s network, or using an

ensemble of algorithms to complement each other.

6. Conclusion

Despite the significantly increasing usage of Twitter in the disseminatioergadiement with public health related
information, there remained a gap in research that aimed at understaediiffettent types of users involved in
this channel of communication. This work conducted the first analf/$iee common stakeholders who engage in
health related communication on Twitter. Using sample data collected from Twatatentified six types of
stakeholders commonly found in the online communication of any healtliticms. A gold standard dataset was
then created to develop automated classifiers using natural language proaedsimchine learning technigues. In
particular, we proposed to use T users’ profile texts for feature extraction, and a new method to extract
dictionary-like features from texts. These are shown to be very efantihis classification task. We believe that
work in this directly will ultimately enable the research and developmentuifasts for many practical problems,
such as better understanding the informational needs of different ugertyely connecting information seekers
and providers, and identifying areas needing support from public lzedhtbrities. Our future work will explore a
number of directions to address the limitations identified before fowtrik.

Compliance with Ethical Standards

Ethical approval: This article does not contain any studies with human participantsneerby any of the authors.
(nevertheless data collection from Twitter was still subject to the authors’ institution’s internal ethical approval)
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Appendix
M odels Advocate IHP OHP Patient | Researchel Other Average
P R FAP R F1J]P R F1lP R FJP R F1J]P R F1|P R F1
LR, .35 .25 .29.20 .25 .23.23 .25 .24.21 .36 .27 .24 .33 .24 .56 .46 .51 .30 .32 .3C
LRg .39 .45 .43 .24 .06 .140.37 .08 .13 .44 .16 .24 .35 .24 .24.39 .65 .49.36 .27 .2¢
LRc+ .36 .27 .31.20 .25 .23.24 25 .24.21 .37 .24.24 33 .24.61 .47 53.31 .32 .31
LRc+g .35 .22 .279.22 .30 .2§4.24 .26 .29.20 .36 .24 .24 .35 .24 .57 .44 .5(Q .30 .32 .3C
LRc+be+d .36 .23 .2§ .22 .30 .2§.23 .25 .24.20 .36 .24 .23 .35 .24 .59 .46 .53.31 .33 .31
RF .35 .59 .44 .21 .04 .071.14 .01 .03.20 .04 .04 .23 .05 .04 .43 .62 .51 .26 .22 .2C
RFy .32 .45 .3§4.15 .06 .09.19 .04 .071.26 .09 .14 .26 .15 .19.40 .56 .47.26 .23 .2z
RFe+b .37 .64 .47.27 .05 .09.18 .03 .04.12 .01 .03.32 .08 .14 .50 .70 .59.30 .25 .27
RFctd .38 .62 .47.23 .05 .09.17 .01 .03.23 .04 .04.29 .07 .11.43 .63 .51.29 .24 .21
RFctbe+d .38 .65 .44 .21 .04 .071.29 .03 .04 .29 .05 .09.24 .05 .09.50 .70 .54 .32 .25 .2¢
SGLh .39 .37 .3§.25 .25 .29.26 .28 .21 .25 .34 29|.26 .27 .21.54 .50 .54.33 .34 .32
SGDhy .32 .28 .30 .21 .15 .17.23 .16 .19.18 .23 .2Q .21 .18 .19.35 .46 .4(Q .25 .24 .24
SGDu+p .39 .37 .34 .26 .24 .29.27 .27 .214.26 .34 .29.27 .28 .24 .54 .53 .54 .33 .34 .3%
SGD:+g .39 .36 .37.26 .26 .24.28 .29 .29|.25 .34 .29 (.29 .28 .2§4.53 .50 .51 .33 .34 .3t
SGDuwed  |.39 .39 .39.25 .24 .24.30 .28 .29(.25 .34 .29|.28 .29 .2§ .54 .51 .53.34 .34 .34
SVM-I¢ .35 .22 .279.21 .28 .24.23 .26 .24.20 .33 .2§4.22 .34 .27.56 .46 .51.30 .31 .3C
SVM-lg 45 .27 .34.24 .16 .19.23 .30 .24.26 .50 .39.28 .47 .3§.45 .41 .43 .32 .35 .32
SVM-lesy |.35 .22 .274.20 .28 .23 .24 .26 .2§.20 .33 .2§.22 .33 .24 .58 .48 .53.30 .32 .3C
SVM-le.q  |.34 .21 .26.21 .28 .24.23 .24 .24.19 .34 .25.22 .33 .26.55 .44 .49.29 .31 .29
SVM-lgsp+g | .36 .22 .27.21 .29 .25.24 .26 .25.19 .34 .25.22 .34 .27.59 .47 .52.30 .32 .30
SVM-rbf; .39 .35 .364.33 .01 .02 |.00 .00 .0(Q .43 .01 .02 [.00 .00 .0C .35 .83 .50 .25 .20 .15
SVM-rbfy |.34 .51 .41.00 .00 .0C/.00 .00 .0(Q.29 .01 .01{.38 .11 .16 |.38 .66 .48.23 .21 .18
SVM-rbfey | .38 .36 .37.33 .01 .02 |.00 .00 .0Q.43 .01 .02 [.00 .00 .0C .36 .83 .50 .25 .20 .15
SVM-rbfc.q |.38 .38 .39.33 .01 .02 [.00 .00 .0C .43 .01 .02 |.00 .00 .0C/.36 .81 .5C .25 .20 .15
SVM- .37 .39 .34.33 .01 .02 (.00 .00 .0Q .43 .01 .02 |.00 .00 .0C/.36 .81 .5C .25 .20 .15
rbfc+b+d

20

Table Al. Precision (P), Recall (R) and F1 scores obtained by the baselials oidg classic machine learning
algorithms, without PCA. When a score is higher than its correspopdipgsed model in Table 2, this is
highlighted inbold.

Models Advocate IHP OHP Patient Research Other Average

P R FIP R F1|P R Fi1{P R FI1P R F1|P R F1|P R F1

LRc 38 43 40|.24 .20 .22|.28 .29 .29 (.24 .20 .22(.26 .20 .23|.51 .53 .52].32 .31 .31
LRy .38 .41 .39.27 .04 .07(.27 .04 .07.39 .13 .19.35 .20 .25 .37 .68 .48 |.34 .25 .24
LRc+b 40 46 .43|.24 .21 .23|.27 .26 .27.26 .22 .24{.24 .18 .21} .54 56 .55|.32 .32 .32
LRc+d 39 44 421.24 22 .23|.27 .29 .28 (.26 .20 .22.25 .20 .22|.53 .54 54].32 .31 .32
LRc+b+d 40 46 .43|.26 .22 .24|.29 .30 .29 .26 .22 .24{.25 .19 .22|.53 .54 .54|.33 .32 .33
RF .31 .45 .37.19 .06 .09 |.19 .03 .05|.20 .04 07|.19 .04 .06/.38 .61 .47.25 .21 .1€
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RFy .34 .49 40(.15 .08 .11 |.16 06 .09 |.27 .09 .14(.29 .15 .20 |.39 .52 .45.27 .23 .23
RFc+b .34 .49 .4(.18 .05 .08(.14 .01 .03.16 .03 .05(.22 .05 .08 .41 .65 .5Q .24 .22 .1€
RFcsq .34 .48 .4(.17 .04 .07[.16 .02 .04 (.26 .06 .1(¢.18 .05 .07).41 .65 .50|.25 .22 .2C
RFc+b+d .32 .47 .3§.17 05 .07].14 .02 .04.16 .03 .09.23 .05 .09 .40 .63 .49.23 .21 .1¢
SGDQy .38 .40 .39.27 .22 .24].30 .23 .26|.29 .22 .25/.30 .19 .24|.46 58 .51|.33 .31 .31
SGDhy 32 .32 .32|.13 .12 .13 .12 .19 .15].18 .15 .14.24 .18 .21 |.35 .34 .34 .22 .22 .22

SGD+ 40 42 41(.27 .21 .24|.28 .25 .27|.30 .27 .29(.25 .18 .21{.50 .60 .54 (.33 .32 .32
SGDL+g .38 .41 40|.24 .18 .20.33 .24 .28|.29 .23 .26|.31 .21 .25|.47 .60 .53 |.34 .31 .32
SGDQub+d  |.39 .40 40(.28 .22 .24|.30 .23 .24.31 .26 .28|.32 .23 .27|.48 .62 .54|.35 .33 .33
SVM-I¢ 42 41 A41(.22 22 .22|.26 .32 .29 .25 .26 .26 (.25 .24 .24(.53 52 53 (.32 .33 .32
SVM-lg 46 .25 .33(.24 .15 .18 .22 .25 .23 .25 53 .34(.26 .49 .34 (.43 .38 .40 .31 .34 .3C
SVM-lewp |42 40 41).25 .25 .25 (.26 .30 .28 |.26 .28 .27 |.26 .25 .25|.57 .56 .56 |.34 .34 .34
SVM-le.g |41 41 41|.24 .23 .23|.27 .33 .29 (.27 .27 .27|.25 .24 .25|.54 53 .53 .33 .33 .33
SVM-lgspea |43 41 .42).23 .23 .23(.26 .30 .27 |.27 .28 .27 .28 .26 .27|.55 .55 55|.34 .34 .34
SVM-rbf, 1.35 .55 .43(.21 .02 .04 |.00 .00 .04 .24 .01.03(.34 .03 .06 |.39 .65 .49(.26 .21 .17
SVM-rbfy |.35 .53 .42|.08 .00 .01 (.33 .00 .01 (.41 .03 .05(.35 .11 17 |.38 .62 .47.32 .22 .19
SVM-rbfe. |.35 .60 .44 (.24 .03 .05 |.00 .00 .00 .20 .01 .04.35 .04 .07 |.41 .64 .50(.26 .22 .18
SVM-rbfeeq |.35 .59 .44(.20 .02 .04.00 .00 .00 .24 .01.03(.32 .03 .06 |.40 .64 .49(.25 .22 .18
SVM-rbfeipd .35 .62 .45(.23 .02 .04.00 .00 .04 .24 .01.03(.34 .04 .07 (.43 .64 .51 (.26 .22 .18
Table A2. Precision (P), Recall (R) and F1 scores obtained by the baseliels ogdg classic machine learning
algorithms, with PCA. When a score is higher than its correspondidglrim Table Al, it is highlighted inold.




