
This is a repository copy of Metabolic flux from the chloroplast provides signals controlling 
photosynthetic acclimation to cold in Arabidopsis thaliana.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/167048/

Version: Published Version

Article:

Herrmann, H.A., Dyson, B.C., Miller, M.A.E. et al. (2 more authors) (2021) Metabolic flux 
from the chloroplast provides signals controlling photosynthetic acclimation to cold in 
Arabidopsis thaliana. Plant, Cell & Environment, 44 (1). pp. 171-185. ISSN 0140-7791 

https://doi.org/10.1111/pce.13896

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



OR I G I N A L A R T I C L E

Metabolic flux from the chloroplast provides signals controlling

photosynthetic acclimation to cold in Arabidopsis thaliana

Helena A. Herrmann1,2 | Beth C. Dyson1,3 | Matthew A. E. Miller1 |

Jean-Marc Schwartz1 | Giles N. Johnson1

1School of Natural Sciences, University of

Manchester, Michael Smith Building,

Manchester, UK

2Institue of Analytical Chemistry, University of

Vienna, Vienna, Austria

3Department of Animal and Plant Sciences,

University of Sheffield, Sheffield, UK

Correspondence

Giles N. Johnson, School of Natural Sciences,

University of Manchester, Michael Smith

Building, Oxford Road, Manchester, M13 9PT,

UK.

Email: giles.johnson@manchester.ac.uk

Funding information

Biotechnology and Biological Sciences

Research Council, Grant/Award Numbers: BB/

M011208/1, BB/J04103/1

Abstract

Photosynthesis is especially sensitive to environmental conditions, and the composi-

tion of the photosynthetic apparatus can be modulated in response to environmental

change, a process termed photosynthetic acclimation. Previously, we identified a role

for a cytosolic fumarase, FUM2 in acclimation to low temperature in Arabidopsis

thaliana. Mutant lines lacking FUM2 were unable to acclimate their photosynthetic

apparatus to cold. Here, using gas exchange measurements and metabolite assays of

acclimating and non-acclimating plants, we show that acclimation to low temperature

results in a change in the distribution of photosynthetically fixed carbon to different

storage pools during the day. Proteomic analysis of wild-type Col-0 Arabidopsis and

of a fum2 mutant, which was unable to acclimate to cold, indicates that extensive

changes occurring in response to cold are affected in the mutant. Metabolic and pro-

teomic data were used to parameterize metabolic models. Using an approach called

flux sampling, we show how the relative export of triose phosphate and

3-phosphoglycerate provides a signal of the chloroplast redox state that could under-

lie photosynthetic acclimation to cold.

K E YWORD S

acclimation, carbon metabolism, cold acclimation, fumarate, malate, metabolic modelling,

photosynthesis

1 | INTRODUCTION

Through their lifecycle, plants experience environmental conditions that

vary on timescales from seconds to seasons. Arabidopsis thaliana is typi-

cally a winter annual, germinating in the autumn and persisting through

the winter, prior to flowering in spring (Grime, 1988). Across this time-

period, mean daily temperatures may vary by 20�C or more. To opti-

mize survival and growth, plants acclimate to changes in temperature,

altering their investment in different processes to suit the conditions

experienced (Ruelland, Vaultier, Zachowski, & Hurry, 2009;

Walters, 2005). The process of acclimation can involve both structural

changes, with tissues differing when developed in different conditions,

and relatively rapid (days-weeks) dynamic responses, which track

changes in the environment (Athanasiou, Dyson, Webster, &

Johnson, 2010; Walters, 2005). The changes in light intensity and tem-

perature are both known to trigger photosynthetic acclimation

(Athanasiou et al., 2010; Dyson et al., 2015; Dyson et al., 2016; Huner

et al., 1993; Savitch et al., 2001; Stitt & Hurry, 2002; Strand, Hurry,

Gustafsson, & Gardestrom, 1997; Walters & Horton, 1994).
Helena A. Herrmann, Beth C. Dyson and Matthew A. E. Miller contributed equally to

this work.

Received: 11 February 2020 Revised: 8 September 2020 Accepted: 9 September 2020

DOI: 10.1111/pce.13896

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

Plant Cell Environ. 2020;1–15. wileyonlinelibrary.com/journal/pce 1



Exposure to low temperature triggers a complex array of acclimation

responses. A significant amount of work in cold responses in plant has

focused on the acquisition of freezing tolerance (see Knight &

Knight, 2012 for a review). In addition, it is recognized that plants can

optimize their metabolism to suit changing conditions. Both photosyn-

thesis (Huner et al., 1993; Strand et al., 1997; Strand et al., 1999) and

respiration (Armstrong, Logan, Tobin, O'Toole, & Atkin, 2006; Talts,

Pärnik, Gardeström, & Keerberg, 2004) can readily be measured in intact

leaves, so it is easy to follow acclimation of these processes in vivo. A

prominent feature of metabolic acclimation is an increase in the capacity

of metabolism, with enzyme and metabolite concentrations increasing to

compensate for the loss of activity at low temperature (Savitch

et al., 2001; Savitch et al., 2002; Stitt & Hurry, 2002). This requires the

coordination of gene expression across multiple cellular compartments,

including retrograde and/or anterograde signals between the nucleus,

chloroplast and mitochondrion (Fey, Wagner, Brautigam, &

Pfannschmidt, 2005). To date, little is known about either the sensing or

the signalling pathways involved in metabolic acclimation.

Acclimation of photosynthesis to low temperature has previously

been studied in a range of species, including Arabidopsis. In the short

term, low temperature decreases the rate at which sucrose is synthe-

sized and exported from the leaf. Limitations in flux through sucrose

phosphate synthase (SPS) result in the accumulation of phosphorylated

metabolites (Hurry, Strand, Furbank, & Stitt, 2000). This is thought to

lead to depletion of the cytosolic concentration of inorganic phosphate

(Pi), which, in turn, limits the export of triose phosphate (TP) from the

chloroplast. This inhibits photosynthesis, as regeneration of Pi in the

chloroplast is necessary for ATP synthesis. Over relatively short periods

(days) increased expression of SPS removes the limitation in sucrose

synthesis. Based on the responses of different mutants with altered

phosphate content, Hurry et al. (2000) proposed that Pi depletion pro-

vides a signal for cold acclimation of SPS content.

Recently, we re-examined the responses of Arabidopsis to low

temperature (Dyson et al., 2016). Using non-targeted metabolomics,

we identified the diel accumulation of the organic acid, fumaric acid

(predominantly present in the anionic form, fumarate), as important in

the response to cold. We showed that the accumulation of fumarate,

which requires the presence of a cytosolic isoform of the enzyme

fumarase, FUM2 (Pracharoenwattana et al., 2010), is a specific

response to temperature. Plants of two independent mutant lines

lacking this enzyme not only failed to accumulate fumarate over the

photoperiod, they also accumulated higher concentrations of phos-

phorylated intermediates. Crucially, while wild-type Col-0 Arabidopsis

plants increase photosynthetic capacity in response to low tempera-

ture, fum2 mutant plants do not. This suggests that Pi deficiency alone

is not sufficient to trigger photosynthetic acclimation.

Here, we have used a combined metabolic and proteomic

approach, together with physiological analyses to dissect the acclima-

tion processes occurring in Arabidopsis in response to low tempera-

ture. We focus on dynamic acclimation responses to cold in leaves

developed at higher temperature. Our results show that fumarate

accumulation is important for a wide range of metabolic acclimation

responses to cold. Our beginning- and end-of-day measurements of

carbon pools indicate that there is a shift from day- to night-time carbon

consumption upon cold acclimation. Furthermore, based on the results

from metabolic modelling, constrained using experimental data, we pro-

pose that the changes in the pathway of carbohydrate export from the

chloroplast link to fumarate accumulation at low temperature and pro-

vide a mechanism controlling photosynthetic acclimation to cold.

2 | MATERIALS AND METHODS

2.1 | Plant material and growth

Wild-type Col-0 seeds were obtained from the Nottingham Ara-

bidopsis Stock Centre. Seeds possessing insertions in the gene,

At5g50950 (fum2.1 and fum2.2), encoding cytosolic FUM2 protein

(Pracharoenwattana et al., 2010) were kindly provided by Professor

Steven Smith (University of Tasmania, Australia). Plants were grown in

300 pots containing peat-based multipurpose compost, in an SGC120

growth cabinet (Weiss Technik) with an 8-hr photoperiod, to supress

flowering, at a temperature of 20�C day/16�C night, and irradiance of

100 μmol m−2 s−1 provided by warm white LED tubes (colour temper-

ature 2,800–3,200 K) for 8 weeks. After 8 weeks, plants had reached

growth stage 1.10 (Boyes et al., 2001), with more than 10 leaves

>1 mm and persisted without development of flowers until

10–12 weeks. Plants for cold treatment were transferred to a similar

cabinet at 4�C day/night 1 hr prior to the start of the photoperiod.

Leaves for metabolite measurements were harvested by flash freezing

in liquid nitrogen under growth conditions.

2.2 | Estimation of seed yield

Eight-week-old wild-type Col-0 and fum2.2 plants were kept in con-

trol conditions or were cold treated for 1 week as described above.

Plants were then moved to a growth chamber with a 16-hour day

length, 20�C, to trigger flowering. After a further 8 weeks, the number

of siliques per plant was counted on six plants for each treatment

group, and the number of seeds silique pod was estimated for 10 indi-

vidual siliques per plant. Total seed yield was estimated as the product

of silique number and mean seeds per silique.

2.3 | Measurements of photosynthesis and

respiration

Measurements of photosynthetic capacity were made using a LiCor

LI-6400 infra-red gas analyser, at a temperature of 20�C in an atmo-

sphere of 2,000 μl l−1 CO2, flow rate 200 cm−3 min−1, and an irradi-

ance of 2,000 μmol m−2 s−1 provided by a warm white LED (colour

temperature 2,800–3,200 K). Leaves were illuminated for 30 mins to

fully induce photosynthesis before a measurement was recorded. The

light was then switched off to allow an estimate of the dark rate of gas

exchange. Measurements of photosynthesis and respiration under
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growth conditions were carried out using the same gas analyser in the

growth cabinet where plants were grown, using ambient air conditions.

The gas analyser was placed in the cabinet and allowed to equilibrate

for at least 1 hr prior to any measurements. The analyser chamber was

placed to give a light intensity at the leaf surface equivalent to that of

plants during growth. Respiration was measured by interrupting illumi-

nation, covering the plant and analyser chamber with aluminium foil. All

measurements were performed between the fifth and sixth hour of the

photoperiod. Data were analysed using an analysis of variance

(ANOVA), followed by a Tukey's post hoc tests in SPSS (IBM).

2.4 | Enzyme-linked assays of metabolites

Enzymatic assays were carried out on extracts from fully expanded

leaves as described previously (Dyson et al., 2016). Starch, sucrose

and glucose, and malate were measured using total starch (Method E),

sucrose D-glucose, and l-malic acid assay kits (Megazyme), respec-

tively. To measure fumarate, the malate kit was modified to include an

extra independent reaction step, using 2 units of fumarate hydratase

enzyme (Sigma). Data were analysed using an analysis of variance,

followed by a Tukey's post hoc test, in SPSS (IBM).

2.5 | Proteomic analysis of plant material

Extraction of leaf proteins and analysis of protein content using gel-free

LC–MS/MS was carried out as described by Miller et al. (2017). Briefly,

frozen ground leaf samples (four replicates per treatment) were

extracted in a buffer containing Rapigest. After reduction, alkylation and

trypsin digestion, samples were analysed by LC–MS/MS using an Ulti-

Mate® 3000 Rapid Separation LC (RSLC, Dionex Corporation, Sunny-

vale, CA) coupled to an Orbitrap Elite mass spectrometer (Thermo

Fisher Scientific, MA). Raw data were imported into Progenesis QI (build

2.0.5556.29015; Nonlinear Dynamics, Newcastle, United Kingdom) and

runs were aligned according to the default settings. Only ions with a

charge state of up to +4 were considered. MS/MS data were searched

against the A. thaliana TAIR 10 database and assigned to peptides using

Mascot version 2.4.0 (Matrix Science, London, United Kingdom). A max-

imum of one missed cleavage (Trypsin) was permitted, with a peptide

mass tolerance of 10 ppm and an MS/MS tolerance of 0.5 Da. Data

were then re-imported into Progenesis to allow for assignment of pro-

teins from peptide data. Raw protein intensities were then exported

from Progenesis and normalized to the sample with the median total

protein content for that treatment, as described previously (Miller

et al., 2017). Total protein for each sample was calculated by summing

the intensities of all the quantified proteins.

A principal component analysis (PCA) was performed in the R

software package using log2 scaled protein intensities using the

pcaMethods R package. The “svd” function was used, and 10 principal

components were included in the calculation. Proteins were consid-

ered to have significantly changed in abundance when a p value of

<.05 was reached, with a fold change of 1.2 or greater. For

hierarchical clustering analysis, log2 scaled protein values were used.

Hierarchical clustering was performed using Euclidean distance and

the complete linkages method. For heatmap/cluster analysis, fold

change data were calculated relative to the wild-type Col-0 at LL and

log2 scaled. A heatmap was then generated using the heatmap.2

package in R software, using the Euclidean distance algorithm for den-

drogram creation. The dendrogram was cut into six clusters.

2.6 | Metabolic modelling

We used a metabolic model modified from that of Arnold and

Nikoloski (2014), as previously published (Herrmann, Dyson, Vass,

Johnson, & Schwartz, 2019). Specifically, the model was modified to

ensure that cytosolic fumarate could be produced from cytosolic

malate (inclusion of reversible cytosolic FUM reaction) and we added

“export reactions” to the model (describing diurnal storage pools) for

malate, fumarate and starch, in addition to the already existing

sucrose export. In addition, we added a cyclic electron transport reac-

tion to the model which was previously missing. We generated four

models for each genotype (Col-0 and fum2): 20�C; 4�C on Day 0; 4�C

on Day 7 of treatment; and one with NADPH-limiting conditions. We

constrained the models using metabolite assays such that the

beginning-of-day concentrations of fumarate, malate and starch sub-

tracted from their respective end-of-day concentrations were used as

an estimate of the diurnal flux over the eight-hour photoperiod, con-

sistent with the approximately constant rate of accumulation of these

metabolites seen experimentally (Dyson et al., 2016). We assumed a

constant rate of photosynthesis through the day (Dyson et al., 2016)

and converted the measured rates of photosynthesis to cumulative

diurnal fluxes of carbon intake (mmol gFW−1 Day−1), as previously

described by Herrmann et al. (2019). Flux to sucrose was not con-

strained but was used to estimate the remaining carbon, which is

exported from the leaf during the day. We then used proteomics data

to further constrain the upper bounds of the flux reactions (Ramon,

Gollub, & Stelling, 2018). For each metabolic reaction, we checked

whether all of the corresponding proteins were available in the data

set; if so, then those reactions were given an upper bound of the addi-

tive values of all of the identified proteins, in case multiple isoforms

exist. The proteomic constraints of the Col-0 and fum2 20�C models

were also applied to the respective 4�C Day 0 models, assuming that

during the first day of cold, changes in metabolic enzyme content are

negligible (consistent with measured total protein and photosynthetic

capacity). Given that the proteomics data are relative and not quanti-

tative, we scaled all the proteomics constraints to the lowest possible

values for which we were able to obtain model solutions across all

models. In total, we constrained the upper bounds of 101 reactions in

each model. Proteomic constraints were calculated as the averages of

four biological replicates for each treatment plus the standard error of

those measurements, thus accounting for measurement error.

Because protein presence does not necessarily equate to enzymatic

activity, we set the lower bounds for these reactions to zero for irre-

versible reactions and to the negative value of the upper bound for
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reversible reactions. Proteomic constraints were applied only to the

“inner” model reactions, whereas the metabolite and photosynthesis

data were used to set boundary conditions (i.e., influxes and effluxes).

We the used flux solutions, from a flux balance analysis maximizing

carbon assimilation via Rubisco (reaction id: RBC_h) within feasible

model constraints, in order to eliminate non-essential reactions that

generate loops within the model, using the loopless function in the

cobra (version 0.10.1) package (Desouki, Jarre, Gelius-Dietrich, &

Lercher, 2015). The loopless method removes thermodynamically

infeasible loops from the network according to the following criteria:

that the objective and exchange fluxes remain unchanged, that all

non-exchange fluxes proceed in the same direction as in the original

model, and that the sum of absolute non-exchange fluxes is mini-

mized. Based on these criteria, the “least-loopy” solution is identified.

The objective function is irrelevant to the results presented in this

paper and was only applied to ensure that none of the pathways

required for carbon metabolism contained thermodynamically infeasi-

ble solutions. We then conducted flux sampling on the loopless

models using the CHRR algorithm in the MATLAB toolbox as outlined

in Herrmann et al. (2019). In order to minimize observer bias, the flux

sampling was performed without an optimisation constraint for the

control, Day 0 and Day 7 models. The NADPH-limited models are the

same as the control models, but here, in addition to the experimental

constraints, we set minimum NADPH production via linear electron

transport as an objective function (reaction id: Fd-NADPR_h).

2.7 | Network analysis

We converted the metabolic model to a metabolite–metabolite graph

of primary carbon metabolism using the method of Ranganathan and

Maranas (2010). A full list of the nodes and edges is available on

Zenodo (DOI: 10.5281/zenodo.3366934). We then used the

networkx (version 1.10) package in Python (Version 3.6.9) in order to

iteratively identify pathways with fewer than 20 nodes connecting

the Rubisco and fumarate nodes. We checked the 17 identified path-

ways against the flux sampling solutions of the Col-0 models and

identified two pathways that carried a flux substantial enough to

account for fumarate accumulation in the model. All other pathways

had at least one reaction for which the sampling solutions were either

zero or close to zero. For fluxes to be considered close to zero, we

used a cut-off of 0.4, which is three times lower than the carbon flux

to fumarate (i.e., not substantial enough to explain our observed accu-

mulation of fumarate in wild-type Col-0 plants).

3 | RESULTS

3.1 | Acclimation of both photosynthesis and

respiration to cold are impaired in plants lacking FUM2

Plants of the wild-type Arabidopsis, accession Col-0 and a mutant in

the same background, fum2.2, were grown for 8 weeks at a daytime

temperature of 20�C. Plants were then transferred to a growth cabi-

net with the same light conditions, but with a temperature of 4�C.

Photosynthetic capacity (Pmax; measured at 20�C in saturating light

and CO2) of these plants was measured over the following 9 days

(Figure 1a). Prior to transfer to low temperature, Pmax of Col-0 was

slightly higher than that of fum2.2. After 1 day at low temperature,

the capacity for photosynthesis (Pmax) in Col-0 increased. Pmax contin-

ued to increase over the following days, rising to a new steady-state

approximately 50% higher than the starting value by the sixth day of

cold treatment. This indicates that, under our experimental conditions,

dynamic acclimation of photosynthesis occurs in response to cold and

that a new steady-state is reached within 7 days. In contrast, the Pmax

of fum2.2 did not vary significantly over the course of the experiment,

confirming previous evidence that both fum2.1 and fum2.2 mutants

lacking FUM2 are unable to acclimate their photosynthetic capacity in

response to cold (Dyson et al., 2016).

Measurements of the rate of gas exchange achieved by plants in

growth cabinets, with ambient CO2, light and temperature, were

performed in the last hour of the first day of cold. Transfer to cold

resulted in a small but significant inhibition of both photosynthesis

and respiration at the end of the first day of exposure to cold

(ANOVA, p < .05; Figure 1b,c). In Col-0, acclimation of both parame-

ters had occurred after 7 days, such that in situ rates of gas

exchange recovered and did not differ significantly from those

recorded at 20�C prior to acclimation. In contrast, in fum2.2, no

recovery occurred in either photosynthesis or respiration. This sug-

gests that either fumarate accumulation or FUM2 protein is essen-

tial for the acclimation of both photosynthesis and respiration

to cold.

3.2 | Acclimation to cold changes partitioning of

metabolites between sinks

In plants, diurnally produced organic carbon can be directly exported

from the leaf, used in cellular respiration, or stored in the leaf in a vari-

ety of forms (Chia, Yoder, Reiter, & Gibson, 2000; Fahnenstich

et al., 2007; Zell et al., 2010). In Arabidopsis, the principal leaf carbon

stores are starch and organic acids, especially fumarate and malate

(Chia et al., 2000; Zell et al., 2010). When plants are exposed to cold

for a single photoperiod, the accumulation of both starch and organic

acids increases (Dyson et al., 2016). Here, we measured the

beginning- and end-of-photoperiod concentrations of starch, fuma-

rate and malate in Col-0 and fum2.2 on each of the 7 days following

transfer to cold (Figure 2). The diurnal accumulation of these metabo-

lites shows clear evidence of acclimation in both genotypes. In both

wild-type Col-0 and fum2.2, starch accumulation was greater at 4�C

than 20�C on the first day of cold and increased each day, until Day

4 of cold treatment (Figure 2a). The amount of starch seen at the end-

of-day was higher in fum2.2 than in Col-0 throughout the experiment,

with the absolute difference between genotypes remaining approxi-

mately constant throughout the treatment. In Col-0, essentially all

starch accumulated during the day was mobilized overnight
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throughout the acclimation period. In fum2.2, a small amount of starch

was retained in the leaf at dawn after the third day of cold treatment.

In Col-0, there was an increase in the amount of fumarate accu-

mulated each day through the acclimation period (Figure 2b). This was

accompanied by an increase in the accumulation of malate (Figure 2c),

such that these acids represented an increased proportion of total

stored carbon. In fum2.2, the amount of fumarate was always substan-

tially lower than in Col-0 and at no point in the experiment was there

evidence of a diurnal accumulation of fumarate. End-of-day malate

concentrations were increased on the first day of cold in fum2.2 but

then fell the following day, before rising again towards the end of the

treatment period.

Arabidopsis does not accumulate substantial amounts of sucrose

in its leaves under most conditions, but sucrose is known to play an

important role in freezing tolerance (Stitt & Hurry, 2002). We assayed

leaf sucrose and glucose content in response to cold treatment

(Figure S1). At 20�C, there is a significant diel cycle in sucrose content;

however, in response to cold treatment, this cycle was lost in both

genotypes, with beginning-of-day sucrose content increasing and

end-of-day content decreasing progressively through the week. At

the end of the cold treatment, fum2.2 contained slightly more sucrose

than wild-type Col-0.

To understand better how carbon is partitioned between differ-

ent diurnal storage pools in different conditions, we combined data

from Figures 1 and 2, Figure S1 and from Dyson et al. (2016) to per-

form a carbon budget audit (Figure 3). The accumulation of starch,

sucrose, fumarate and malate were estimated as the difference in

beginning- and end-of-day concentrations (Figure 2, Figure S1). Rates

of gas exchange were measured under growth conditions at intervals

through the photoperiod (See Figure 1c and Dyson et al., 2016) and

were used to calculate the daily carbon uptake and respiratory con-

sumption. The difference between carbon fixed through photosynthe-

sis and the measured carbon fluxes to respiration and known carbon

stores was assumed to be largely accounted for by carbon export

from the leaf in the form of sucrose, consistent with estimates from

Lundmark, Cavaco, Trevanion, and Hurry (2006), although other com-

pounds may accumulate or be exported from the leaf and are included

in this category.

Plants of fum2.2 at 20�C showed similar photosynthesis and res-

piration to Col-0. Although they do not accumulate fumarate, the pro-

portion of total carbon stored as organic acid was similar to that seen

in Col-0, with an increased accumulation of malate. Combining this

with the increase in starch accumulation, which is larger in fum2.2

than in Col-0, we conclude that the total unaccounted carbon, primar-

ily diurnal export, is lower in fum2.2 than in Col-0.

During the first day of exposure to cold, there were notable

changes in carbon distribution between different sinks (Figure 3a,b).

Total fixed carbon was lower on Day 0 (first day) of cold due to the

lower rate of photosynthesis (Figure 1). In both genotypes, the total

amount of fixed carbon we were able to account for increased, imply-

ing that diurnal carbon export is probably inhibited. Unaccounted car-

bon was still greater in Col-0 than in fum2.2. When plants were cold

(a) (b)

(c)

F IGURE 1 Maximum capacity of photosynthesis (a), measured at 20�C under CO2- and light-saturating conditions at the end of each day of
the acclimation period, for the wild-type Col-0 (circles) and the fum2.2 mutant (triangles). Rates of net photosynthesis (b) and respiration
(c) measured as CO2 exchange in growth conditions on Col-0 and fum2.2 plants at 20�C (white) and at 4�C after the first day of transfer (dashed)
and after 7 days of transfer (grey). Error bars show standard mean error (n = 3–5). Different labels on columns in (b) and (c) indicate significantly
different values (ANOVA, p < .05) [Colour figure can be viewed at wileyonlinelibrary.com]
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treated for 7 days, this effect became even more marked (Figure 3d).

From this, we conclude that there is a substantial inhibition of diurnal

carbon export from the leaf in cold-treated plants of both genotypes,

but that this effect becomes more pronounced in fum2.2 over the

course of the week. Given that all metabolite pools retain a diel turn-

over, we conclude that metabolic acclimation to cold involves a shift

from diurnal carbon export to nocturnal processes.

3.3 | Acclimation to cold involves changes in the

proteome of both Col-0 and fum2.2

In a previous study of dynamic acclimation, we saw that photosyn-

thetic acclimation to increased light entails an increase in enzyme con-

centrations involved in multiple metabolic processes (Miller

et al., 2017). In Col-0, cold exposure for 7 days resulted in a significant

increase in leaf protein content (Figure 4a), with an approximately

30% increase in protein content per unit fresh weight of leaf. In

fum2.2, protein content did not change significantly. Nevertheless,

analysis of the proteome shows that there were changes occurring in

both Col-0 and fum2.2, albeit to a much smaller extent in the latter.

We were able to estimate the relative abundance of 2,427 polypep-

tides, based on a minimum of three unique peptides per protein. PCA

of proteomic data indicates that the proteomes of Col-0 and fum2.2

differ already under 20�C conditions, however, there is a clear separa-

tion of cold-treated plants from their corresponding 20�C controls in

both genotypes (Figure 4b). Cluster analysis was performed using data

from the 2015 proteins, which showed significantly altered expression

in one of more conditions. As expected, given the total increase in

protein, the most common response to cold is for proteins to increase

in Col-0 but less so or not at all in fum2.2 (Figure 4c,d,g). A far smaller

cluster of proteins increased in both genotypes following cold treat-

ment (Figure 4e) while a few proteins decreased in response to cold in

fum2.2 (Figure 4f).

Examination of the relative concentration of proteins involved in

the photosynthetic electron transport chain demonstrated that only

subtle changes were occurring (Table S1). There were increases in the

relative abundance of various peripheral PSII proteins, including

isoforms of PSBS, and in PSB29, which has been implicated in PSII

assembly (Keren, Ohkawa, Welsh, Liberton, & Pakrasi, 2005), how-

ever, components of the PSII core did not change significantly in

response to cold. Among the proteins of the photosynthetic electron

transport chain, two of the four detected cytochrome b6f complex

subunits increased significantly in Col-0; measurements for the other

subunit were too variable to allow a confident assessment of changes

in abundance. Overall, this suggests a tendency to increase

(a)

(b)

(c)

F IGURE 2 Concentrations of starch (a), fumarate (b) and malate (c) in leaves measured at the beginning (open symbols) and end (closed
symbols) of the photoperiod in Col-0 (circles) and fum2.2 (triangles) plants. Error bars show standard mean error (n = 5–7) [Colour figure can be
viewed at wileyonlinelibrary.com]
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cytochrome b6f abundance in Col-0, while in fum2.2 there is no evi-

dence for a change in the abundance of this complex. While plastocy-

anin showed no change in abundance in either genotype, the only

detected ferredoxin isoform increased in both genotypes, as did one

of the four detected FNR isoforms. Four of the detected eight ATP

synthase subunits were upregulated in Col-0, while two showed a sig-

nificant change in fum2.2. Taking these data overall, we conclude that

there were no changes in photosystem stoichiometry in response to

cold in either genotype and that changes in electron transport pro-

teins in Col-0 were either reduced or absent in fum2.2. There were,

however, consistent and significant differences between the geno-

types both in warm and cold conditions, with a greater abundance of

subunits of all complexes seen in Col-0.

In contrast to the components of the photosynthetic electron

transport chain, changes in the enzymes associated with the Benson–

Calvin cycle gave a clearer and more consistent pattern of response

(Figure 5). The CO2 fixing enzyme, Rubisco, is by far the most

abundant protein in the leaf. We were able to quantify the

chloroplast-encoded large subunit (RBCL) and two isoforms of the

nuclear-encoded small subunit, RBCS. All increased significantly in

Col-0 in response to cold, with a mean 1.8-fold increase in relative

abundance. In fum2.2, there was no significant change in RBCL abun-

dance. One isoform of RBCS increased significantly, while the other

decreased to a similar extent. Combining data from both isoforms,

there was no significant change in RBCS abundance. For other

reactions associated with the Benson–Calvin cycle, we were able to

F IGURE 3 Distribution of diurnally fixed carbon, calculated from Figures 1–3 and data in Dyson et al. (2016) for Col-0 (a, c) and fum2.2 (b, d)
plants in control conditions, on the first day of cold treatment (D0) and after 1 week of cold treatment (D7). Beginning-of-day concentrations
were subtracted from end-of-day concentrations to estimate total diurnal fluxes to different sinks. Measured carbon sinks are fumarate (orange),
malate (green), diurnal respiration (blue) and starch (purple). Export (and other) values (c, d) were calculated by subtracting all other values from
the total diurnal carbon capture via photosynthesis. Data for “sugar,” which include sucrose and glucose retained in the leaf, are included in the
analysis but are not visible on the scale of this figure [Colour figure can be viewed at wileyonlinelibrary.com]
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quantify a total of 20 distinct proteins, including isoforms of specific

enzymes. In Col-0, 14 of these significantly increase, while five

decreased. In fum2.2, although six enzymes involved in the Benson–

Calvin cycle came out as significantly increased, the overall extent of

this change was lower.

Across other major metabolic pathways – including starch and

sucrose synthesis, glycolysis and the tricarboxylic acid cycle – similar

patterns of acclimation were observed, with most proteins increasing

in the cold in Col-0 and fum2.2 but to a lesser extent in the latter case

(Table S1). In the sucrose synthesis pathway, most enzymes increased

their concentration in response to cold in both genotypes, but with

the relative abundance of these tending to be lower in fum2.2

(Figure S2). A notable exception to this was sucrose phosphate phos-

phatase, which did not increase in fum2.2.

To summarize, acclimation of photosynthesis to low temperature

in Col-0 involves an increase in the abundance of some electron

transfer proteins, though not reaction centres, and substantial changes

in the amount of a broad range of Benson–Calvin cycle enzymes, con-

sistent with increases seen in enzyme activities in response to cold

observed previously (Strand et al., 1999). These changes are largely or

completely absent in fum2.2. The changes in the proteome, across

metabolism, show a similar tendency but to a different extent in other

metabolic pathways. These data indicate that fumarate accumulation

or FUM2 protein or activity plays a central role in high-level processes,

regulating acclimation of a wide range of metabolic enzymes.

Metabolic modelling shows that cold induces an alteration in car-

bon export from the chloroplast, which is perturbed in fum2.2.

Results presented here show that acclimation to cold results in a

substantial change in the metabolism of Col-0 plants, with a shift from

diurnal to nocturnal carbon export from the leaf and an increase in

leaf diurnal carbon storage. In fum2.2, a similar shift occurs, but with a

different distribution of carbon between pools. Plants of fum2.2 carry

F IGURE 4 Total protein concentrations (a) as calculated from Bradford assays. Different labels on columns indicate significantly different
values (ANOVA, p < .05). Principal component analysis (b) of the log2 scaled protein intensities in leaves of Col-0 (circles) and fum2.2 (triangles)
plants measured .in control conditions (open symbols) and after 1 week of cold treatment (closed symbols). Hierarchical clustering and heatmap
(c) of the log2 scaled protein values. Fold changes for Cluster 1 (d), 2 (e), 3 (f) and 4 (g), relative to Col-0 controls, are shown for the two
genotypes and conditions. Full proteomic dataset is available in Table S1 [Colour figure can be viewed at wileyonlinelibrary.com]
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out significantly less photosynthesis in the cold but retain a greater

proportion of fixed carbon in the leaf. Although the protein changes in

fum2.2 are less marked than in Col-0, there is nevertheless evidence

of metabolic changes over the week. To better understand the factors

underlying these changes in the two genotypes, we adopted a model-

ling approach.

Modelling was performed using flux sampling (Herrmann

et al., 2019) based on a modified version of the model of Arnold and

Nikoloski (2014; see Methods for details). We set up metabolic

models for the Col-0 and fum2 genotypes and constrained them using

experimental data to represent possible flux solutions under control

conditions and on the first and seventh days of cold treatment. Con-

straining the model using the proteomic data allowed us to analyse

the above-observed difference in Col-0 and fum2 plants in response

to cold, including changes in the electron transport proteins and

Benson–Calvin cycle enzymes, in a system context.

In order to determine feasible pathways by which assimilated car-

bon can be converted to cytosolic fumarate, we validated potential

pathways against the flux sampling results as outlined in the Materials

and Methods in order to see whether they were carrying a significant

flux under the given model constraints. The flux sampling results con-

firmed two of these pathways to be feasible in the Col-0 and fum2

20�C models (Figure 6). These pathways differ from one another in

terms of their relative consumption of ATP and NADPH. Activity of

Rubisco produces 3-phosphoglyceric acid (PGA) from ribulose-1,5-

bisphosphate and CO2. PGA can then be converted to triose phos-

phate (TP) in reactions requiring ATP and NADPH. There are two

forms of TP (glyceraldehyde-3-phosphate and dihydroxy acetone

phosphate); when exporting either of the two forms from the chloro-

plast, in our analysis, we obtained the same results and, therefore, refer

to the two forms collectively as TP export. TP is exported from the

chloroplast in exchange for inorganic phosphate by the triose phos-

phate translocator (TPT). Conversion of TP to fumarate includes the

reconversion of TP to PGA in the cytosol. The PGA is then carboxyl-

ated and reduced to form malate. The TPT is also capable of exporting

PGA directly, eliminating the reduction reaction in the chloroplast.

Our flux sampling results highlight that the export of PGA versus

TP from the chloroplast varies under changing conditions using flux

F IGURE 5 Summary of the relative abundance of proteins for the Benson–Calvin cycle enzymes of Col-0 (white bars) and fum2.2 (grey bars)
plants in control conditions (solid colours) and on Day 7 of 4�C treatment (hatched bars), as shown in the legend on the bottom left. RuBP
(ribulose bisphosphate), 3PG (3-phosphoglycerate), 1,3-BPG (1,3-bisphosphoglycerate), GA3P (glyceraldehyde 3-phosphate), DHAP (dihydroxy
acetone phosphate), SDP (sedoheptulose-1,7-bisphosphate), FBP (fructose-1,6-bisphosphate), F6P (fructose-6-phosphate), SDP (sedoheptulose-
1,7-bisphosphate), S7P (sedoheptulose-1-phosphate), Ru5P (ribulose-5-phopshate), X5P (xylulose-5-phosphate). Data represent the total summed
signal for all unique detected peptides in each case. Error bars represent the standard mean error, with different letters indicating significantly
different values
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sampling (Figure 7). In models of 20�C conditions, most carbon is

exported from the chloroplast in the form of TP, with the fum2

model tending to have higher PGA export (Figure 7a,e). In the Day

0 cold model, where the rate of photosynthesis is restricted, PGA

export is increased and TP export is decreased in Col-0, while in

fum2 both show a tendency to be reduced (Figure 7b,f). In Col-0

plants acclimated to cold (“Day 7 – 4�C”), where the rate of photo-

synthesis recovers (Figure 1b), PGA export is modelled to decrease

relative to Day 0, while TP export is largely unaffected (Figure 7c,g).

At the same time, in the fum2 model, which does not consider a

recovery of the photosynthetic rate (Figure 1b), PGA export is

largely absent.

F IGURE 6 The two shortest feasible
pathways for producing fumarate in the
cytosol, identified using a network
analysis and flux sampling (see Materials
and Methods for more details). The two
pathways differ in the form of carbon
exported from the chloroplast to the
cytosol compartments. RuBP (ribulose
bisphosphate), PGA (3-phosphoglyceric
acid), DPGA (2,3-diphosphoglyverate), TP
(triose phosphate), 2PGA
(2-phosphoglycerate), PEP
(phosphoenolpyruvate carboxylase), Pyr
(Pyruvate), OAA (Oxaloacetate), Mal
(Malate), Fum (Fumarate) [Colour figure
can be viewed at wileyonlinelibrary.com]

F IGURE 7 Flux sampling results obtained from the Col-0 (black) and fum2.2 (red) models for the export of PGA (3-phosphoglyceric acid; a–d)
and the export of TP (triose phosphate; e–h) from the chloroplast. Models were constrained according to cold conditions (a, e), to control
conditions but with the rate of photosynthesis on the first day of 4�C treatment (b, f), to cold conditions on Day 7 of 4�C treatment (c, g) and to
control conditions with the production of NADPH set to lowest feasible value (d, h). Each panel shows a frequency diagram, representing the
frequency with which each solution value was achieved over repeated iterations of the modelling [Colour figure can be viewed at
wileyonlinelibrary.com]
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Previous experimental data have indicated that the ATP/NADPH

ratio increases at low temperature in Arabidopsis (Savitch

et al., 2001), possibly reflecting changes in the ratio of cyclic to linear

electron transport (Clarke & Johnson, 2001). To simulate this, we ran

the Col-0 and fum2 20�C models with their NADPH production

restricted (simulating a restriction in electron transport capacity).

When limiting the NADPH production in the cell (by setting minimum

NADPH production as an optimisation constraint) similar effects to

the initial cold response in Col-0 and fum2 were achieved (Figure 7d,

h). Again, PGA export increased in Col-0, this time even more mark-

edly than in response to cold. By implementing cyclic electron flow in

the model, it makes sense that a reduced rate of photosynthesis on

the first day of photosynthesis will have a similar effect to limiting

NADPH production. While metabolic modelling suggests an increase

in PGA:TP export from the chloroplast under cold and NADPH-limited

conditions, this effect is not observed in the fum2 models. In fact, for

fum2, PGA export is potentially highest in 20�C conditions (Figure 7a).

3.4 | One week of cold treatment affects the seed

production of fum2.2 plants

Arabidopsis Col-0 and fum2.2 plants grown in control conditions and

plants that received 1 week of cold treatment after 8 weeks growth

were transferred into a growth cabinet with a 16-hr photoperiod to

induced flowering. Plants were allowed to set seed, and seed yield

was estimated (Figure 8). No significant difference was seen between

the seed yield of Col-0 plants maintained at 20�C and those that

experienced a cold treatment. In contrast, when fum2.2 plants were

exposed to cold for 7 days before being transferred to long photope-

riods, the final seed yield was significantly reduced. This reduction

was due to a lower number of siliques being formed, rather than a

reduction in the number of seeds per silique.

4 | DISCUSSION

Previous work has shown that the ability to acclimate photosynthesis

and metabolism to changes in light plays an important role in deter-

mining plant fitness and seed yield (Athanasiou et al., 2010). Here, we

have presented evidence that acclimation to cold is also important in

determining fitness and seed yield – wild-type Col-0 plants are unaf-

fected by changes in temperature, while fum2.2, which is unable to

acclimate to cold, is negatively affected by even short cold periods.

Ability to acclimate photosynthesis to environmental change is, there-

fore, clearly an important process that will have major impacts on crop

yields and may be a target for crop breeding.

Previously, we have seen that acclimation of photosynthetic

capacity to both light and temperature involves metabolic signalling,

as evidenced by knockouts of either the glucose-6-phosphate/phos-

phate translocator GPT2 or of the cytosolic fumarase FUM2 being

deficient in their acclimation responses (Athanasiou et al., 2010;

Dyson et al., 2015; Dyson et al., 2016; Miller et al., 2017). Recently,

Weise et al. (2019) confirmed that the increase in GTP2 transcripts in

response to environmental change is linked to TPT export and that

this link is an important feature of daytime metabolism. Here, we

show that cold acclimation involves a reconfiguration of diel carbon

F IGURE 8 Seed yield in plants of wild-type Col-0 and fum2.2

grown for 8 weeks at 20�C and then either maintained at 20�C for a
further 7 days (white bars), or transferred to 4�C for the same time
(grey bars), before being transferred to a 16 h day, to induce
flowering. For each plant, the number of seeds per silique was
counted for 10 siliques per plant (a) and the number of siliques
counted on six plants (b). Total seed yield per plant was estimated as
the product of these numbers (c). Error bars shown represent the
standard error of the mean. Different letters on the bars indicate
significantly different values (ANOVA, p < .05) [Colour figure can be
viewed at wileyonlinelibrary.com]
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metabolism of the leaf, with a major shift in the ratio of diurnal carbon

leaf storage to export. Plants acclimated to cold retain more carbon in

the leaf during the day and, therefore, must export more overnight.

Furthermore, we provide evidence from metabolic modelling that

acclimation responses may depend on the form of carbon export from

the chloroplast. Specifically, we propose that the PGA:TP chloroplast

export ratio provides a novel potential signal, which may drive aspects

of acclimation responses both in the chloroplast and the wider cell.

Earlier studies on cold acclimation of photosynthesis in Ara-

bidopsis highlighted the importance of sucrose synthesis and, specifi-

cally, the activity of SPS (Stitt & Hurry, 2002; Strand, Foyer,

Gustafsson, Gardestrom, & Hurry, 2003). It was suggested that

phosphate recycling is impaired at low temperature, due to the

accumulation of sugar phosphates, such as glucose-6-phosphate,

fructose-1,6-bisphosphate and fructose-6-phosphate. Evidence from

the fum2.2 mutant speaks against a direct role for phosphate in con-

trolling the acclimation of photosynthetic capacity. Non-acclimating

fum2.2 plants show higher levels of sugar phosphates on the first day

of cold than do Col-0 plants, and should, therefore, have a stronger

photosynthetic acclimation signal (Dyson et al., 2016). If phosphate is

a signal for acclimation, fumarate accumulation must play a role down-

stream of this, preventing acclimation despite the signal. This conclu-

sion is further supported here. Measurements of the major sugar

phosphates involved in sucrose synthesis (Figure S2) shows that these

tend to increase as a result of acclimation. There is, however, no per-

sistent significant difference in the concentrations of these in the dif-

ferent genotypes. Phosphate may still play a role in the short-term

regulatory responses seen on exposure to cold (Hurry et al., 2000).

Regardless of the role of phosphate in cold sensing, diurnal flux to

sucrose is clearly an important part of the cold response. On the first

day of exposure to cold, the estimated maximum possible flux to sugar

export dropped significantly, compared with plants maintained at

20�C (Figure 3c,d). This effect might be explained by a drop in sink

strength, however, if this is the case, then it is not alleviated by accli-

mation at the whole plant level. If daytime export is indeed sink lim-

ited, it is unlikely to be a consequence of the overall capacity of sinks

since, over the diel cycle, there was no evidence of progressive accu-

mulation of fixed carbon in the leaf. Thus, nocturnal processes, includ-

ing export from the leaf or increased nocturnal respiration,

compensate for diurnal export.

Nocturnal metabolism of leaves remains poorly understood. At

night, there is a highly controlled mobilisation of starch, which is

maintained at an approximately constant rate through the night

(Graf & Smith, 2011; Smith & Stitt, 2007). It has also been shown that

organic acids (malate and fumarate) make an important contribution

to nocturnal metabolism – plants with reduced organic acid storage

due to over-expression of plastidic malate dehydrogenase, are less fit

under short day growth conditions and show a carbon starvation

response, metabolising fatty acids and proteins to replace organic

acids (Zell et al., 2010). Our data show that stored organic acids are

also mobilized overnight both under warm and cold conditions (Dyson

et al., 2016). Carbon export in Arabidopsis is thought to largely be in

the form of sucrose, however, it is not clear, in detail, how this is

synthesized from either starch or organic acids. Starch breakdown

involves the formation of maltose (di-glucose) and glucose molecules,

which are exported from the chloroplast. If synthesis of sucrose fol-

lows the same pathway as in the daytime, the glucose would need to

be phosphorylated, by hexokinase, before being incorporated into

sucrose. Sucrose phosphate synthase (SPS) is the major enzyme

responsible for the diurnal synthesis of sucrose (Huber &

Huber, 1996). It is not clear why this pathway would operate more

efficiently at night than it does during the day. It may, therefore, be

that an alternative pathway for sucrose synthesis at night exists. We

did observe a substantial increase in the concentration of the main

isoform of sucrose synthase (SS) following cold acclimation (Table S1).

SS produces sucrose from the reaction of UDP-glucose with fructose,

in contrast to SPS, which reacts UDP-glucose with fructose-

6-phosphate (Stein & Granot, 2019). SS would, in theory, represent a

lower energy pathway to generate sucrose from hexoses. However,

SS is generally believed to operate in the direction of sucrose break-

down, releasing glucose for metabolic processes. It is, therefore, not

obvious why SS would normally be present in mature leaves, which

are net sources for carbon, and which do not store sucrose to a signif-

icant degree. It is possible although that night-time sucrose synthesis

may involve SS.

The synthesis of fumarate has an impact on diurnal carbon export

from the leaf, which cannot be explained by a reduction in storage

capacity. At 20�C, fum2.2 plants maintain a similar photosynthetic rate

but store a larger proportion of total carbon in the leaf than do wild-

type Col-0 plants. Although fumarate accumulation is inhibited, this is

largely compensated for by increased accumulation of malate. At the

same time, starch storage is also greater. As in Col-0, short-term expo-

sure to cold increases this effect and, following 7 days acclimation,

only a very small proportion of fixed carbon is exported during

the day.

The role of fumarate accumulation in Arabidopsis leaves is not,

we conclude, a simple carbon sink effect; it is affecting the overall dis-

tribution of carbon between different storage pools in ways that can-

not simply be explained by a loss of storage capacity. In order to

better understand the possible processes affected by fumarate accu-

mulation, we adopted a modelling approach. Using a network analysis

of a metabolite–metabolite graph, we identified several potential

pathways for fumarate synthesis. When modelling potential flux solu-

tions for these pathways, only two of the identified pathways carried

a significant flux. These involve export of fixed carbon from the chlo-

roplast in the form of either phosphoglyceric acid (PGA) or triose

phosphate (TP – glyceraldehyde-3-phosphate and dihydroxy acetone

phosphate). These compounds are all transported by the same

translocator – the triose phosphate translocator (TPT) – which is

reported to have very similar transport properties for these different

compounds (Knappe, Flugge, & Fischer, 2003). A comparison of plants

lacking one or the other of these exports is, therefore, not possible via

traditional experimental approaches, such as reverse genetics or using

inhibitors.

Here, we have applied flux sampling (Herrmann et al., 2019) to

gain an understanding of the impact of fumarate synthesis on wider
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metabolism. Flux sampling is a novel constraint-based modelling

approach that has the advantage over flux balance analysis and flux

variability analysis that the entire solution space can be captured in

the form of a frequency distribution and hence it allows for a more

precise comparison of different sets of constraints (Herrmann

et al., 2019). Building on a published model (Arnold & Nikoloski,

2014), we show that export of carbon from the chloroplast can

occur either as PGA or TP. The model was constrained using experi-

mental data: carbon input and fluxes to major storage sinks were set

according to measured physiological parameters, and the relative

capacity of individual reactions were constrained in proportion to

changes in the proteome (Table S1). The broad validity of this model

comes from the observation that carbon export from the leaf, which

was not constrained, varied in a way that is consistent with the exper-

imental data (Figure 3c,d and Figure S3). Based on this, we conclude

that an increase in the proportion of carbon exported as PGA is an ini-

tial response to cold in Col-0 plants. Furthermore, we were able to

demonstrate that, in the Col-0 model, the ratio of PGA:TP export var-

ies as a function of NADPH supply from the photosynthetic electron

transport chain. Limitation in NADPH is known to be an early

response to low temperature, as flux through the linear electron trans-

port chain decreases (Clarke & Johnson, 2001). At the same time,

cyclic electron flow at low temperature will tend to increase the ATP:

NADPH ratio. NADPH in the chloroplast is essential for the conver-

sion of PGA into TP. Limited NADPH supply will tend to favour PGA

export. Thus, the relative export of PGA and TP from the chloroplast

encodes information about the redox state of the chloroplast and, as a

result, has the potential to act as a signal to the nucleus, controlling

acclimation to changing conditions.

PGA in the cytosol is converted to phosphoenolpyruvate (PEP)

and then carboxylated by PEP carboxylase for form oxaloacetate

(OAA). OAA is, in turn, reduced by malate dehydrogenase to form

malate. In our modelling, the net accumulation of malate and fumarate

was constrained to experimental levels; nevertheless, it remains

unclear why flux to malate would be biologically different to flux to

fumarate, given that these acids exist in equilibrium, catalysed by

fumarase. One possible explanation although lies in the regulation of

PEP carboxylase, which is subject to feedback inhibition by malate

(Wedding, Black, & Meyer, 1990). If malate accumulates, this is liable

to feedback to inhibit its own synthesis. Removing malate, converting

it to fumarate, ensures that this pathway does not become limiting.

This may be essential to ensure that fluxes away from PGA are not

sink limited, so ensuring the PGA concentrations in the cytosol reflect

the rate of export and do not accumulate over the photoperiod.

In conclusion, we have shown that the ability to accumulate

fumarate in Arabidopsis leaves has wide-ranging impacts on diurnal

carbon partitioning in the leaf. Lack of fumarate synthesis results in

widespread differences being seen across the proteome and prevents

the acclimation of photosynthetic capacity to low temperature. Fuma-

rate accumulation is important in facilitating diurnal carbon export

from the leaf. Low temperatures inhibit diurnal sucrose export and

this effect is exacerbated in plants lacking fumarate accumulation.

Modelling of leaf metabolism suggests that the relative export of PGA

and TP may be an important signal reflecting the redox poise of the

chloroplast. As such, it has the potential to act as a signal controlling

the expression of nuclear genes, which underlies photosynthetic accli-

mation to environmental change.
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