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1. Introduction

Located among the lava deposits of Kasei Valles (∼27°N, ∼73°W; Tanaka et al., 2014) is a series of enigmatic 

depressions which surround isolated mesas and/or are parallel to scarps (Figure 1). Hauber et al. (2008) first 

noted these depressions and suggested they were paleoglacial, based on the similarity between their context 

and planform dimensions with those of contemporary ice-rich deposits termed lobate debris aprons (LDAs; 

Figure 1c). Contemporary LDAs are one sub-classification of a group of ice-rich landforms collectively 

referred to as “viscous flow features” (VFFs; Squyres, 1978). VFFs are abundant in the mid-latitudes be-

tween 30° and 50° in each hemisphere; yet, the Kasei Valles depressions lie distinctly outside those regions 

(∼25°N). Radially flowing LDAs commonly flank isolated mesas and scarps (Baker et al., 2010; Dickson 

et al., 2008; Head et al., 2010; Levy et al., 2007; Lucchitta, 1984; Mangold, 2003; Morgan et al., 2009). Their 

appearance is strongly suggestive of internal deformation and the downslope transport of material (Hub-

bard et al., 2014). Radar interrogation of their subsurface indicates LDAs consist of relatively pure water ice 

overlain by a thin layer of debris (Holt et al., 2008; Plaut et al., 2009). Hauber et al. (2008) proposed that the 

Kasei Valles depressions mark the contact between former LDAs, the ice of which has since ablated, and 

basaltic lava flow, which together formed the circumferential depressions visible today (Figure 2). Hereafter, 

Abstract High-obliquity excursions on Mars are hypothesized to have redistributed water from the 

poles to nourish mid-latitude glaciers. Evidence of this process is provided by different types of viscous 

flow features (ice-rich deposits buried beneath sediment mantle) located there today, including lobate 

debris aprons (LDAs). During high-obliquity extremes, ice may have persisted even nearer the equator, 

as indicated by numerous enigmatic depressions bounded on one side by either isolated mesas or scarps, 

and on the other by a lava unit. These depressions demarcate the past interaction between flowing lava 

and ghost LDAs (GLDAs), which have long since disappeared. We term these features GLDA depressions, 

about which little is known besides their spatial extent. This collection of depressions implies tropical ice 

loss over an area ∼100,000 km2. To constrain their history in Kasei Valles, we derive model ages for GLDA 

depressions, mesas, and the lava flow from crater counts. We use a 2D model of glacial ice constrained 

by the topography of GLDA depressions to approximate the surface and volume of former glacial ice 

deposits. The model reconstructs former ice surfaces along multiple flow lines orientated normal to GLDA 

depression boundaries. This reconstruction indicates that 1,400–3,500 km3 of ice—similar to that present 

in Iceland on Earth—existed at ∼1.3 Ga when the lava was emplaced. Dating shows that the GLDAs 

survived for up to ∼1 billion years following lava emplacement, before their final demise.

Plain Language Summary Mars hosts numerous ice-rich glacier-like landforms throughout 

its mid-latitudes. However, beyond these latitudes, in lava deposits north of the Kasei Valles channel, are 

a series of depressions surrounding isolated mesas and along the base of a large regional scarp. These 

depressions are formed as ice and lava interacted, and mark the extent of ice-rich glaciers, at the time 

the lava flow was formed. Any ice involved in the formation of these glaciers has since disappeared. We 

conduct a regional survey of these “ghost” ice masses, and constrain their history by counting the number 

of impact craters on their surface, as well as those on the lava flow. We also use a 2D model of ice flow to 

calculate the volume of ice contained within ghost glaciers at the time the lava flow formed. We find that 

1,440–3,450 km3 of ice—similar to that present in Iceland on Earth—existed during the formation of the 

lava deposit 1.3 billion years ago. Dating of the ghost glacier depressions indicates that ice survived for up 

to 1 billion years following lava formation, before their final demise.
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we refer to these depressions as ghost LDA (GLDA) depressions, and the ice formerly contained therein as 

GLDAs.

Although the ice involved in the formation of GLDA depressions has disappeared, its accumulation in the 

first instance necessitates major differences in Mars's past climate compared to present conditions. Today, 

exposed water ice at sub-polar latitudes cannot persist over interannual timescales and bare ice persists only 

at polar latitudes within two large ice caps (Levy et al., 2007, 2014; Milliken et al., 2003; Souness et al., 2012). 

Mid-latitude VFFs survive today due to their ubiquitous blanket of debris, which acts to retard sublimation 

(Head et al., 2003, 2005, 2006a). To explain their existence, the so-called “mid-latitude glaciation” hypoth-

esis envisions major shifts in planetary obliquity to have driven extensive zonal redistribution of volatiles 
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Figure 1. The Kasei Valles region, three ghost lobate debris apron (GLDA) depressions, and a contemporary LDA. (a) The Kasei Valles study region. 
Background colors show Mars Orbiter Laser Altimeter gridded topography in a equirectangular projection, overlain by the Murray Lab Context Camera (CTX; 
Malin et al., 2007) mosaic (Dickson et al., 2018). The dashed line indicates the southern extent of the Amazonian and Hesperian volcanic unit (AHv) lava flow 
(Tanaka et al., 2014). (b) CTX image of GLDA depression 7 (28.1°N, 73.5°W) in a north-up projection. The GLDA depression is clearly delineated surrounding 
the isolated mesa. (c) CTX image of the scarp-parallel GLDA depression 25 (29.8°N, 72.0°W) and GLDA depression 14 (29.6°N, 71.8°W). (d) CTX image of 
a contemporary LDA in the Protonilus-Deutronilus Mensae region (45.8°N, 24°E) in a north-up projection. An ice-rich LDA is visible as the smooth deposit 
surrounding the central mesa.
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in the Martian atmosphere (Chamberlain & Boynton, 2007; Head et al., 2003, 2005, 2006a; Schorghofer & 

Aharonson, 2005). Mars's orbital parameters are chaotic (Laskar et al., 2002, 2004) and through modulation 

of the insolation receipt, their fluctuations cause glaciations at times of high average obliquity (≥35°–40°) 
when volatiles were redistributed from the polar ice sheets to nourish mid-latitude ice (Head et al., 2006b; 

Laskar et al., 2004). At the low obliquity (∼25°) of the present day, mid-latitude VFFs represent the relics 

of more extensive ice sheets and ice caps—formed during phases of high obliquity—the bulk of which has 

since sublimated. Modeling of Mars's orbital parameters (Laskar et al., 2004) indicates that a major shift 

in obliquity (from ∼35° to 25°) occurred around 4–6 Ma. Several studies have linked this shift (sometimes 

referred to as the Last Martian Glacial Maximum; Brough et al., 2015) with landform evidence of recent 

glacial activity in the last several million years, including the bulk accumulation of the Northern Polar 

Layered Deposits (NPLD; Laskar et al., 2002; Levrard et al., 2007; Smith et al. , 2016) and the formation of 

alpine glaciers (Hepburn et al., 2020b) that left behind the glacier-like forms (a sub-classification of VFFs) 

observed today in the mid-latitudes (Souness et al., 2012).

Climatic modeling indicates obliquity values approaching 40° are not sufficiently high for extensive pre-

cipitation at the latitudes of Kasei Valles (Madeleine et al., 2014), and, therefore extremely high obliquity is 

probably needed to explain the GLDA depressions. Mars's obliquity history beyond 20 Ma is chaotic and can 

only be bounded, not determined (Head, et al., 2006b; Laskar et al., 2004). Statistical density modeling of 

20,000 possible solutions for Mars's orbital history indicates Mars's mean obliquity is ∼37.62° over the last 4 

Gyr, but that it may have approached values as high as 90° (Laskar et al., 2004). Although the measurement 

of elliptical craters suggests this may have only happened a handful of times since the Noachian (Holo et al., 

2019), at such high obliquity, volatile redistribution may plausibly have extended beyond the mid-latitudes 

towards the equatorial region. Indeed, several landforms other than GLDA depressions linked to glaciation 

at low latitudes have been reported, concentrated around the large volcanoes of the Tharsis province (Head 

et al., 2005; Milkovich et al., 2006; Murray et al., 2005; Scanlon et al., 2014; Shean et al., 2005; Sinha et al., 

2017) and elsewhere (Gourronc et al., 2014).

On Earth, glacial action often leaves behind extensive stratigraphic records from which glacial history and 

dynamics can be reconstructed (e.g., Clark, 2011; Hughes et al., 2014). For Mars, we have limited access to 

such records. Instead, dating of glacial activity—constrained by counting the size-frequency of supraglacial 
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Figure 2. Simple model of the formation and demise of a ghost lobate debris apron (GLDA) depression. (a and b) Initial formation of a GLDA, (c and d) the 
incursion of the uppermost lava deposits marking the extent of the GLDA, (e and f) the subsequent retreat of the GLDA (adapted from Hauber et al., 2008). In 
this model, craters accumulate on the GLDA depression during/after the loss of ice. The model age for the GLDA depression surface reflects this accumulation 
and pre-GLDA crater counts in (a) (i.e., inheritance). In each panel, we are assuming that the mesa scarp boundary is effectively static.
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craters—has mostly been confined to single stratigraphic units, such as large VFFs (e.g., Baker et al., 2010; 

Berman et al., 2015; Dickson et al., 2008; Head et al., 2010; Levy et al., 2007; Morgan et al., 2009) and the 

NPLD (e.g., Landis et al., 2016). The target strength of ice modifies the size-frequency of the initial craters 

produced by impacts and their subsequent preservation, relative to other substrates. This is known to be the 

case on the NPLD (Landis et al., 2016). However more generally, the effect of icy substrates on the initial 

expression and long-term preservation of supraglacial craters on VFFs remains poorly constrained (Berman 

et al., 2015; Hepburn et al., 2020b). Seeking to address this uncertainty regarding VFFs, Fassett et al. (2014) 

mapped large craters (>2 km in diameter) which appeared modified by, and those which formed following, 

glacial activity. However, due to the relative scarcity of these craters, the insights derived regarding the effect 

of icy substrates was limited to broad geographical areas (Fassett et al., 2014).

The GLDA depressions in our study area present a unique opportunity for reconstructing ice masses at a 

regional scale and unraveling the glacial stratigraphic record of former low-latitude glaciation. Previous 

studies have dated the lava unit within Kasei Valles to 1.0–1.6 Ga (Hauber et al., 2008). Mid-latitude VFFs 

are typically hundreds of Myr old (Berman et al., 2015) and the latitude of GLDA depressions is beyond the 

known extent of contemporary VFFs. It is not known whether GLDAs in Kasei Valles formed contempora-

neously with mid-latitude VFFs or represent an earlier generation (Parsons et al., 2011).

The aim of this study is to constrain the chronology and expression of past glaciation in Kasei Valles, and 

we use our findings to evaluate competing models of glacier formation and recession for the region. We use 

a 2D model of glacial ice constrained by the topography of GLDA depressions to approximate the surface 

and volume of former glacial ice deposits. Crater counting is used to date the GLDA depressions, the mesas 

they encircle and the lava deposits which mark their boundaries. Our reconstruction provides fresh insights 

into the chronology and longevity of ice in the low latitudes of Mars.

2. Study Site and Methods

2.1. Kasei Valles

Kasei Valles is one of the largest outflow channels on Mars, ∼1,500 km long and ∼300 km across at its 

widest point. It is continuously traceable from the volcanic Tharsis bulge to Chryse Planitia in the northern 

plains (Rotto & Tanaka, 1995; Scott & Tanaka, 1986; Tanaka & Chapman, 1992). GLDA depressions are 

found on a large expansive terrace, previously mapped as Amazonian-aged lava flows (Hauber et al., 2008), 

to the north of the Kasei Valles channel. This volcanic unit, forming part of the Amazonian and Hesperian 

volcanic unit (AHv: Tanaka et al., 2014) comprises much of the Tharsis and Elysium rises and consists of 

stacked lobate flows 10–100's of meters thick and cumulatively several kilometers thick in places (Tanaka 

et al., 2014). Dating of the AHv unit as a whole suggests it formed between 1 and 3 Ga (Dumke et al., 2010; 

Hauber et al., 2008; Tanaka et al., 2014). To the north of this volcanic unit is a sharp topographic scarp over 

1 km high that separates the Tempe Terra plains from the terrace below (Figure 1a).

2.2. Geomorphology Reconstruction

We mapped GLDA depressions using the Context Camera (CTX; Malin et al., 2007) image mosaic from 

Caltech's Murray Lab, which is a globally seamless mosaic of georeferenced CTX at 5 m/pixel created by 

calculating the paths of least contrast among overlapping images (see Dickson et al., 2018). The mosaic was 

inspected for any obvious image artifacts which may affect mapping, none of which were observed. GLDA 

depressions were identified according to the definition of Hauber et al. (2008): the presence of a depression, 

sharply distinguishable from the AHv unit, that either (i) surrounds a mesa or (ii) abuts the base of a scarp 

(e.g., Figures 1b and 1c).

GLDA depressions were identified within the area of Kasei Valles shown in Figure 1a. The mapped lava de-

posits extended east and west of this region and we mapped the portion of the AHv lava unit which lies east 

of the extensive N-S faults (Tanaka et al., 2014). As has been done previously (e.g., Tanaka et al., 2014), we 

mapped the AHv unit as one single unit (>100,000 km2) given the absence of any clear systematic variations 

in the surface texture at 5 m/pixel resolution. ArcMap 10.5 was used to digitize the boundary demarcating 
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the transition between the GLDA depressions and the lava deposit, around mesas and at the base of scarps. 

Scarp-parallel GLDA depressions are only partly demarcated by the lava deposit and, in the absence of any 

ice-related landforms on the Tempe Terra plains (Figure 1), we use the break of slope at the scarp top to 

digitize the remaining boundary. The uncertainty of each GLDA depression area is less than a few percent, 

assuming a uniform 1-pixel (∼5 m) misidentification on each boundary. We also investigated the aspect ra-

tio of GLDAs as indicated by the runout length of each GLDA depression and the relief of the mesa/scarp. 

To measure the runout length of GLDAs, defined here as the distance between the outer GLDA depression 

boundary with the lava and inner boundary at the base of the scarp, we calculated the nearest Euclidean 

distance neighbor between two sets of points spaced 100 m along each boundary. The approximate relief 

of each mesa or scarp within or abutting GLDA depressions was calculated as the standard deviation of 

elevation within the bounding geometry of each GLDA depression. Elevation was taken from a blended 

Mars Orbiter Laser Altimeter (MOLA) and High Resolution Stereo Camera (HRSC) digital elevation model 

(DEM) created using the Ames Stereo Pipeline function dem_mosaic (Beyer et al., 2018) using the D_Mars 

datum value of 3,396.19 km. The resolution difference between MOLA (∼460 m/pixel) and HRSC (100 m/

pixel) means that although the cell resolution is 100 m/pixel, this is only effectively true where the higher 

resolution DEM is available (Figure S1).

2.3. Ice Volume Reconstruction

We use a 2D perfect-plasticity model of ice flow to reconstruct the volume of GLDA ice demarcated by 

the mapped boundaries of GLDA depressions. Similar models based on the assumption that ice deforms 

plastically have been extensively used on Earth to reconstruct paleo ice volumes (Ng et al., 2010) and more 

recently have applied to contemporary LDA deposits on Mars (Fastook et al., 2014; Karlsson et al., 2015; 

Parsons et al., 2011; Schmidt et al., 2019; Weitz et al., 2018). We adapt the numerical method described by 

Benn and Hulton (2010), driven by parameters from Karlsson et al. (2015).

First, flow lines were constructed at 50 m intervals normal to the boundaries of GLDA depressions using 

the ArcGIS add-in Create Perpendicular Lines. In the absence of clear geomorphic evidence for markers 

that would otherwise delineate the maximum elevation of former ice masses, flow lines were created with 

a length exceeding the longest axis of each GLDA depression. Resulting polylines were clipped to the ex-

tent of each GLDA (Figure 3a) depression and converted to points spaced every 50 m along each flow line, 

using the QGIS tool QChainage. The corresponding bed elevations, z = B, were extracted from the blended 

HRSC-MOLA DEM and then exported to MATLAB for reconstructing the ice surface along the flow line 

(Figure 3e).

Perfect-plasticity models assume that ice deforms in response to glaciological driving stress (τD, determined 

by gravity, ice thickness, and surface slope) when a threshold yield stress τy is surpassed. A perfectly plastic 

flow is assumed to adjust continuously such that τD = τy (Nye, 1951, 1952); thus,

  τ τ ,y D

dh
gH

dx
(1)

where ρ is glacier ice density (ρ = 918 kg m−3), g is gravitational acceleration (g = 3.711 m s−2 on Mars), 

H is the ice thickness, and h is the ice surface elevation. On each flow line, we orient the x-axis to point 

horizontally up-glacier, with x = 0 located at the mapped GLDA boundary. To reconstruct the ice surface, 

we integrate Equation 1 by using the finite-difference method at a horizontal space step Δx of 50 m. The 

discretized equation is (e.g., Schilling & Hollin, 1981)

   1 *

τ Δ
,

y
i i

x
h h

gH
(2)

where i = 1,2,3…n is the position index and H* is the representative ice thickness over each step, with the 

ice thickness given by H = h−B at all positions. Here, the three choices of taking H* to be Hi, (Hi + Hi+1)/2 

and Hi+1 amount to forward, central, and backward difference approximations, respectively. As discussed 

by Benn and Hulton (2010), the forward scheme breaks down at the start of the integration because H = 0 
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at the ice margin (i = 1); only the central and backward schemes are appropriate there. We adopt the back-

ward approximation, that is, H* = hi+1−Bi+1, so that substituting this into Equation 2, rearranging, leads to 

the quadratic equation

  
       2

1 1 1 1

τ Δ
0.Y

i i i i i i

x
h h B h h B

g
(3)

Solving Equation 3 for its positive root (the negative root is unphysical) yields the surface elevation on the 

flow line (Figures 3b–3e), hi+1, from the known quantities at step i and Bi+1, and its successive application 

reconstructs the surface profile. Because our Δx is relatively small, our numerical results would change 

negligibly if the central scheme were used (this was the choice of Benn & Hulton, 2010). On some flow 

lines, the ice can become very thin as the integration marches towards the scarp wall or flank of a mesa 

(this happens especially when the chosen yield stress is low), and this can lead to unrealistically steep ice 

surfaces. We therefore ended the integration if H ≤ 25 m and dh/dx exceeded 0.035 (Figure 3). This stopping 

criterion did not activate on most of our flow lines as their computed surfaces extended above and over the 

mesa topography, and it is not used on the initial steep ice surface near x = 0.

The reconstruction requires τy to be prescribed. Karlsson et al. (2015) estimated yield stresses ranging from 

16 to 80 kPa for several LDAs at the mid-latitudes today, by using Equation 1 in an inverse Monte Carlo 

scheme to best match their surface and basal topographic data, the latter derived from orbiting radar sound-

ing measurements. In comparison, τy for glaciers and ice sheets on Earth typically span 50–200 kPa (Cuffey 

& Paterson, 2010; Li et al., 2012). As the ice-flow dynamics of the GLDAs in our study region may be differ-

ent from those of the contemporary LDAs, we assumed a large range for τy in our study, varying it between 

16 and 200 kPa (Figure 3e).

To create a 3D ice surface from the surface profiles reconstructed along flow lines, we treat the output 

network of points derived above as a pseudo point cloud. The Ames Stereo Pipeline was used to produce a 

simulated DEM of former ice surfaces (Beyer et al., 2018; Figure 3b–d). We used the point2dem program that 

takes a point cloud and rasterizes it using a user-defined interpolation scheme.
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Figure 3. 2D model of ice elevation with variable τy. (a) Ghost lobate debris apron (GLDA) depression 4. The boundary with the lava flow is marked in white, 
and red dashed lines indicate illustrative flow lines, normal to this boundary. (b) Reconstructed ice surface for four illustrative flow lines on GLDA depression 
4. Vertical exaggeration is ×3 and the view is approximately southwards. (c) Reconstruction of ice surface along four flow lines where the point cloud is reduced 
to the minimum ice surface at each point. (d) Reconstructed GLDA ice surface based on point cloud in (c). (e) Example bed elevation of GLDA 4 with a range of 
modeled ice surfaces with varying τy. The model terminates early where τy = 16, 22, and 40 kPa, as the predicted ice surfaces become unrealistically steep.
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2.4. Crater Size-Frequency Distribution Measurement and Absolute Age Determination

To date the GLDA depressions, mesas, and the lava deposit, we measured the abundance of impact craters 

using the ArcGIS extension CraterTools (Kneissl et al., 2011) and the 5 m/pixel Murray lab CTX mosaic 

(Dickson et al., 2018). Craters were recorded within areas of geological homogeneity, defined here as the 

continuous boundary of the three elements of interest. Not all mesas were dated because some of them are 

small and/or dominated by steep angular morphometry, which we anticipate would limit the preservation of 

craters through enhanced resurfacing. On mesas that were dated, we limited counts to flat-topped portions 

and excluded any steep flanks. CraterTools reprojects each crater—delineated by marking three locations at 

opposing points of the rim—into a sinusoidal projection. The central meridian of each crater's projection is 

defined by that crater's centroid coordinates and crater diameter is calculated along this unique meridian. 

This approach limits projection distortion which can deform craters oblately along their longitudinal axis.

We recorded the diameter, D, of craters visible at a scale determined by the area of the landform queried, 

excluding all identifiable obvious chains of secondary craters. Care was also exercised in our crater iden-

tification to exclude circular features unrelated to impact processes (e.g., sublimation/collapse pits). The 

counts were compiled into a crater size-frequency distribution (CSFD). We varied the scale at which craters 

were counted to ensure (i) reliable statistics for GLDA depressions (minimum area ≈10 km2; counting scale 

1:10,000) and (ii) a feasible counting effort for the regional lava deposit (area ≈74,000 km2). The minimum 

D of craters recorded on GLDA depressions was ∼20 m and ∼100 m on the lava deposit. A fixed minimum 

crater counting diameter is not possible because crater visibility depends on factors besides crater size, 

including lighting conditions and depth. No systematic distinction was made between craters of different 

morphologies. In the absence of clear variations in texture within count areas at CTX resolution, we made 

no attempt to correct for unconstrained variations in target properties which may alter the expression of 

small craters toward the lower diameter limit of our counts (e.g., Dundas et al., 2010).

Age determination from crater count statistics was performed using the the CraterStats 2.0 software (see 

Michael and Neukum, 2010) on the “differential” style of CSFD plots. For each CSFD, crater diameter 

was binned using a √2 strategy. An isochron was fitted to the decay slope (Figure 4) by selecting a span of 

diameter bins that plot parallel to the slope of an isochron (Berman et al., 2015) following the established 

procedure (Michael & Neukum, 2010). Isochrons were created using the Hartmann and Daubar (2017) pro-

duction and chronology functions for Mars. Our CSFDs show roll-off at small diameters due to undercount-

ing as one approaches the resolution-limit of CTX images (5 m/pixel) and due to removal of small craters by 

resurfacing processes (e.g., mass movement, deflation of GLDA surfaces and redeposition of surface debris, 

burial by hillslope derived debris, and mantling by eolian deposits). The D at which this roll-off “shoulder” 

occurs informs the lower end, or Dmin, of our fitting range, which is always set to the right of this shoulder to 

ensure that our fitting excludes the biased data of the roll-off. We anticipate that most misidentified craters 

(due to image-resolution) are small ones falling within the roll-off and therefore will not influence our age 

estimates. For GLDA depressions and mesas (the craters of which were measured at 1:10,000 scale), Dmin 

typically occurs at D ≈ 75 m. On the lava flow (1:50,000 scale), Dmin occurs at D ≈ 250 m.

The Martian isochron system is constructed from the lunar-specific chronology and production functions by 

accounting for proximity of the planetary target to meteoric source, its gravity, and its collisional cross-sec-

tion. We used the Hartmann and Daubar (2017) production and the Hartmann (2005) chronology functions 

for Mars because they contain improved treatment of these complicating factors by amalgamating crater 

distribution datasets from both the Hartmann and Neukum traditions. At the diameter of craters studied 

by us, the Hartmann and Daubar (2017) production function and the earlier Hartmann (2005) function are 

indistinguishable from each other and are effectively interchangeable. The two functions differ only in their 

treatment of decameter-scale craters (below our GLDA depression roll-off at diameters <100 m). Dating 

planetary surfaces using CSFD measurements is subject to uncertainty arising from assumptions in the 

cratering model (e.g., impactor flux, chronology, and production functions), assumptions about the proper-

ties of the target material, and potential scale-dependent control on the age result interpreted from crater 

populations (see Fassett, 2016 and Palucis et al., 2020). Accordingly, all ages reported herein are referred 

to as “model ages.” The use of the Hartmann and Daubar (2017) function is intended to capture the main 

characteristics of cratering on Mars. Alternative functions, though not used here, would alter our model 

absolute ages systematically, but not change their overall pattern.
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Differential plots are a common means of presenting CSFD data in planetary science (Hartmann, 2005) 

with craters binned according to their diameter and plotted independently of other bins. Cumulative plots 

are another common means of presenting CSFD data whereby craters are binned in a reverse cumulative 

fashion (Crater Analysis Techniques Working Group, 1979). Cumulative plots are useful because the curve 

rapidly converges to an isochron from which age can be derived (Michael, 2013). However, resurfacing—

acting to preferentially remove smaller craters (Fassett, 2016; Michael & Neukum, 2010)—is easier to iden-

tify on differential plots (Fassett, 2016). Because bins are plotted independently from one another, smaller 

bin diameters are not offset (upwards) by the cumulative influence of larger diameter bins and downturns 

in crater frequency are more obvious (Fassett, 2016). Where resurfacing occurs in a discrete time increment 

and the maximum erasure of craters is limited by the magnitude of that event, it may be possible to estimate 
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Figure 4. Impact crater size-frequency distributions of (a and b) ghost lobate debris apron depression 3 and (c and d) the Kasei Valles lava flow. Data points are 
derived from crater counts on Context Camera imagery and gray curves outline the isochron system. Bins align with several isochrons over distinct diameter 
ranges. The ages reported in panels (b) and (d) represent the model ages as indicated by each fitted isochron, as explained in the text.
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several resurfacing ages on a surface with a downturn in crater frequency marking the shift from one isoch-

ron to another (Figure 4d; Michael & Neukum, 2010; Michael, 2013).

Surfaces that have undergone successive episodes of lava deposition are an optimal landscape from which 

to determine multiple resurfacing ages (Fassett, 2016), and the AHv lava deposit mapped here consists of 

several superposed lobate flow units (Tanaka et al., 2014). Small craters are easier to remove from a surface 

than large craters (Fassett, 2016; Michael & Neukum, 2010) and successive lava flows would obliterate all 

craters on a surface up to a maximum diameter determined by the thickness of each lava flow (Fassett, 

2016). In this manner, it is possible to derive multiple ages from the crater population on the AHv lava flow 

(Section 4.3, Figure 4c). For GLDA depressions, which could have undergone a more complex sequence of 

resurfacing, it is also possible to fit several isochrons to diameter ranges in some cases (Figure 4b). However, 

not all geological resurfacing processes act over discrete time intervals and may act to remove craters of all 

diameters from a surface quasi-continuously (Fassett, 2016). It is difficult to disentangle the precise (poten-

tially highly complex) resurfacing histories of GLDA depressions, particularly following the deflation of 

GLDAs, and we do not know to what extent quasi-continuous resurfacing may have acted to remove craters. 

Therefore, in this instance, we are only interested the rightmost of these fits (i.e., the range of largest craters 

analyzed) to approximate the minimum formation age of GLDA depressions. The simple interpretation is 

that ages derived from this rightmost isochron for GLDA depressions and mesa tops approximate the most 

recent time at which these surfaces were last ice-free. We anticipate that age(s) derived for the lava deposit 

approximate the time at which successive lava deposits ceased to flow (see Section 1). We elaborate on a 

more sensitive interpretation of the model ages for each landform in our results (Section 4.3).

CraterStats 2.0 automatically calculates model age and the associated statistical uncertainty (Michael & 

Neukum, 2010). Error margins on model ages assigned by CraterStats 2.0 reflect the statistical uncertainty 

of both CSFD measurements and the counting area. This “±error” (Figures 4b and 4d and Figures S2–S49) 

is based on the Poission distribution model of random crater impacts (Michael & Neukum, 2010), describ-

ing how observed crater counts on a surface deviate statistically from the number of crater counts expected 

from the true age of a surface for given chronology and production functions. The age error is derived from 

the probability density function of the true age constructed from this model. We note this statistical uncer-

tainty is independent of the potential sources of uncertainty arising from differences in target properties, 

resurfacing and neglects systematic errors associated with the chronology and production functions.

3. Results

3.1. GLDA Mapping and Morphometry

In total, we mapped 37 GLDA depressions in Kasei Valles. Of these, 17 abutted the northernmost edge of 

the lava flow and the remaining 20 were radial GLDA depressions encircling isolated mesas within the lava 

flow. The total area of the GLDA depressions (including the area of any internal mesas) is 10,689 km2. The 

average runout of GLDA depressions is 3.17 km (s.d. 4 km); the distribution of runout length is heavily 

skewed toward lower values. The average relief of each scarp/mesa (the standard deviation of elevation 

within each GLDA depression) is 150 m. Within GLDA depression, there was no clear evidence of land-

forms related to glacial action such as streamlined flow-parallel lineations, flutes, or moraines. The area, 

relief, runout length, and center coordinates of each GLDA depression is reported in Table 1 of the online 

repository linked to this study (Hepburn et al., 2020a).

3.2. Glaciological Modeling

We modeled the surface and volume of 35 GLDAs for nine values of τy from 16 to 200 kPa as shown in Figure 

5. At τy = 22 kPa—the mean τy for contemporary LDAs (Karlsson et al., 2015)—our estimates predicts a of 

ice in the Kasei Valles region, with a mean thickness of 84.9 m for the GLDAs. The amount is equivalent to 

1660 Gt of ice or a layer of water spread across the surface of Mars 12.6 mm thick. At τy = 16 kPa, the lowest 

value of τy used in this study, 1440 km3 of ice is predicted, with a mean thickness of 75.8 m. Where τy = 80 

kPa, the largest value for τy determined by Karlsson et al. (2015), total ice volume is 3450 km3, and mean ice 

thickness is 159 m. Finally, at the extreme upper value of τy = 200 kPa, we predict a total volume of 5990 km3, 

with a mean thickness of 274 m. At all values of τy, our model predicts the partial-total submergence of some 
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mesa tops, even when unrealistically steep ice surfaces are removed. 

When τy = 16 kPa, one radial GLDAs totally submerged the mesas with-

in its boundaries and the remaining radial GLDAs partially submerged 

the lower elevation areas of mesas within GLDA depressions.

3.3. Dating

The diameter of 47,584 craters across 37 GLDA depressions, 11 mesas, 

and the Kasei Valles lava flow were recorded. The mean model age is 

0.6 Ga for the GLDA depressions and 1.41 Ga for mesas (when each 

are treated as a collective unit). GLDA depression ages range from 1.9 

to 0.2 Ga and mesa ages range from 2.8 to 0.6 Ga. Two model ages were 

derived for the lava flow (Figure 4d): 1.3 ± 0.004 Ga (primary) and 2.5 

± 0.3 Ga (secondary). We interpret the younger of these ages, 1.3 Ga, 

which is consistent with previous estimates by Hauber et al. (2008), to 

correspond to the formation age of the uppermost lava flow deposits. 

The distribution of mesa ages extends above as well as below 1.3 Ga 

(Figures 6 and 7). Figure 6 shows that each GLDA depression is younger 

than the associated mesa(s) and younger than the primary model age 

of the Kasei Valles lava flow, with the exception of two GLDA depres-

sion surfaces, which are both reconcilable through age uncertainty. It is 

possible that our mesa and GLDA depression ages—being based on the 

approach of Michael and Neukum (2010)—may be biased by the size of 

count area (Fassett, 2016; Palucis et al., 2020; Warner et al., 2015). Al-

though this deterministic approach to crater-based dating is used wide-

ly, we note a potential alternative in the probabilistic approach recently 
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Figure 5. (a) Total reconstructed ice volume and (b) the mean thickness of modeled ghost lobate debris aprons 
(GLDAs) for different values of the yield stress τy. Dashed vertical line indicates τy = 22 kPa, the mean value for 
contemporary mid-latitude LDAs (Karlsson et al., 2015).

Figure 6. Mesa and paired ghost lobate debris apron (GLDA) depression 
model ages. Horizontal and vertical dashed lines mark the formation age of 
the lava flow unit (1.3 Ga).
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proposed by Palucis et al. (2020), but this was not pursued herein. The CSFD statistics are reported in Table 

2 of the online repository linked to this study (Hepburn et al., 2020a).

4. Interpretation

4.1. Geomorphology

GLDA depressions delineate the spatial extent of GLDAs at the time the lava deposits cooled and solidified 

in Kasei Valles. Each GLDA depression is marked by a single clearly defined outer boundary consisting of 

decameter-scale crenulation, with little variation evident in the morphology of individual depressions. In 

order to compare the aspect ratio of contemporary mid-latitude LDAs and GLDAs, we measured both the 

relief and runout length of GLDA depressions. The range of runout length is 0.4 km–22.6 km, with a mean 

of 3.21 km (s.d. = 4.07 km). The distribution of runout lengths is highly positively skewed (skew = 3.4) 

toward lower values and kurtosis is high (kurtosis = 15.7). The mean relief of GLDA depressions (including 

the mesas within) is 0.15 km (s.d. = 0.1 km). Contemporary LDAs typically extend 10's of kilometers from 

scarps, and mesas are up to 2 km higher than LDA surfaces. The aspect ratio (relief:length) of contemporary 

LDAs and GLDAs is consistent with the flow of thin ice masses.
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Figure 7. Ghost lobate debris apron (GLDA) depression and mesa model ages in Kasei Valles. (a and c) GLDA 
depression (a) and mesa (c) model ages, in a roughly west-east progression across the region of study. Vertical error 
bars indicate statistical age uncertainty (described in Section 2.4). Dashed line in panels (a) and (c) indicates the model 
age of the lava flow (1.3 Ga). (b) The Kasei Valles study region. Background colors show Mars Orbiter Laser Altimeter 
gridded topography in a equirectangular projection, overlain by the Context Camera mosaic. GLDA depressions are 
outlined by white polygons.
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4.2. Glaciological Modeling

Our modeling of GLDAs in Kasei Valles indicates GLDA depressions were occupied by relatively thin ice 

masses between 75 and 160 m thick with a total volume of 1,440–3,450 km3 (where τy = 16–80 kPa). Radar 

investigation and modeling of contemporary LDAs suggest that they are ∼200–700 m thick (Holt et al., 2008; 

Karlsson et al., 2015; Parsons & Nimmo, 2009; Plaut et al., 2009). The predicted mean ice thickness of GL-

DAs, even where τy >80 kPa (Figure 5), are at the lower bounds of contemporary LDA thickness estimates. 

We interpret the difference in terms of the small planform dimensions of GLDAs relative to contemporary 

LDAs. However, our model predicts the partial to total submergence of mesa tops even at low values of τy 

and when unrealistically steep ice surfaces are removed.

4.3. Model Ages

Piecing together the glacial history of the Kasei Valles region from the CSFD ages determined for the dif-

ferent surfaces requires careful consideration of their impact histories. Before interpreting our model ages, 

we must first consider the inheritance of preserved craters that predate the accumulation of GLDAs and the 

uppermost lava flow deposits. Typically, it is assumed that model ages correspond to the time since a geolog-

ically homogeneous surface was most recently free of craters, be that the formation age of the surface or the 

time since the last major resurfacing event (Michael & Neukum, 2010). This assumption is important here, 

as the lava flow, mesa tops, and the GLDA depressions are not bedrock surfaces (Dumke et al., 2010). Every 

layer in this sequence has been exposed to cratering, and the apparent modeled age of the uppermost sur-

face depends how much it has been modified (or how well reset/cleaned) by successive geological process-

es. Crater inheritance is an unknown source of uncertainty, and their inclusion in CSFDs would raise the 

model ages of surfaces. Below, we consider what potential inheritance means for each type of dated surface.

The lava flow is the most expansive unit dated here and preserves the extent of GLDAs at a narrow time 

increment. Because emplacement of the lava unit drowns the preexisting surface, we anticipate the inher-

itance of craters predating the uppermost lava deposit (>1.3 Ga) to be minimal, limited to large craters 

deeper than the thickness of the lava flow. Of the two ages derived, we therefore associate the rightmost 

limb of Figure 4d (2.5 ± 0.3 Ga), based on 101 craters spanning 1,000–4000 m, with craters too large to be 

totally eradicated by the uppermost lava deposit, which are instead inherited from older lava deposits. We 

associate the younger of two model ages (1.3 ± 0.004 Ga), based on 1809 craters spanning 354–707 m, with 

the formation age of the uppermost lava deposit (alava) or the minimum time since the lava solidified and 

allowed the accumulation of craters. Our modeled alava corresponds closely to the age estimated by Hauber 

et al. (2008) and the secondary age is consistent with the older ages (3.4 ± 0.8 Ga) found by Dumke et al. 

(2010) for the entire unit (extending west beyond our mapped lava deposits) with a large associated error.

Next, we consider the impact histories of the GLDA depressions. In the simplest model described in Figure 

2, we envisage a system in which the deflation of a single GLDA comprehensively resets/cleans the surface 

during an episode of total deglaciation. With zero crater inheritance, the model age, aghost, or rightmost limb 

for a GLDA depression corresponds to the cumulative length of time that depression has been exposed to 

cratering since the recession of the GLDA. The model ages, aghost, therefore dates the exposure of the GLDA 

depression or (equivalently) the timing of this former ice loss after complete GLDA recession. With zero 

crater inheritance, aghost dates deglacation in Kasei Valles exactly. In contrast, in the likely event of non-zero 

levels of crater inheritance on GLDA depressions, aghost would be an overestimate of the time at which the 

GLDAs receded.

The chances of crater survival beneath and following the demise of GLDAs depends on the dynamics of 

the former ice masses, much of which is unknown. Our modeling of ice volume indicates each GLDA 

depression was occupied by a GLDA with a mean thickness of ≥75 m Section (3.2) at the time the lava 

deposit was formed ∼1.3 Ga (Section 3.3). For the duration of ice occupation, decameter thick ice will have 

shielded the subglacial surface from the majority of impacts, preventing the formation of new craters. How-

ever, GLDAs submerged preglacial craters which may be present as inherited craters on GLDA depressions. 

There are two conceivable processes by which GLDAs can modify the preglacial inheritance of craters: (i) 

the basal erosion of craters beneath principally warm and wet based GLDAs and (ii) the burial of craters 

beneath former supraglacial debris as GLDAs receded. The removal of preglacial craters by these processes 
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is interesting to consider, particularly at smaller crater diameters, but it is unlikely that all preglacial craters 

were removed by glacial processes. Nonetheless, we reiterate that the inclusion of crater inheritance in our 

CSFDs does not affect our use of aghost to date deglaciation in Kasei Valles. Our model ages of GLDA depres-

sions, based on the rightmost limb, yield minimum exposure ages of the depression surfaces irrespective 

of crater inheritance. Below, we elaborate on our reasoning and consider whether our CSFDs provide addi-

tional insights into the thermodynamics of former GLDAs:

1. Warm-based glaciers with a subglacial drainage system on Earth can cause high erosion rates (Ugelvig 

et al., 2016). If GLDAs were warm-based, subglacial erosion could have removed significant propor-

tions of preglacial craters during glacial occupation. However, our results indicate GLDA depressions 

are devoid of landforms suggestive of wet-based glaciation (Section 3.1) and glacial activity elsewhere 

on Mars is expected to be principally cold-based (Fassett et al., 2010). Putative eskers have been linked to 

warm-based glaciers in areas of especially high geothermal heat flux in Tempe Terra, northwest of Kasei 

Valles (Butcher et al., 2017), but such landforms have not been identified in our study region. Although 

it is possible a landform record of warm-based glaciation has been eroded or is otherwise no longer vis-

ible, extensive warm-based glaciation during the early–late Amazonian on Mars would require a much 

warmer climate (Forget et al., 2013). Even during high-obliquity phases, climate projections anticipate 

only modest temperature increases (∼15 K; Forget et al., 2013) and we therefore anticipate GLDAs were 

principally cold-based. Submerged craters beneath cold-based GLDAs would likely remain relatively 

undisturbed during ice occupation.

2. Following the recession of GLDAs, we expect significant modification of subglacial craters by supragla-

cial debris. Our results indicate that following lava emplacement ∼1.31 Ga, GLDAs persisted for >200 

Myr until ∼1.1 Ga (Figure 7a). As obliquity driven climatic cycles are known to vary on ∼101–102 kyr 

timescales (Laskar et al., 2002), in a time of 200 Ma GLDAs will have experienced many such cycles, in-

cluding periods unfavorable for the long-term survival of surficial ice in Kasei Valles. To survive through 

these cycles, GLDAs were likely buried beneath a supraglacial mantling deposit. Contemporary VFFs 

exist under such conditions, and any (subpolar) surfical ice on Mars would rapidly sublimate today. All 

contemporary mid-latitude VFFs have a relativity thin (∼10 m) supraglacial debris layer that retards sub-

limation (Baker & Carter, 2019; Boynton et al., 2002; Feldman, 2004; Plaut et al., 2009). Over time, this 

material is incorporated englacially and radar observation of LDAs and LVFs indicates their englacial 

debris content is up to 10% (Holt et al., 2008). Debris on and within mid-latitude VFFs principally con-

sists of headwall-derived deposits and atmospherically deposited mantle (Baker & Carter, 2019). Each 

GLDA depression surrounds mesas or abuts scarps, similar to those throughout the mid-latitude domain 

of VFFs, which would provide debris input for analogous supraglacial and englacial deposits.

We can estimate the thickness of material deposited on GLDA surfaces by assuming that the debris 

content and supraglacial debris thickness of GLDAs approximated that of contemporary LDAs. The 

melting of ice with a 10% debris content would lead to ≈1 m of lag deposits for every 10 m of surface 

lowering (Baker & Carter, 2019). Accordingly, we estimate at least 7.5 m of sublimation lag (based on an 

ice thickness of 75 m at τy = 16 kPa) on GLDAs will have been generated during their recession, supple-

mented by supraglacial deposits up to 10 m thick. Beneath ∼20 m of debris, many smaller craters would 

be entirely buried. A key control on the likelihood of burial is crater depth, d, which scales with crater 

diameter, D (Caprarelli, 2014; Holsapple, 1987; Robbins & Hynek, 2012). Following a theoretical scaling 

relationship d = 0.084D1.245 (Robbins & Hynek, 2012), we estimate that craters where D ≤ 80 m would be 

totally buried beneath ∼20 m of debris generated as GLDAs receded. This scaling relationship is based 

on fresh, unmodified craters (Robbins & Hynek, 2012). Preglacial crater populations may already have 

been exposed to modification and infilling, which would reduce the effective depth of craters without 

altering crater diameter. We anticipate that modified craters with D larger than 80 m would have been 

buried beneath ∼20 m of debris deposited following GLDA recession (where τy = 16 kPa), extending into 

our fitted CSFD range between Dmin( ≈62.5 m) and Dmax( ≈500 m).

All GLDA depressions (with two accountable exceptions; Section 3.3) have model ages younger than the 

lava formation age (1.31 Ga; Figure 7a). Any crater inheritance in the GLDA depression crater counts would 

strengthen this finding. As the supraglacial deposit left by recession of GLDAs is expected to be thin, it is 

unlikely to have totally reset/cleaned the depressions of preglacial craters. Therefore, we anticipate some 

crater inheritance in our CSFD counts, especially within larger diameter bins. On multiple CSFD plots 
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(Figures 4a and 4b and Figures S2–S6, S8, S10–S16, S18–S21, S23, S24, S26, S29, S35, and S36), the largest 

diameter bins appear to be shifted to the right of the fitted isochron, instead tracking a tangential isochron, 

which may reflect the presence of inherited craters within these bins. However, in most cases, the associ-

ated uncertainty (as reflected by vertical error bars) is large and intersects with the fitted isochron, so these 

bins are included within the fitted diameter range. With no crater inheritance, the survival duration, aice, of 

GLDAs (up to their recession) since the time of lava emplacement (1.3 Ga), given by aice = alava−aghost, is a 

minimum estimate. Our results for individual GLDA depressions (disregarding the two anomalous depres-

sions which appear older than 1.3 Ga) give aice ≈ 0.2–1.1 Gyr, implying that GLDAs existed for a substantial 

period of time before their demise. GLDAs also existed for some unknown duration prior to their demise.

Finally, we do not know exactly how and when the mesas in the Kasei Valles region were formed. Certainly 

they could not have formed after the lava flow 1.3 Ga because we cannot conceive any physically plausible 

mechanisms for mesas to appear in the middle of our GLDA depressions and grow out of nothing. Indeed, 

six mesas are dated to be older than 1.5 Ga. However, five other mesas have modeled surfaces younger than 

1.3 Ga and one appears to be as young as 0.6 Ga. It therefore appears that post-formation resurfacing must 

have removed some of their craters. Our modeling indicates the partial–total submergence of many mesa 

tops by GLDAs, but it is not clear if mesa resurfacing is related to GLDAs themselves. Beneath cold-based 

ice, craters are unlikely to be significantly altered, and instead, as surfaces were exposed following the loss 

of ice these younger mesa surfaces were exposed to other mechanisms of resurfacing such as eolian activity. 

In any case, all mesas have model ages older than those of the associated GLDA depression (Figure 6), con-

sistent with the landform succession illustrated in Figure 2 and the long-term survival of GLDAs following 

lava emplacement.

5. Discussion and Conclusions

Our modeling indicates between 1,440 and 3,450 km3 of ice existed in Kasei Valles at the time of lava 

formation (for τy = 16–80 kPa). Our CSFD dating indicates this lava deposit cooled and solidified ∼1.3 Ga 

in our study region, contributing new information for the history of volcanic activity in Kasei Valles. Our 

model shows that when the lava deposit formed the mean ice thickness of contemporaneous GLDAs was 

75–160 m. The GLDA ice volume was 1%–2% of the estimated total volume of today's mid-latitude ice on 

Mars (Karlsson et al., 2015) or 43%–104% of the ice contained within the glaciers and ice caps of Iceland, 

Earth. However, the ice did not vanish immediately following the lava emplacement event. CSFD dating 

of the GLDA depressions and the mesas contained therein show that the GLDAs survived for a minimum 

additional time (aice) ranging from 0.2 to 1.1 Gyr (Section 4.3). Implicit to this interpretation of aice is that 

each GLDA retreated in one discrete episode of recession, without any glacial reaccumulation/readvance. 

Nevertheless, it is possible that GLDA depressions hosted multiple episodes of glacial activity over the last 

∼1 Ga. By considering this possibility of polyphase glaciation, and the unknown influence of crater inher-

itance, we outline three alternative models for the history of regional ice loss in Kasei Valles:

1. At first glance, the large spread of aghost evident from Figure 7a suggests the recession and eventual de-

mise of GLDAs was asynchronous throughout the Kasei Valles region and had occurred relatively con-

tinuous over a period of 1 Gyr between 1.1 and 0.2 Ga. However, to explain this asynchronous scenario 

of regional deglaciation, it is necessary to invoke mechanisms besides climate forcing to drive glacier 

recession because climate forcing should modulate glacier mass balance in a somewhat uniform way 

within such a small region as Kasei Valles.

2. If GLDAs were strongly coupled to climate, then they would have receded synchronously. This would 

reasonably be expected if climate was perturbed by a major orbitally driven shift. In such a scenario, and 

assuming no crater inheritance on GLDA depressions, each value of aghost should be identical, which is 

not indicated by our CSFD dating (Figure 7a). However, the variation in aghost could reflect spatial dis-

continuity in the magnitude of crater inheritance, basal erosion, or in the post-formation modification 

rates of craters. In this interpretation, the true maximum age of the synchronous deglaciation (of all 

GLDAs) across the region would be given by the smallest value of aghost (∼200 Ma), yielding aice>1 Gyr, 

that is, the survival duration is even longer than our baseline estimate (≥0.2 Gyr). This would indicate 

that some major climatic shift occurred around ∼0.2 Ga, well beyond the period of reconstructible astro-

nomical forcing (Laskar et al., 2004).
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3. Finally, each GLDA depression may have hosted multiple phases of glacial activity since lava was em-

placed 1.3 Ga. Obliquity cycles at ∼101–102 kyr timescales drive climate variations (Laskar et al., 2002, 

2004), and depending on the sensitivity of GLDAs to Martian climate, it is possible that the Kasei Valles 

region has undergone multiple phases of glacial activity over the last 1.31 Ga. In this third scenario of 

polyphase glaciation, aghost records the maximum cumulative time that each GLDA depression has been 

free of ice between cycles of glacier growth and recession, rather than a maximum age estimate of the 

timing of its final deglaciation.

While we cannot disregard scenarios 2 and 3, based on available evidence, we consider scenario 1 to be the 

most likely model of glacial history in Kasei Valles. There is no clear and obvious record of polyphase gla-

ciation in the Kasei Valles landform assemblage, nor do we consider that crater inheritance exerts a strong 

control on the variability in model ages (Section 4.3). Although polyphase glaciation is evident elsewhere 

on Mars (e.g., Baker et al., 2010; Brough et al., 2015; Dickson et al., 2008; Hepburn et al., 2020b; Levy et al., 

2007; Morgan et al., 2009), each GLDA depression studied herein has a single sharply defined boundary 

with the lava flow. Within or beyond GLDA depressions, there are no clearly identifiable features such as 

moraines or eskers, which may be linked to multiple phases of glaciation. It is possible that such a record 

has since been removed or otherwise is no longer visible or may not have been formed at all beneath what 

we anticipate were cold-based GLDAs. However, as with present day VFFs, we anticipate GLDAs persisted 

beneath relativity thin (∼10 m) supraglacial debris layers (Baker & Carter, 2019). This debris layer would 

have limited atmospheric mass balance exchanges such that, following an initial period of accumulation, 

the decoupling of GLDAs from climate would have enabled the long-term survival of buried ice in Kasei 

Valles, even as Martian climate varied dramatically. Therefore, we anticipate that local variations in the 

thickness of glacial ice and supraglacial debris layers exert the strongest controls on the longevity of GLDAs.

Our reconstruction of GLDAs raises interesting questions regarding their initial formation. Our prediction 

that mesas were submerged by palaeo ice may potentially support the idea that GLDAs formed following 

the decay of a thick, continuous, and regional-scale ice sheet over the Kasei Valles region. Although we do 

not find any direct evidence for such an ice sheet (which would well predate the emplacement of the AHv 

lava unit 1.3 Gyr ago), this configuration has been used by Fastook et al. (2014) as an initial condition for 

their model of the historical evolution of contemporary mid-latitude LDAs.

The GLDAs reconstructed here represent some of the oldest glacial ice masses on Mars and their dating and 

modeling yield a unique insight into low-latitude ice in the late Amazonian, beyond the known extent of 

contemporary ice-rich VFFs and before the oldest estimates of mid-latitude glacial activity. We provide an 

indirect measurement of ice survival times on Mars, indicating GLDAs persisted in the Kasei Valles region 

for ≥1 Gyr prior to their demise during the late Amazonian on Mars.
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