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Abstract—In this paper, the on-state performance limits of 

4H-SiC IGBTs are theoretically estimated for the first time and 

compared against silicon counterparts. The theoretical analysis is 

based on the static modelling of a high-current PiN diode and the 

calculation results are examined with TCAD simulations. Owing 

to conductivity modulation effect, the on-state losses of 4H-SiC 

IGBTs do not show any significant increase with the increase in 

breakdown voltage. However, the large built-in potential of SiC 

poses an inherent limit on the reduction of on-state voltage drop. 

Compared with 4H-SiC IGBTs, the silicon based IGBTs exhibit 

superior on-state performance limits within the breakdown 

voltage range considered, although their drift layer thicknesses 

are 10 times higher than that of 4H-SiC IGBTs. Therefore, silicon 

IGBTs remain as efficient technologies for enhancing high power 

conversion efficiency. 

 

Index Terms—IGBT, silicon carbide, 4H-SiC IGBT, theoretical 

limit, forward voltage drop, injection efficiency.  

I. INTRODUCTION 

ILICON Carbide (SiC) based power devices are well suited 
for high voltage power electronics by taking the advantages 

of its superior physical and electrical properties, such as high 
critical electric field, high electron velocity and high thermal 
conductivity. Owing to the remarkable progress in material 
growth and device technologies, SiC unipolar devices have 
been introduced commercially from 600 V to 1700 V [1-3]. The 
first commercial SiC power device was a Schottky Barrier 
Diode (SBD), which was released in 2001 [4]. After the 
improvement of channel mobility and gate oxide reliability, a 
1.2 kV planar type SiC MOSFET became commercially 
available in 2011 [3] and the trench type SiC MOSFET was 
reported in 2015 [5]. The highest blocking voltage reported so 
far is the 15 kV SiC MOSFETs [6], which have been used in 
developing high frequency solid-state transformers [7]. 
Although the SiC MOSFETs have exhibited superior high 
frequency switching performance in comparison to Si-IGBTs, 
the on-state losses increase dramatically when blocking voltage 
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is higher than 10 kV. Moreover, the specific on-resistance (Ron, 

sp) further increases with increasing junction temperature due to 
reduced carrier mobility. Therefore, using ultra-high voltage (> 
10 kV) unipolar devices for high power applications is not a 
cost-effective solution from the practical point of view. 

To operate beyond the 1-D material limit for SiC unipolar 
devices, SiC bipolar devices such as 4H-SiC IGBTs with 
blocking voltages from 5.8 kV to 27 kV have been developed to 
achieve a much higher current density [8-30]. The first 4H-SiC 
IGBT was reported in 1999 [8] and the early fabricated SiC 
IGBTs were mostly p-channel type due to easy availability and 
low resistance of n+ substrates [30]. After SiC epitaxial growth 
and fabrication technologies became mature, n-channel SiC 
IGBTs were developed with thick free-standing SiC epitaxial 
layers and various substrate removal/grinding processes [19, 
24, 27, 29]. As the electron mobility is nearly 8 times higher 
than the hole mobility in 4H-SiC, n-channel IGBTs are more 
favored than p-channel IGBTs due to lower on-state voltage 
drops and faster switching speeds [21, 31]. However, the large 
built-in potential induced by the wide bandgap of SiC (3.26 eV) 
is still a primary limitation to the on-state performance. 
Another challenge is the low ambipolar lifetime which is 
generally on the order of 1 µs [28]. Without high ambipolar 
lifetime, the diffusion lengths of the carriers are not sufficient to 
generate high levels of conductivity modulation within the drift 
regions. Recent efforts on lifetime enhancement procedures 
have confirmed that long time (10 ~15 hours) thermal oxidation 
at 1300 ºC can improve the as-grown drift ambipolar lifetime to 
more than 10 µs [28, 32, 33]. Such high carrier lifetime can 
result in a higher level of conductivity modulation in the SiC 
bipolar devices and enable the blocking voltages of 4H-SiC 
IGBTs to be further increased. In the meantime, the 
developments on silicon-based power devices have shown 
significant progress in terms of power efficiency as well as 
blocking capability. For example, a silicon IGBT device in 
planar gate and Soft-Punch-Through (SPT) technologies has 
shown a breakdown voltage of 8.4 kV with superior on-state 
performance and short-circuit capability [34]. In addition, the 
silicon Light-Triggered Thyristors (LTT) with conventional 
field-stop layers can yield a blocking capability of more than 13 
kV [35, 36]. Recently, the feasibility study of a 13 kV silicon 
IGBT was discussed [37]. The proposed device can be operated 
under a DC voltage of 6.6 kV and at a switching frequency of 
150 Hz. Therefore, it becomes imperative to investigate the 
on-state performance limit of 4H-SiC IGBTs with comparison 
to the theoretical limit of silicon-based IGBTs (Si-IGBTs) [38]. 
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Limit of 4H-SiC IGBT in Field-Stop Technology 

Peng Luo, Member, IEEE, and E. M. S. Narayanan, Senior Member, IEEE 

S 

mailto:pluo2@sheffield.ac.uk
mailto:s.madathil@sheffield.ac.uk
http://ieeexplore.ieee.org/


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

 
Fig. 1.  Charge distributions within an IGBT. 

In this paper, the ideal on-state performance of an IGBT is 
analyzed through static modeling of a high current PiN diode in 
Section III. Section IV compares the on-state performance 
limits between 4H-SiC IGBTs and Si-IGBTs. In Section V, 
TCAD simulations are employed to examine the proposed 
theoretical limits. Finally, the theoretical analysis and the 
simulation work are summarized in Section VI. 

II. IDEAL PERFORMANCE OF AN IGBT 

Fig. 1 shows the on-state charge distributions within an 
IGBT. The theory of achieving the lowest forward voltage 
drops in a PiN diode or an IGBT has been proposed in [38, 39]. 
As per this model, electrons are injected from channel inversion 
layers and accumulated beneath the trench gate, a PiN diode 
structure is thus formed within the IGBT. Since the channel 
resistance of an IGBT is largely dependent on the MOS 
structure design and the channel mobility, the improvement of 
the on-state behavior of an IGBT is mainly focused on 
improving the carrier distribution within the N-drift layer. For a 
definite current density, a higher carrier density within the drift 
region is desirable to obtain a lower forward voltage drop 
(Vce(sat)). The electron injection efficiency (γE) is defined as the 
ratio of the electron current density to the total current density, 
as shown in (1). Assuming bipolar condition (n ≈ p) is satisfied 
within the drift layer and eliminating the parameter of electric 
field (E) from (2)-(4), the slope of the excess carrier profiles at 
the cathode side can be expressed as (5). Therefore, it can be 
concluded that the IGBT structure performs the lowest Vce(sat) 
when the γE is close to 1. 

 𝛾𝐸 = 𝐽𝑛𝐽 = 𝐽𝑛𝐽𝑝 + 𝐽𝑛 (1) 

 𝐽𝑝 = 𝑞𝑝𝜇𝑝𝐸 − 𝑞𝐷𝑝 𝑑𝑝𝑑𝑥 (2) 

 𝐽𝑛 = 𝑞𝑛𝜇𝑛𝐸 + 𝑞𝐷𝑛 𝑑𝑛𝑑𝑥 (3) 

 𝐷𝑛,𝑝 = (𝑘𝑇𝑞 ) 𝜇𝑛,𝑝 (4) 

 
𝑑𝑛𝑑𝑥 = 𝐽(𝜇𝑛 + 𝜇𝑝)2𝑘𝑇𝜇𝑛𝜇𝑝 ∙ (𝛾𝐸 − 𝜇𝑛𝜇𝑛 + 𝜇𝑝) (5) 

 
Fig. 2.  Ideal on-state carrier distribution within an IGBT. 

III. STATIC MODELLING OF AN IGBT 

The Vce(sat) of a trench IGBT structure consists of three 
components: 1) junction voltage (VJ), 2) drift voltage (Vdrift) and 
3) the voltage drop (Vch) across the channel resistance (Rch). As 
per the analysis in Section II, the ideal on-state performance can 
be assumed that all of the current is conducted by electrons (γE 
= 1). In addition, it was found that the forward voltage drop can 
be significantly reduced by making the charge profile of the 
drift region feature a decrease from cathode side to anode side 
[39]. Therefore, the anode injection efficiency is low and the 
excess carrier profile within the i-layer/drift-layer is assumed to 
exhibit a linear decrease from cathode side to anode side, as 
depicted in Fig. 2. It is also assumed herein that the carrier 
lifetimes are long enough and there is no recombination within 
the N-drift region [38, 39]. As the hole current is absent (Jp = 0), 
the electric field can be expressed as (6). Thus, the Vdrift can be 
obtained by integrating the electric field within the N-drift 
region, as shown in (7). In addition, the VJ consists of the 
voltage across the P-anode/N-drift junction (J1) and the voltage 
across the accumulation layer/N-drift interface (J2), as 
expressed in (8)-(10), where the p0

’ and nW
’ are the hole and 

electron concentration at J1 and J2 under equilibrium, 
respectively. Therefore, the minimum Vce(sat) can be derived 
with the distributed carrier concentration (n0 and nW), which can 
be calculated by integrating (11). According to the assumption 
in [39], the n0 can be expressed as (12), where Qpa and Dn0 are 
the P-anode dose and electron diffusion coefficient in the 
P-anode, respectively. Dn(n) can be described with the 
carrier-carrier scattering mobility proposed for a germanium 
diode [40, 41], as shown in (13)-(15), where mn and mp are the 
density-of-state effective masses for electron and hole, 
respectively. As described in [39], the Dn(n) can be further 
simplified as (16)-(18), where nm is the maximum electron 
concentration within the N-drift region. At last, the carrier 
distribution (n(x)) shown in (19) is calculated with (11), (12) 
and (16). The minimum Vce(sat) of an IGBT device considered 
Vch is finally expressed in (20). 

 𝐸 = 𝑘𝑇𝑞  1𝑛 𝑑𝑛𝑑𝑥 
(6) 

 𝑉𝑑𝑟𝑖𝑓𝑡 = ∫ 𝐸 𝑑𝑥𝑊
0 = 𝑘𝑇𝑞 ln 𝑛𝑊𝑛0  (7) 
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 𝑉𝐽1 = 𝑘𝑇𝑞 ln 𝑝𝑜𝑝0′  (8) 

 𝑉𝐽2 = 𝑘𝑇𝑞 ln 𝑛𝑊𝑛𝑊′  (9) 

 𝑉𝐽 = 𝑉𝐽1 + 𝑉𝐽2 = 𝑘𝑇𝑞 ln 𝑛𝑜𝑛𝑊𝑛𝑖2  (10) 

 𝐷𝑛(𝑛) 𝑑𝑛𝑑𝑥 = 𝐽𝑛2𝑞 = 𝐽2𝑞 (11) 

 𝑛0 = √𝑄𝑝𝑎𝐽/𝑞𝐷𝑛0 (12) 

 𝜇𝑛 = 𝑞𝑘𝑇 𝐷𝑛 = 𝑞𝑘𝑇 𝐵𝑛 ln (𝐴/𝑛) (13) 

 𝐴 = 2.07 × 1015 × 𝑇2𝑚𝑛−1 + 𝑚𝑝−1  (14) 

 𝐵 = 2.16 × 1013 × (𝑚𝑛−1 + 𝑚𝑝−1)1/2 × 𝑇5/2 (15) 

 𝐷𝑛(𝑛) = 𝑎/(𝑛 + 𝑏) (16) 

 𝑎 = 𝐵/ {(1 + ln 𝐴𝑛𝑚) + (1 + ln 𝐴𝑛𝑚)−1} (17) 

 𝑏 = 𝑎/𝐷𝑛(0) = 𝑎/𝐷𝑛0 (18) 

 𝑛(𝑥) = (√𝑄𝑝𝑎𝐽𝑞𝐷𝑛0 + 𝑏) 𝑒( 𝐽𝑥2𝑞𝑎) −𝑏 (19) 

𝑉𝑐𝑒(𝑠𝑎𝑡) = 𝑉𝑑𝑟𝑖𝑓𝑡 + 𝑉𝐽 + 𝑉𝑐ℎ = 2𝑘𝑇𝑞 ln 𝑛𝑊𝑛𝑖 + 𝑅𝑐ℎ𝐽 

= 2𝑘𝑇𝑞 ln [ 1𝑛𝑖 {(√𝑄𝑝𝑎𝐽𝑞𝐷𝑛0 + 𝑏) 𝑒( 𝐽𝑥2𝑞𝑎) −𝑏}] + 𝑅𝑐ℎ𝐽 
(20) 

IV. PERFORMANCE LIMITS OF 4H-SIC IGBTS 

To calculate the on-state performance limits of Si-IGBTs and 
4H-SiC IGBTs, the electrical properties of silicon and 4H-SiC 
are listed in Table І. The N-drift thickness (W) used for 
calculation is considered as the drift layer thickness of 
field-stop IGBTs. Fig. 3 shows the dependence of breakdown 
voltage on W and N-drift doping concentration (Nd). As the 
critical electric field strength of the 4H-SiC is almost 10 times 
higher than that of silicon, the 4H-SiC IGBT can achieve an 
equivalent breakdown voltage with only 1/10 of the drift 
thickness of a Si-IGBT. In addition, it should be noted that the 
Nd required for Ultra-High Voltage (UHV) Si-IGBTs (> 10 kV) 
is lower than the silicon intrinsic carrier concentration (ni) at Tj 
= 125 ºC, as shown in Table I. Therefore, the ni poses a 
fundamental limit on the maximum operating temperature of 
UHV Si-IGBTs. In contrast, 4H-SiC IGBTs do not suffer from 
this issue owing to the much lower ni as a result of wider energy 
bandgap. Hence, a much higher operating temperature can be 
achieved by 4H-SiC IGBTs from the blocking capability point  

TABLE I 
ELECTRICAL PROPERTIES OF SILICON AND 4H-SIC 

Properties  

(Tj = 25 ºC / 125 ºC) 
Silicon 4H-SiC 

Energy Bandgap (eV) 1.12 / 1.09 [42] 3.26 / 3.23 [4] 

Intrinsic carrier 
concentration ni (cm-3) 

1 × 1010 /   6.16 × 1012 [42] 
1.73 × 10−8 /  0.24 [4] 

Electron mobility µn 
(cm2/Vs) 

1450 / 715 [43] 950 / 476 [44] 

Electron diffusion 
coefficient Dn0 (cm2/s) 

37.4 / 24.6 24.5 / 16.37 

Electron density-of-state 
effective mass mn (m0

-1) 
1.18 / 1.22 [42] 0.4 / 0.41 [45] 

Hole density-of-state 
effective mass mp (m0

-1) 
0.81 / 0.85 [42] 2.64 / 2.65 [45] 

Maximum electron 
concentration nm (cm-3) 

1 × 1018 1 × 1017 

P-anode dose Qpa (cm-2) 5 × 1013 3 × 1015 

 
 

 
Fig. 3.  Dependence of breakdown voltage on the N-drift thickness and doping 
concentration at Tj = 25 ºC. 

of view. On the other hand, the Auger recombination and 
band-to-band (radiative) recombination have a significant 
impact on the effective carrier lifetime at high injection levels 
[46]. Therefore, the maximum excess carrier density (nm) must 
take Auger recombination and band-to-band recombination 
into account. In the theoretical investigation of Si-IGBT 
performance limit [38], the excess carrier density is in the range 
of 1×1017 to 1×1018 cm-3 at high current densities, and the 
diffusion coefficient is significantly reduced compared with the 
simulation results when the carrier density is higher than 1×1018 
cm-3. Thus, the maximum electron density considered herein is 
1×1018 cm-3 for the analysis of Si-IGBT performance limits. 
However, in the ultra-high voltage 4H-SiC PiN diodes, the 
band-to-band recombination significantly reduces the effective 
carrier lifetime when the excess carrier concentration is higher 
than 1×1017 cm-3 [46], which poses an inherent limit on the 
on-state performance. As shown in Fig. 6(b) and Fig. 7, the 
excess carrier density within a 110 µm drift layer is in the range  
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TABLE II 
CHANNEL PARAMETERS  

Parameters 

(Tj = 25 ºC / 125 ºC) 
Si-IGBTs 4H-SiC IGBTs 

Channel mobility µch (cm2/V·s) 300 / 200 [47] 18 / 20 [17] 

Cell pitch Wcell (µm) 14.5 14.5 [17] 

Channel length Lch (µm) 0.7 0.7 [17] 

Gate oxide thickness tox (nm) 50 50 [17] 

Gate voltage Vg (V) 20 20 [17] 

Threshold voltage Vth (V) 3 / 2 3 / 2 [17] 

Channel resistance Rch (mΩ*cm2) 0.14 / 0.2 2.37 / 2.01 

 
 

 

 
Fig. 4.  Theoretical limits of Si-IGBT and 4H-SiC IGBT at (a) Tj = 25 ºC and (b) 
Tj = 125 ºC. 

 𝑅𝑐ℎ = 𝑊𝑐𝑒𝑙𝑙𝐿𝑐ℎ2𝜇𝑐ℎ𝐶𝑜𝑥(𝑉𝑔 − 𝑉𝑡ℎ)  (21) 

of 1×1016 to 1×1017 cm-3 at Jc = 100 A/cm2, the estimated 
ambipolar diffusion length in this case is about 100 µm [46], 
which is sufficient to highly modulate the conductivity of a drift 
layer below 200 µm [48]. Therefore, the maximum electron 
density used for 4H-SiC IGBTs is 1×1017 cm-3. 

 
Fig. 5.  Cross-section of a simulated 15-kV trench field-stop 4H-SiC IGBT. 

Moreover, the low channel mobility of 4H-SiC IGBTs 
results in a high channel resistance [14, 15, 17], which cannot 
be ignored in the analysis of on-state performance. The channel 
resistance can be calculated with (21), assuming that channel 
parameters are constant across the voltage range considered, 
and the channel layers are not conductivity modulated even in 
the narrow mesa IGBTs [49, 50]. Table II summarizes the 
channel parameters for Si-IGBTs and 4H-SiC IGBTs. The 
channel parameters for 4H-SiC IGBTs are from the 
experimental data in [17], and the main parameters are kept 
constant for comparison. Due to the lower channel mobility, the 
Rch of 4H-SiC IGBTs is 10 times higher than that of Si-IGBTs. 

Figs. 4 (a) and (b) compare the on-state performance limits 
between Si-IGBTs and 4H-SiC IGBTs at Tj = 25 ºC and Tj = 
125 ºC, respectively. The absolute specific on-resistances (Ron, 

sp) are calculated at Jc = 100 A/cm2 and Jc = 200 A/cm2, 
respectively. In addition, the experimental data of the Si-IGBTs 
[34, 51-55], SiC IGBTs [8-30], SiC MOSFETs [1] and SiC 
GTOs/ETOs [56-59] are plotted in Fig. 4(a). In comparison to 
the unipolar devices, the Ron, sp of Si-IGBTs and 4H-SiC IGBTs 
are not sensitive to the variation in breakdown voltage owing to 
the conductivity modulated drift layers. Although both 4H-SiC 
IGBT experimental data and performance limits have shown 
significant improvement of Ron, sp compared to that of SiC 
MOSFETs for UHV (> 10 kV) cases, the theoretical limits of 
4H-SiC IGBTs are still much higher than that of Si-IGBTs 
when BV < 20 kV due to the large built-in potential (knee 
voltage). This is the case even at Tj = 125 ºC although the 
built-in potential has decreased at high temperature. However, 
the UHV Si-IGBTs (> 10 kV) are lack of high temperature 
operation (Tj > 125 ºC) capability due to the inherent limit on 
breakdown voltage. In contrast, owing to the much lower 
intrinsic carrier densities at high temperatures, 4H-SiC IGBTs 
can remain high temperature operation capability without any 
impact on the blocking stability. Note that some experimental 
data of SiC IGBTs shown in Fig. 4(a) are close to the SiC-IGBT 
limit at Jc = 100 A/cm2, because they are operated at current 
densities of more than 100 A/cm2. However, they are still much 
higher than the theoretical limit at Jc = 200 A/cm2. Therefore, 
there is still large room for SiC IGBTs to be further improved. 
Moreover, recent research showed that the channel mobility of 
a lateral trench SiC MOSFET can be significantly increased to 
276 cm2/V·s due to FinFET effect [60]. Hence, the on-state  
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Fig. 6.  Influence of carrier lifetime upon (a) I -V characteristics and (b) excess 
carrier distributions during on-state, mesa width S = 0.1 µm. 

performance of trench SiC IGBTs is expected to be further 
improved by utilizing the technology in [60]. 

V. SIMULATION OF 4H-SIC IGBT 

A 15 kV 4H-SiC IGBT in field-stop and trench technologies 
is simulated through Silvaco TCAD [61] to examine the 
proposed performance limits. The cross-section of the 
simulated device and the structural parameters are shown in 
Fig. 5. The thickness of the N-drift region is designed to be 110 
µm in order to support more than 16 kV blocking voltage.  
Physical models including bandgap narrowing model, 
Shockley-Read-Hall (SRH) recombination and direct 
recombination (Auger) models [61] are specified within the 
simulations. Figs. 6 (a) and (b) show the influence of various 
carrier lifetimes upon I -V characteristics and on-state carrier 
distributions within the N-drift region, respectively. The carrier 
lifetime specified in the simulations is the SRH lifetime, which 
is independent of excess carrier density [46]. As expected, 
increasing carrier lifetime can effectively improve the I -V 
performance due to the increase of excess carrier density within 
the N-drift layer. However, the I -V characteristics do not 
exhibit any further improvement when the carrier lifetime is 
increased to more than 10 µs. This is because the direct 
recombination limits the effective carrier lifetime at high level 
injection.  Fig. 7 shows the influence of γE on the on-state  

 
Fig. 7.  Influence of γE upon the on-state carrier density within the N-drift layer, 
trench width is kept identical for comparison. 

 
Fig. 8.  Influence of γE upon the Vce(sat) of the 15 kV 4H-SiC IGBT. The 
theoretical limit is calculated with a N-drift thickness of 110 µm. 

carrier density. The cathode side carrier density increases 
significantly with the increase in γE. The increase of γE is due to 
the Injection Enhancement (IE) effect [62], which is achieved 
by scaling down the mesa width in this case. Smaller mesa 
width can constrict the flow of hole current into the emitter. 
Hence, more excessive holes pile up beneath trench corners, 
which increases the drift layer potential and enhances the 
electron current from the inversion layers. In addition, the 
influence of the γE upon Vce(sat) is depicted in Fig. 8. It can be 
seen that the Vce(sat) decreases dramatically with increased γE 
and approaches the theoretical limit when γE is close to 1. The 
calculated Vce(sat) is 3.04 V at Jc = 100 A/cm2 and Tj = 25 ºC, 
which is slightly lower than the minimum Vce(sat) (3.09 V) 
obtained from simulation results. The slight difference is due to 
the occurrence of direct recombination in the simulations. 
However, if the direct recombination model is disabled in the 
simulations, the minimum simulated Vce(sat) will decrease to 
3.04 V, which is closely matched with the theoretical 
calculation. Therefore, it can be concluded that the theoretical 
analysis regarding to the on-state performance limits of 4H-SiC 
IGBTs is consistent with the numerical simulation results. 

Figs. 9 (a) and (b) compare the theoretical analysis of Vdrift in 
this paper with the theoretical analysis of Vdrift (Equation 7.51)  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

 

 
Fig. 9.  Comparison of calculated Vdrift with TCAD simulation results and the 
theoretical analysis in [4] of (a) Si-IGBT and (b) 4H-SiC IGBT. The simulation 
results are the Vdrift of a PiN structure at Jc = 200 A/cm2. 

in the textbook [4]. TCAD simulation results are used as 
benchmark to examine the proposed on-state limits herein and 
the theoretical analysis (Equation 7.51) in [4]. Note that the 
Equation 7.51 in [4] assumes unity injection efficiency at both 
cathode and anode sides, and the analysis is independent of 
current density. As shown in Fig. 9, the calculation results in 
this paper are close to the simulation results and the estimated 
Vdrift increases with increasing current density. However, the 
Eq. 7.51 results are at least one order of magnitude lower than 
the simulation results, which are over low to estimate the 
on-state performance limits. This is because unity injection 
efficiency at anode side is difficult to realize because the 
field-stop layer limits the P-anode injection efficiency. 
Therefore, the theoretical analysis herein provides a more 
accurate method to estimate the on-state performance limits of 
IGBTs in Field-Stop technology. 

VI. CONCLUSION 

The on-state performance limits of 4H-SiC IGBTs in 
Field-Stop technology are presented and investigated through 
theoretical analysis and TCAD simulations. Owing to the 

superior material properties, 4H-SiC IGBTs can provide high 
temperature operations at UHV conditions and the Ron, sp does 
not show any significant increase with the increase in 
breakdown voltage due to conductivity modulation effect. 
However, the large built-in potential of 4H-SiC is the major 
limitation to the on-state performance in the temperature range 
considered. Simulation results show that the Vce(sat) of 4H-SiC 
IGBT can be reduced with increased carrier lifetime and tends 
to be saturated when carrier lifetime is longer than 10 µs. In 
addition, the on-state behavior can be improved by increasing γE. In comparison to the 4H-SiC IGBTs, silicon IGBTs show 
much lower on-state losses from the performance limit point of 
view, although their N-drift thicknesses are 10 times higher 
than that of 4H-SiC IGBTs. Therefore, the silicon-based IGBTs 
are still competitive in applications below 13 kV, due to the 
superior on-state behavior and much lower material cost, 
particularly as many of the UHV applications which do not 
require fast switching and high temperature operation 
capabilities. 
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