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Auditory information enhances post-sensory
visual evidence during rapid multisensory
decision-making
Léon Franzen 1,2,5✉, Ioannis Delis 3,5, Gabriela De Sousa1,5, Christoph Kayser 4 &

Marios G. Philiastides 1✉

Despite recent progress in understanding multisensory decision-making, a conclusive

mechanistic account of how the brain translates the relevant evidence into a decision is

lacking. Specifically, it remains unclear whether perceptual improvements during rapid

multisensory decisions are best explained by sensory (i.e., ‘Early’) processing benefits or

post-sensory (i.e., ‘Late’) changes in decision dynamics. Here, we employ a well-established

visual object categorisation task in which early sensory and post-sensory decision evidence

can be dissociated using multivariate pattern analysis of the electroencephalogram (EEG).

We capitalize on these distinct neural components to identify when and how complementary

auditory information influences the encoding of decision-relevant visual evidence in a mul-

tisensory context. We show that it is primarily the post-sensory, rather than the early sen-

sory, EEG component amplitudes that are being amplified during rapid audiovisual decision-

making. Using a neurally informed drift diffusion model we demonstrate that a multisensory

behavioral improvement in accuracy arises from an enhanced quality of the relevant decision

evidence, as captured by the post-sensory EEG component, consistent with the emergence of

multisensory evidence in higher-order brain areas.
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In everyday life, we often encounter situations that demand
rapid decisions based on ambiguous sensory information.
Consolidating the available evidence requires processing

information presented in more than one sensory modality and
exploiting this for multisensory decision-making1–4. For example,
the decision to cross a street on a foggy morning will be based on
a combination of visual evidence about hazy objects in your field
of view and muffled sounds from various sources.

The presence of complimentary audiovisual (AV) information
can improve our ability to make perceptual decisions, when
compared to visual (V) information alone5–8. While recent stu-
dies have provided a detailed picture of the emergence of different
types of uni- and multisensory representations in the brain4,9–11,
these studies have not provided a conclusive mechanistic account
of how the brain encodes and ultimately translates the relevant
sensory evidence into a decision2. Specifically, it remains unclear
whether the perceptual improvements of multisensory decision-
making are best explained by a benefit in the early encoding of
sensory information, changes in the efficiency of post-sensory
processes, such as the accumulation of evidence, or changes in the
required amount of accumulated evidence before committing to a
choice.

These questions can be addressed within the general frame-
work of sequential sampling models, such as the drift diffusion
model (DDM), which posit that decisions are formed by a sto-
chastic accumulation of evidence over time12–16. The DDM
decomposes behavioral data into internal processes that reflect
the rate of evidence accumulation (drift rate), the amount of
evidence required to make a decision (starting point and decision
boundaries corresponding to the different decision alternatives),
and latencies induced by early stimulus encoding and response
production (nondecision time; nDT). Importantly, different sig-
natures of brain activity were shown to reflect distinct aspects of
this mechanistic model, and therefore, single-trial measurements
of the relevant brain activity can be used to constrain these
models based on the underlying neural processes17–22.

To date, few studies have exploited such neural markers of
dissociable representations associated with sensory and decision
evidence to arbitrate between different accounts of how multi-
sensory evidence influences decisions in the human brain23.
While some studies have performed careful comparisons between
diffusion models and behavioral data24–27, they did not constrain
these models against neural activity. Other studies, in contrast,
tried to dissociate pre- and post-perceptual mechanisms by tra-
ditional activation mapping, but without a clear mechanistic
model reflecting the decision process to support the interpreta-
tion of brain activity28–31. Furthermore, many studies focusing on
visual judgements have considered only very simplistic stimulus
features, such as contrast, salience, random-dot motion, or
orientation7,32–35, which may be encoded locally at the level of
early sensory processing, and hence may not generalize to com-
plex real-life conditions. As a result, the neural mechanisms
governing the influence of information from one modality on the
decision-making process of another modality remain unknown.

In this work, we employ a well-established visual object cate-
gorization task, in which early sensory evidence and post-sensory
decision evidence can be properly dissociated based on electro-
encephalography (EEG) recordings. Specifically, using a face-vs-
car categorization task, we have previously profiled two tempo-
rally distinct neural components that discriminate between the
two stimulus categories: an early component, appearing
~170–200 ms poststimulus onset, and a late component, seen
after 300–400 ms following the stimulus presentation36–41. In this
previous work, we found that the late component was a better
predictor of behavior than the early component, as it predicted
changes in the rate of evidence accumulation in a DDM and

shifted later in time with longer deliberation times36,42–44. Taken
together, these findings established that the early component
encodes the initial sensory evidence, while the late component
encodes post-sensory decision evidence.

Here, we capitalized on these distinct validated neural repre-
sentations of visual information to identify the stage at which
complimentary auditory information influences the encoding of
decision-relevant visual evidence in a multisensory context. Based
on recent results9–11,40, we hypothesized that using AV infor-
mation to discriminate complex object categories—rather than
more primitive visual features—would lead primarily to
enhancements in the Late, as opposed to the Early, component,
consistent with a post-sensory account. Importantly, by com-
bining single-trial modelling and EEG data, we exploited the trial-
by-trial variability in the strength of the Early and Late neural
components in a neurally informed DDM to derive mechanistic
insights into the specific role of these representations in decision-
making with AV information. In short, we demonstrate in this
work that multisensory behavioral improvements in accuracy
arise from enhancements in the quality of post-sensory, rather
than early sensory, decision evidence, consistent with the emer-
gence of multisensory information in higher-order brain
networks.

Results
Behavioral performance. We collected behavioral and EEG data
from 40 participants during a speeded face-vs-car categorization
task (Fig. 1). Participants were required to identify a noisy image
as being either a face or a car, presented in a randomly interleaved
fashion either alone (visual trials; V trials) or simultaneously with
distorted speech or car sounds (audiovisual trials; AV trials) for
50 ms. The amount of visual evidence (image phase coherence)
varied consistently across participants over four levels, whereas
the quality of the auditory evidence (distortion level) was set at a
participant-specific level throughout the task. This level was
determined by calculating the amount of distortion required for
correct discrimination of 68–72% of trials during an auditory-
only training session on the previous day (see “Methods”).

We used generalized linear mixed-effects models (GLMMs)
and post hoc likelihood-ratio (χ2) model comparisons to evaluate
decision accuracy and response times (RTs; using a binomial logit
and a gamma model, respectively), both as a function of modality

Time
Stimulus

Stimulus

Response

Delay

50 ms

50 ms

Max 1.5 s

1 – 1.5 s

AV V

Fig. 1 Experimental paradigm. Schematic representation of the task design
illustrating the order of presented events on the testing day. Participants
had to categorize noisy representations of faces and cars. A brief stimulus,
which was either an image (V) or a congruent image and sound (AV), was
presented for 50ms and followed by a delay period of up to 1500ms during
which participants were required to indicate their decision with a button
press. Their response was followed by an intertrial interval (blank
gray screen), jittered between 1000 and 1500ms in duration, before the
next stimulus was presented.
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(V/AV) and the levels of visual evidence (see “Methods”). We
find that participants perform more accurately during AV than
during V trials (χ2= 30.02, df= 1, p < 0.001; Fig. 2a–c), as well as
with increases in the amount of visual evidence (χ2= 204.51, df
= 3, p < 0.001; Fig. 2a, b). Our data shows no significant
interactions between modality and the level of visual evidence
(χ2= 0.60, df= 1, p= 0.4376; χ2= 0.01, df= 1, p= 0.9142; χ2=
0.69, df= 1, p= 0.4047, respectively; sorted by increasing
coherence level), and very strong evidence for an alternative
model without interactions given our data from a Bayesian mixed
model analysis (BF10= 5030.05 ± 0.62%; see “Methods”). RTs
increase somewhat with AV evidence (χ2= 18.78, df= 1, p <
0.001) and decrease with the amount of visual evidence (χ2=
48.71, df= 3, p= 0.0011; Fig. 2d, e). The RT model shows no
significant interactions between modality and the level of visual
evidence (χ2= 1.43, df= 1, p= 0.2322; χ2= 1.53, df= 1, p=
0.2156; χ2= 0.004, df= 1, p= 0.9522), and very strong evidence
for an alternative model without interactions given our data
(BF10= 1848.15 ± 0.53%).

To ensure that our choice in the amount of participant-specific
auditory evidence could not independently explain the overall
improvements in accuracy during AV trials, we quantified the
extent to which participants provided with higher levels of
auditory evidence benefited more in AV trials. We find that the
amount of auditory evidence explains only a minimal fraction of
the variance in accuracy across participants (R2= 0.01). In
addition, we find that participants who perform well in V trials
also perform well in AV trials (rbend(38)= 0.64, p < 0.0001), and
the majority of participants (90%) show improved decision
accuracy with additional auditory evidence (Fig. 2c).

The nature of our experimental design (i.e., learning to
associate short sounds with specific visual categories) may have
encouraged some participants to adopt a strategy in which—in
some trials—they only used the complementary auditory
information when the visual evidence alone did not allow them
to categorize the stimulus (rather than a consistent combination
of both pieces of evidence). It follows that in this subset of trials,
RTs would increase leading to a bimodality in the RT
distribution, which could have been concealed by group
differences. To rule this out, we first standardized each
participant’s RTs (by z-scoring) and then tested the resulting
distributions for bimodality, using a mixture of one or two
exponentially modified Gaussian distributions (see “Methods”).
We find that one exponential Gaussian fits our RT data best (BIC
=−1064 vs −981 for V and BIC=−912 vs −688 for AV;
Fig. 2f).

Taken together, these results suggest that the combined
influence of audiovisual information indeed contributes to an
increased likelihood of making a correct decision (overall
improvement M= 4.14%, standard deviation (SD)= 3.91%),
but at the cost of response speed (overall slowing across visual
coherence levels M= 33.1 ms, SD= 35.02 ms). The latter is likely
due to additional time required for encoding the auditory
stimulus (see “Discussion”).

Time course of the impact of sounds on visual representations.
Next, we analyzed the EEG data to identify temporally distinct
components that discriminate between face and car stimulus
categories. We performed this analysis separately for V and AV
trials to characterize the extent to which the visual
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Fig. 2 Behavioral performance. a, d Group averages of a decision accuracy (mean) and d response time (RT; median) across the four levels of visual
evidence (phase coherence) and as a function of the visual (V; turquoise) and audiovisual (AV; red) trials. Shaded error bars indicate standard errors of the
mean (SEM) and median across participants (n= 40), respectively. b, e Individual participant behavioral performance changes (AV–V trials) for b decision
accuracy and e RT across the four levels of visual evidence (phase coherence). Group averages were computed across n= 40 independent participants.
Solid black lines indicate group averages. c Robust bend correlation between individual participant decision accuracy, computed across all four levels of
visual evidence (one value per participant), during V and AV trials. Bending (i.e., down-weighting) was performed on 20% of the data points in each
direction. Dashed gray line represents equal performance during V and AV trials. Indicated correlation statistics were obtained from a robust bend
correlation. f Standardized RTs of single trials. RTs were standardized on the participant level. Dots of the raincloud plot denote single-trial RTs108. Source
data for this figure are provided as a Source data file.
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representations encoded in these components were affected by
the additional auditory evidence. Specifically, for each participant
separately, we performed a single-trial multivariate discriminant
analysis45,46 to estimate linear spatial weights (i.e., spatial filters)
that maximally discriminated face-vs-car trials within short pre-
defined temporal windows, locked either to the onset of the sti-
mulus or the response (see “Methods”).

Applying the resulting spatial filters to single-trial data
produces a measure of the discriminating component amplitudes
(henceforth y), which can be used as an index of the quality of the
visual evidence in each trial36,42,47,48. In other words, more
extreme amplitudes, positive or negative, indicate more face or
car evidence respectively, while values closer to zero indicate less
evidence. To quantify the discriminator’s performance over time
and identify the relevant components, we used the area under a
receiver operating characteristic (ROC) curve (henceforth Az

value) with a leave-one-trial-out cross-validation approach to
control for overfitting.

The discriminator’s performance as a function of stimulus-
locked time reveals a broad window over which face-vs-car
decoding was statistically reliable for both V and AV conditions
(i.e., 180–600 ms poststimulus; Fig. 3a). To identify the number of
relevant components in this range, we applied temporal clustering
on the resulting scalp topographies as in previous work (see
“Methods”)41. This procedure reveals the presence of two
temporally distinct scalp representations with a transition point
at 380 ms poststimulus for both the V and AV conditions. These

spatial representations are consistent with our previously
reported Early and Late components, with centrofrontal and
bilateral occipitotemporal activations for the Early and a
prominent centroparietal activation cluster for the Late compo-
nent (Fig. 3a, top)36–38,42,43.

We then extracted participant-specific component latencies—
for each condition separately—by identifying the time points
leading to peak Az performance within each of the two windows
identified by the clustering procedure. We allowed a 40 ms gap
centered on the transition point to avoid potential multiplexing
effects (i.e., we considered stimulus-locked windows 180–360 ms
and 400–600 ms, for the Early and Late components, respec-
tively). The mean peak times for the Early component for the V
and AV conditions are 293 ms (SDV= 53.84 ms, SDAV= 57.52
ms). The mean peak times for the Late component are 500.25 ms
(SDV= 40.92 ms) and 508.25 ms (SDAV= 40.76 ms) for the V
and AV conditions, respectively. Our data shows no statistically
significant latency differences across V and AV conditions (Early:
two-sided paired t test, t(39)= 0.00, p= 1; Late: two-sided paired
t test, t(39)=−1.09, p= 0.281).

Moreover, the seemingly separate peaks in the discriminator
performance (Fig. 3a) within the earlier temporal window
(180–360 ms poststimulus) are likely due to interindividual
differences in the onset of the Early component (i.e., differences
in early sensory encoding). We tested this formally by
demonstrating that the distributions of the Early component
peak latencies are best approximated by a mixture of two—rather
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than one—Gaussians (BIC= 433 vs 438 for V and BIC= 440 vs
444 for AV) with means ~240 and ~330 ms, respectively, which
coincide with the two peaks in the aforementioned window.

Our main goal in this work is to determine when the decision-
relevant category information is enhanced in the AV condition.
We, therefore, sought to identify temporal windows during which
the discriminator performance differs systematically between V
and AV trials, and test the extent to which they overlap with the
Early and/or Late components. Specifically, we used a temporal
cluster-based permutation analysis, whereby for each temporal
sample we created a bootstrap distribution of group-level Az

difference scores (AV–V) and compared the bootstrapped
median difference score against the lower bound of the estimated
confidence interval of the distribution (supporting a significance
level of p < 0.025)49,50. To form contiguous temporal clusters and
avoid transient effects due to false positives, we required a data-
driven minimum temporal cluster size of at least three significant
samples (see “Methods”).

This analysis shows only a single temporal cluster overlapping
with the Late component (490–540 ms) over which the
discriminator performance for AV trials is significantly improved
compared to V trials (Fig. 3a, b). During this time, up to 78% of
participants exhibited increases in the discriminator’s perfor-
mance for AV trials, compared to only 60% of participants during
the Early component (Fig. 3c). These findings indicate that the
addition of auditory information in our task enhances primarily
the quality of visual evidence (as reflected in our discriminator
component amplitudes y) during post-sensory decision-related
processing (Fig. 3d). This enhancement of the quality of decision
evidence during AV trials is comparable across both correct and
incorrect trials—with the quality of evidence being overall higher
during correct compared to incorrect trials (Fig. 3e; BF10= 10.27
± 0.9%). Further, our data provide evidence against an interaction
between AV benefit and decision accuracy (BF10= 2.06 ± 1.3%).

To rule out that these post-sensory enhancements are not
driven by the speed (and hence the efficiency) with which
participants encode the early sensory evidence, we performed two
complementary analyses. Specifically, we correlated our Early
component peak times with (1) the differential Late component
amplitude effects (AV–V) and (2) the peak times of the Late
component. In both analyses, we observe that the latency of the
Early component has no significant leverage on the neural
correlates of the Late component (rbend=−0.28, p= 0.071 and
rbend= 0.22, p= 0.1752, respectively).

In previous work, we showed that the Late component activity
starts out as being stimulus-locked, but persists and becomes
more robust near the response36,41,42, consistent with the notion
that decision evidence reverberates and accumulates continuously
until one commits to a choice. We therefore repeated the single-
trial multivariate discrimination analysis on response-locked data.
Importantly, this analysis also helps to rule out potential motor
confounds associated with differences in RTs across V and AV
trials by abolishing potential temporal lags near the time of the
response.

As with the stimulus-locked analysis, we compared the face-vs-
car discriminator performance between V and AV trials. This
analysis reveals a temporal cluster leading up to the eventual
choice (−110 to −60 ms pre-response) during which discrimi-
nator performance is significantly enhanced for AV compared to
V trials (Fig. 4a, b), with consistent effects (>70%) appearing
across participants (Fig. 4c). Inspection of the resulting scalp
maps during this period indicates that the spatial topographies,
featuring a prominent centroparietal cluster, are consistent with
the Late component seen in the stimulus-locked analysis
(rbend(38)= 0.88 for V and 0.86 for AV; compare scalp
topographies for LateS and LateR in Figs. 3a and 4a), in line

with previous work19,41,44. These findings further highlight that it
is primarily late, decision-related visual evidence that is being
amplified during audiovisual object categorization (Fig. 4d).
Similar to the stimulus-locked Late component, we find very
strong evidence that this amplification in AV trials arises
independently of the accuracy of the decision, while overall
neural evidence is higher for correct trials (Fig. 4e; BF10= 506.3 ±
0.73%). There is no interaction between this amplification of
neural evidence and the accuracy of a decision (Fig. 4e; BF10=
3.05 ± 0.86%).

Neurally informed modelling explains multisensory effects.
Having characterized whether the added influence of auditory
information enhances early sensory or late post-sensory visual
representations, we then asked whether the identified single-trial
neural responses are directly linked to improvements in behavior
between V and AV trials. To this end, we employed a neurally
informed variant of the traditional hierarchical drift diffusion
model (HDDM; see “Methods”), a well-known psychological
model for characterizing rapid decision-making14,51,52 to offer a
mechanistic account of how the human brain translates the
relevant evidence into a decision. In doing so, we directly con-
strained the model based on additional neural evidence, hence
closing this persistent gap in the literature26,28,30.

In brief, the traditional HDDM decomposes task performance
(i.e., choice and RT) into internal components of processing
representing the rate of evidence integration (drift rate, δ), the
amount of evidence required to make a choice (decision
boundary separation, α), the duration of other processes, such
as stimulus encoding and response production (nDT), and a
potential bias or prior information favouring one of the two
choices (starting point, β). Ultimately, by comparing the obtained
values of all these HDDM parameters across the V and AV trials,
we could associate any behavioral differences resulting from the
addition of auditory information (improved performance and
longer RTs as in Fig. 2) to the constituent internal processes
reflected by each of these parameters.

Importantly, we deployed a neurally informed HDDM
(nHDDM), whereby we incorporated single-trial EEG component
amplitudes (y-values) into the parameter estimation (Fig. 5a).
Specifically, we extracted single-trial discriminator amplitudes
from participant-specific temporal windows (i.e., peak Az

difference across AV–V) corresponding to both the Early and
the Late stimulus-locked EEG components (see “Methods”). Since
these values represent the amount of face or car evidence available
for the decision (i.e., indexing the quality of the visual evidence as
we demonstrated in previous work38,42,43), we used them to
construct regressors for the drift rate parameter in the model
(γEarly, γLate), based on the idea that evidence accumulation is
faster when the neural evidence for one of the choices is higher.
We therefore estimated these regression coefficients (γEarly, γLate)
to directly assess the relationship between trial-to-trial variations
in EEG component amplitudes and drift rate.

We further hypothesized that the reliability of sensory
information (as reflected by the visual coherence levels) would
affect the rate of information integration. Thus, as per common
practice14,53, we modeled a linear relationship between drift rate
and coherence levels. To investigate whether this relationship is
modulated by the Early and/or Late EEG component amplitudes,
we tested three models where coherence scaled (a) yEarly, (b) yLate,
or (c) both components. We find the best fit for the model where
coherence scales yLate (deviance information criterions (DICs)=
767, 517, and 661, respectively), indicating that the modulation of
the Late component with the reliability of available evidence
predicts the rate of evidence accumulation. In other words, the
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best fitting model suggests that the effect of task difficulty on
behavioral performance is captured by post-sensory mechanisms.
Critically, this result dissociates the roles of the Early and Late
EEG components in the decision-making process and is
consistent with the role of the Late component in indexing the
quality of the evidence entering the decision process (as has been
shown in past work38,42,43), which, unlike early sensory encoding,
is more closely associated with the accuracy of perceptual choices.

When applying this model to the behavioral data, we obtain a
good fit, accounting for most of the variance in the choice and RT
data (average R2= 0.94; Fig. 5b). Consistent with the functional
role of the Early and Late EEG components in conveying sensory
and post-sensory evidence, respectively, the within-participant
single-trial discriminator amplitudes of both components are
predictive of drift rate in both sensory conditions (Fig. 5c, d; γEarly
and γLate significantly larger than zero for both V and AV, t(39)
= 17.67, t(39)= 15.55 for γEarly(V), γEarly(AV), respectively, and t
(39)= 11.92, t(39)= 16.02 for γLate(V), γLate(AV), respectively, all
p values < 0.001; all two-sided paired t tests). Our results also
show that the drift rates of correct trials are on average higher
than those of incorrect trials (δcorrect= 0.27 ± 0.09, δincorrect=
0.14 ± 0.11 for face choices and δcorrect=−0.65 ± 0.11, δincorrect=
−0.34 ± 0.10 for car choices—with the convention of positive
signs for faces and negative signs for cars). This finding provides
strong support that accuracy effects are effectively directly
captured by our nHDDM.

Crucially, the contribution of the Late but not the Early
component (i.e., γLate, but not γEarly) is significantly higher in AV

compared to V trials (Fig. 5d; two-sided paired t tests: t(39)=
−0.6891, p= 0.4984 for γEarly, t(39)=−2.66, p= 0.011 for γLate).
This is consistent with the increased discrimination power of the
Late component in AV trials, and suggests that this component
underpins the behavioral facilitation of evidence accumulation via
post-sensory amplification of the available decision evidence (via
the added auditory information) entering the decision process.

We subsequently investigated the effect of the additional
auditory information on the three other parameters of the
nHDDM. Our data shows no reliable difference in starting point
and boundary separation between the two sensory conditions (βV
= 0.5475 ± 0.005, βAV= 0.5495 ± 0.005; two-sided paired t test: t
(39)=−0.4964, p= 0.6224; Fig. 5e and αV= 1.13 ± 0.03, αAV=
0.12 ± 0.03; two-sided paired t test: t(39)= 0.8191, p= 0.4177;
Fig. 5f), and significantly longer nDTs during AV trials (370 ± 9
ms for V vs 408 ± 10 ms for AV; two-sided paired t test: t(39)=
2.81, p= 0.0063; Fig. 5g). The latter result is likely related to
longer stimulus encoding in AV trials, which may result from the
extra time required to process the auditory stimulus (see
“Discussion”). Notably, the average difference in RTs (33 ms) is
comparable with the average nondecision difference between the
two conditions (38 ms), which provides further evidence for the
early sensory origins of the longer RTs in AV trials.

Neurally informed modelling of choice biases. Next, we
explored additional analyses that had no direct impact on the
multisensory effects reported above, but nonetheless captured
relevant idiosyncratic strategies in choice behavior. Specifically,
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we observe a starting point bias closer to face choices (expressed as
a proportion of the boundary separation, two-sided paired t tests:
t(39)= 9.06 for V and t(39)= 10.63 for AV, both p values < 0.001)
and a higher drift rate for car choices, in both the V and AV
conditions (δcar-V=−0.92 ± 0.14, δface-V= 0.15 ± 0.13, δcar-AV=
−0.96 ± 0.14, δface-AV= 0.07 ± 0.12—positive (negative) signs
indicate face (car) choices). To understand these results, we
examined potential differences in the behavioral results between
face and car choices. In particular, participants choose cars more

often than faces (60 ± 8% of the V trials and 52 ± 8% of the AV
trials were car choices), and are more accurate (84% vs 74% on
average) in trials with a face choice. This accuracy effect is com-
parable across V and AV trials (two-sided paired t test: t(39)=
−0.98, p= 0.3353; 83.2 ± 1.34% for V and 86.59 ± 1.14% for AV
face choices, 72.84 ± 0.98% for V and 76.9 ± 0.91% for AV car
choices).

These results suggest that the bias in the starting point is likely
driving the accuracy difference between face and car choices (i.e.,
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more (fewer) errors when the starting point is further from
(closer to) the correct boundary), while the higher number of car
responses could be explained by a higher drift rate during car
choices. The latter is also consistent with the RT distributions for
face and car choices (Fig. 5b), where car RTs appear to have
slightly longer tails but modes similar to face RTs. Importantly,
these two parameter differences are consistent across the two
conditions (V and AV), and thus they have no impact on the
behavioral multisensory effects and their underlying neural
mechanisms.

Finally, given the timing of the Early component, we also
considered whether it relates to the duration of sensory
processing mechanisms captured in the nHDDM by nDTs. Thus,
we also tested a model with yEarly as a regressor for nDT (rather
than drift rate). However, this model demonstrates no relation-
ship between yEarly and nDT (regression coefficients are not
significantly different from 0 for both V and AV). Moreover, this
model yields a poorer fit of the data compared to the model of
choice (DIC= 1277 vs 517 for the chosen nHDDM). This finding
is also consistent with the notion that increases in the nDTs
observed in AV trials are likely driven by increases in the early
encoding time of the added auditory information.

Neurally informed model outperforms behaviorally con-
strained model. Given that most previous studies in multisensory
decision-making have fit DDMs only to behavioral data, it is
worth asking whether the inclusion of EEG-derived regressors
actually improves model performance and/or shapes the con-
clusion derived from the model. We formally compared the
neurally inspired HDDM to a standard HDDM without neurally
informed constraints. The traditional model yields a poorer trade-
off between goodness-of-fit and complexity, as assessed by the
DIC for model selection54, compared to its neurally informed
counterpart (DICHDDM= 758 vs DICnHDDM= 517). In addition,
the conclusions that would have been derived from such a poorer
model contradict those reported above. For example, the con-
ventional HDDM yields larger boundary separations for AV trials
(two-sided paired t test: t(39)=−3.52, p= 0.0011), the nDTs
estimated by this model are ~100–120 ms longer for both sensory
conditions compared to the nHDDM (490 ± 10 ms for V and 509
± 11 ms for AV), and the difference in average nDTs across
conditions (19 ms) does not track the mean RT difference as
closely as the nDTs estimated by the nHDDM. Hence, this poorer
performing model constrained only on the behavioral data could
lead to the misleading conclusion that the auditory information
also affects the response caution (or individual speed-accuracy
trade-off strategies via boundary adjustments). This supports the
importance of constraining behavioral models with neural data
and suggests that integrating neural information in these models
can potentially enable a more accurate characterization of the
behavioral effects, as well as a mechanistic interpretation of their
neural correlates.

Discussion
In this work, we used multivariate single-trial EEG analysis and
behavioral modelling to investigate the enhancement of visual
perceptual decisions by complementary auditory information.
We showed that significant improvements in behavioral perfor-
mance in AV trials were accompanied primarily by enhance-
ments in a late EEG component indexing decision-related
processes36–38,42,43. In contrast, an earlier EEG component
reflecting sensory (visual) evidence remained unaffected by the
addition of auditory evidence. Using neurally informed cognitive
modelling, we showed that these multisensory behavioral and

neural benefits could be explained primarily by improvements in
the rate of evidence accumulation in the decision process itself.

The processing of multisensory information requires the
coordination of multiple mechanisms serving bottom-up, top-
down, and predictive coding processing3. The neural imple-
mentation of these mechanisms involves a distributed neural
network, including primary sensory, parietal, and frontal brain
areas that interact with each other to form and shape multi-
sensory perception10,11.

In this study, we were particularly interested in when multi-
sensory information is combined to improve perceptual judge-
ments. In the field of multisensory decision-making, there are two
prominent theories that emphasize either the role of early or late
integration of multisensory information, respectively2. The early
integration hypothesis55–57 posits that sensory evidence is com-
bined at the stage of early sensory encoding. This hypothesis is
supported by evidence for direct pathways between early visual
and auditory regions, or cross-modal influences on neural
responses in early visual cortices55,58–62 and studies demon-
strating benefits for the perception of simplistic visual stimuli,
such as contrast7,63, motion direction5,32, and simple shape dis-
crimination29 from acoustic information. However, the use of
such simple stimuli may have specifically engaged only early
sensory regions, hence providing a biased interpretation that does
not generalize to more complex objects.

In contrast, the late integration hypothesis, postulates that
evidence from each sensory modality is instead processed sepa-
rately during early sensory encoding, and is combined into a
single source of evidence downstream, during the process of
decision formation itself2. Support for this hypothesis comes from
both animal and human experiments demonstrating that multi-
sensory information is accumulated right up to the point of a
decision, while processing of unisensory information occurs prior
to the formation of a multisensory decision8,64. Similarly, recent
neuroimaging work has provided new insights that flexible
behavior can be accounted for by causal inference models65, with
multisensory representations converging on higher-level parietal
and prefrontal regions (e.g., inferior parietal sulcus, superior
frontal gyrus) previously linked to the process of evidence accu-
mulation9–11,66,67.

Our findings appear to be at odds with the early integration
hypothesis, since we found no evidence that the addition of
auditory information had any impact on the encoding of early
visual evidence, which remained comparable between V and AV
trials. Instead, we offered support for post-sensory enhancements
of decision evidence with the addition of auditory information
that is most consistent with the late integration hypothesis.
Importantly, these later visual representations are likely to reside
in higher-order visual areas involved in object recognition and
categorization (e.g., lateral occipital cortex), as we have shown
previously38, consistent with the emergence of multisensory evi-
dence only after early sensory encoding9. Specifically, the timing
of these representations (starting after early sensory encoding and
lasting until the commitment to choice) suggests that they unfold
concurrently with the decision and provide the input to the
process of evidence accumulation in prefrontal and parietal cor-
tex66–70.

A potential confounding factor for the late multisensory effects
observed in our data could be differences in attention between V
and AV conditions. If such unspecific effects were indeed at play,
they would have likely impacted both early and late processing
stages in a similar manner. Moreover, recent work suggests that
the influences of multisensory information and attention operate
independently across cortical columns71, and that attentional
resources are largely shared across sensory modalities72. Hence,
arguing against a competition between sensory modalities for
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attentional resources. Experimentally, we fully randomized all
trials to ensure participants were equally likely to encounter (and
expect) V or AV stimuli during each trial, thereby minimizing
differences in attention between sensory conditions.

Another potential point of departure from previous studies is
that we observed increased RTs during multisensory trials. This
finding likely stems from the auditory information being context-
dependent and complementary to the visual information, rather
than redundant as in previous work73. In other words, the sounds
in our task are treated as supplementary evidence, instead of
simply providing confirmation of the visual evidence, that require
the deployment of additional processing resources, consistent
with the observed increases in nDTs for multisensory trials in our
modelling results.

An alternative interpretation of these increases in nDT during
multisensory trials provoked by a lack of latency differences in
our Early (sensory) component across V and AV trials could be
differences in motor preparation. This interpretation is highly
unlikely because participants indicated their decision, using the
same motor effectors and button press in both V and AV trials.
Furthermore, our hypothesized increases in sensory encoding
time due to the additional processing of auditory evidence during
AV trials would not have been reflected in the latency of our Early
component, which remained unaffected by the presence of the
additional auditory evidence.

Correspondingly, reaction time differences could arise due to
the particular choice of sensory modalities and/or interindividual
choice strategies employed by participants. For example, a recent
study26 using time-varying multisensory information (visual and
vestibular) reported faster, but slightly less accurate choices for
multisensory compared to unisensory decisions. The authors
modeled these results with a variant of the DDM model that
incorporates the effects of time-varying information and sensory
cue reliability and reported consistent drift rate improvements in
the multisensory condition across participants. In other words,
despite differences in the behavioral outcomes, their findings are
in line with the increase in drift rate in AV trials we observed in
the present study; that is, both studies suggest that multisensory
information leads to faster accumulation of sensory evidence.

Crucially in this work, we were able to characterize the neural
underpinnings of the behavioral benefits obtained from the
addition of auditory information. This contribution was made
possible by the joint cognitive modelling of behavioral and neural
data that linked the neural correlates of sensory and decision
evidence with the internal processes involved in decision-making.
Our neurally informed DDM indicated that the improvement in
behavioral performance is derived mainly from enhanced post-
sensory representations that modulate the rate of evidence
accumulation. This result ran contrary to the behavioral-only
version of a standard DDM, which attributed the longer RTs in
AV trials to additional changes (increases) in the decision
boundary and to a lesser extent to early encoding of the auditory
stimulus.

We suggest that the reason for this discrepancy is a less
accurate account of the trial-by-trial variability in the decision
dynamics (also indicated by the poorer fit of the single-trial data)
than its neurally informed counterpart. In other words, the
inclusion of the two well-characterized EEG components pro-
vided a more accurate account of the contributions of early
sensory and post-sensory decision evidence to the formation of
decision dynamics. Thus, this approach enabled the dis-
ambiguation of the internal processing stages that yielded such a
behavioral benefit. Additional support for this claim is provided
by the fact that the behavioral model yielded longer stimulus
encoding times, whose difference across conditions did not track
the difference in measured RTs equally well.

Our findings suggest that constraining models of perceptual
decision-making with neural data can provide key mechanistic
insights, which may remain unobserved using behavioral mod-
elling alone. This argument is in line with recent research, sug-
gesting that the high complexity of decision-making models may
yield neurally incompatible outcomes74–76. However, when
informed by neural measurements, these models cannot only
yield more reliable parameter estimates, but also shed light on the
neural mechanisms underpinning behavioral effects43,51,77–81.

It is worth noting that several previous studies have used
DDMs to study multisensory decision-making. Some of these
considered models in which the combination of multisensory
information was explicitly hardwired, for example, to converge
during sensory accumulation25,82,83. By doing so, these models
can describe certain aspects of human behavior, but they cannot
evaluate competing hypotheses about the locus of convergence.
Other multisensory studies have combined behavioral modelling
using DDMs and EEG, but did not use the neural data to con-
strain the behavioral model. Using such an approach, we have
previously argued that the encoding of visual random-dot motion
in early sensory regions is affected by acoustic motion5, speaking
in favor of a sensory-level integration effect. However, this
sensory-level effect was not validated using an EEG-inspired
DDM model, as performed here.

One explanation for these diverging findings is that the use of
simpler stimuli, such as random-dot motion, may have biased the
earlier study to a sensory-level effect, whereas multisensory
information about more complex objects is instead combined at a
post-sensory stage. This interpretation is supported by neuroi-
maging studies that have reported audiovisual interactions for
complex stimuli mostly at longer poststimulus latencies or in
high-level brain regions84–87.

Another potentially important difference that might explain
these divergent findings is the particular construction of the
multisensory context across tasks. Many audiovisual integration
studies use tasks in which there is a direct mapping between the
source of the evidence across the two modalities, for instance,
seeing a person’s mouth while producing speech (i.e., lip reading)
to compensate for noisy acoustic information in a bar. In the
present task, as in many real-world scenarios, however, this direct
audiovisual mapping is not immediately available. In our earlier
example, the decision to cross the street on a foggy morning will
be based on hazy objects in your visual field together with street
sounds that cannot immediately be matched to individual objects.
In other words, the decision to step off the curb will be based on a
broader audiovisual context and a higher-level conceptualization
of the evidence, such as the presence of car-like objects and
sounds signaling a busy street. This is a subtle but critical dis-
tinction in deciphering the mechanisms underlying audiovisual
integration and reconciling discrepancies across different
experimental designs.

Methods
Participants. We estimated a minimum sample size of 35 participants by an a
priori power analysis for a fixed linear multiple regression model with two pre-
dictors, a medium effect size of 0.5, an alpha of 0.05, and a power of 0.95. We
therefore tested 40 participants (male= 18, female= 22; mean age= 23.85, SD=
5.47) on a speeded face-vs-car categorization task. All participants were right-
handed with normal or corrected-to-normal vision and no self-reported history of
neurological disorders. This study was approved by the ethics committee of the
College of Science and Engineering at the University of Glasgow (CSE 300150102).
All participants provided written informed consent prior to participation.

Stimuli. We used a set of 30 grayscale images—15 of faces and 15 of cars (image size
670 × 670 pixels, 8-bits per pixel)—adapted from our previous experiments36–38,42.
The original face images were selected from the face database of the Max Planck
Institute of Biological Cybernetics88 and car images were sourced from the Internet.
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Upon retrieval of the images, the background was removed and the image placed on
uniform gray background.

All images were equated for spatial frequency, contrast, and luminance, and had
identical magnitude spectra (average magnitude spectrum of all images in the
database). We manipulated the phase spectra of the images using the weighted
mean phase technique89, whereby we changed the amount of visual evidence in the
stimuli as characterized by their percentage phase coherence. To manipulate task
difficulty, we used four levels of sensory visual evidence (27.5, 30, 32.5, and 35%
phase coherence). These levels were based on our previous studies36–38,42, as they
are known to result in performance spanning psychophysical threshold. Both
image categories (i.e., faces and cars) contained an equal number of frontal and side
views (up to ±45 degrees). We displayed all pictures on light gray background
(RGB [128, 128, 128]), using the PsychoPy software90 (version 1.83.04) for a
duration of 50 ms.

Auditory sounds (15 car- and 15 face-related) were used in addition to the
visually presented images in a random half of trials. Sounds were either human
speech or car/street-related sounds obtained from online sources. No copyright
restrictions were in place and modifications of the sound files were allowed. These
were sampled at a rate of 22.05 kHz and stored as .wav files. In MATLAB (version
2015b, The MathWorks, 2015, Natick, Massachusetts), we added a 10 ms cosine
on/off ramp to reduce the effects of sudden sound onsets and normalized all
sounds by their SD. Subsequently, we reduced the intensity of these normalized
sounds by lowering their amplitude by 80%. Sounds were embedded in Gaussian
white noise, and the relative amplitude of the sounds and noise was manipulated to
create 17 different levels of relative noise-to-signal ratios (ranging from 12.5 to
200% of noise relative to the lowered amplitude signal in increments of 12.5%). The
resulting noisy speech- and car-related sounds were presented binaurally for 50 ms
through Sennheiser stereo headphones HD 215.

The stimulus display was controlled by a Dell 64 bit-based machine (16 GB
RAM) with an NVIDIA Quadro K620 (Santa Clara, CA) graphics card running
Windows Professional 7 or Linux-x86_64 and PsychoPy presentation software90.
All images were presented on an Asus ROG Swift PG278Q monitor (resolution,
2560 × 1440 pixels; refresh rate set to 120 Hz). Participants were seated 75 cm from
the stimulus display, and each image subtended ~11 × 11 degrees of visual angle.

Behavioral task. We employed an adapted audiovisual version of the widely used
visual face-vs-car image categorization task36–38,42. This task required participants
to decide whether they saw a face or a car embedded in the stimulus. Participants
were asked to indicate their decision via button press on a standard keyboard as
soon as they had formed a decision. The response deadline was set at 1.5 seconds.
During half of the trials, participants were also given an additional auditory cue in
the form of a brief noisy sound that was congruent with the picture’s content.
Audiovisual face trials were accompanied by a human speech sound, whereas
audiovisual car trials were accompanied by a car-related sound, such as squeaking
tires or a slammed door. All stimuli were presented for 50 ms in the center of the
screen and on AV trials to both ears. Participants were explicitly instructed to pay
equal attention to and base their decision on information presented in both
modalities in all trials. During AV trials, pictures and sounds were presented
simultaneously. More specifically, we used four levels of visual noise, but only one
participant-specific auditory difficulty level, obtained at perithreshold performance
during an initial auditory training task (see below). Thereby, we accounted for
interindividual differences in auditory perception, independently of visual image
difficulty.

This experimental paradigm required participants to attend a training and a
testing session on two consecutive days at the same time of the day. On the first day
(i.e., the training day), participants were asked to perform three separate simple
categorization tasks to familiarize themselves with the task: (1) a visual image
discrimination task (face-vs-car), (2) an auditory sound discrimination task (face/
speech vs car/street sounds) and (3) an audiovisual discrimination task (face-vs-
car). During the training session, participants also received visual feedback
following each response (on all three tasks). Feedback was presented centrally for
each of the possible three outcomes: ‘Correct’ written in green, ‘Incorrect’ written
in red, and ‘Too slow’ written in blue (when participants exceeded the response
deadline). Stimuli presentation duration for all stimuli and tasks was set to 50 ms
for comparability between the training and testing days.

During the visual training task, we used the same images and all four levels of
visual evidence as on the second day (i.e., the testing day). During the auditory
training task, we presented sounds to participants using eight different levels of
relative noise-to-signal ratios (12.5%, 37.5%, 62.5%, 93.75%, 125%, 150%, 175%,
and 200% of added noise). We estimated participant-specific noise levels
supporting individual perithreshold performance (i.e., ~70% decision accuracy),
including levels that might have fallen in between the eight noise-to-signal ratios
used in this training task (from the larger set of 17; M= 140%, SD= 45%). We
used these individual levels for the audiovisual training task and the main
experiment. During the audiovisual training task, we used all images at the four
levels of visual evidence together with the participant-specific perithreshold noise
level determined above. This audiovisual training task mimicked the main task
presented on the second (testing) day, with the addition that participants received
feedback on their choices.

Overall, on the training day, we presented 480 trials for each of the visual and
auditory discrimination training tasks split into four blocks of 120 trials with a 60-
second rest period between blocks. We presented 240 trials split into two blocks
during the audiovisual training task. Taken together, all three training tasks lasted
approximately 55 minutes on the first (training) day.

On the second day, we collected behavioral and EEG data using randomly
interleaved visual (unisensory) and audiovisual (multisensory) trials in a combined
task (Fig. 1). Stimuli presentation employed the same task timings as outlined
above on both days. Crucially, we did not provide any feedback to participants
during testing. Using only one auditory noise level per participant on the testing
day allowed us to evaluate the effects of auditory benefit at different levels of visual
evidence. We presented 720 trials—divided equally between all stimulus categories
(i.e., face/car, V/AV, and four levels of visual evidence)—in short blocks of 60 trials
with 60-second breaks between blocks. The entire task on the testing day lasted
approximately 45 minutes. EEG data were collected only during the testing day.

Behavioral analysis. Our main behavioral analysis quantified participants’ beha-
vioral performance (i.e., decision accuracy and RTs) in the data collected during
the testing day, using two separate GLMMs. GLMMs are superior to traditional
repeated measures ANOVA analysis as their random effects structure better
accounts for inter-participant variability, and allows for mixing of categorical and
continuous variables91. Both models included all main effects and interactions of
our two predictor variables, modality (V and AV) and visual evidence (27.5, 30,
32.5, and 35%), along with by-participant random slopes and random intercepts
for the modality main effect. These random effects structure was justified by our
design and adopted for reasons of parsimony. We employed post hoc likelihood-
ratio (χ2) model comparisons to quantify the predictive power and significance of
all main effects and interactions included in both GLMMs. These likelihood-ratio
(χ2) model comparisons compared the full model (i.e., a model including all main
effects, interactions, and random effects) to a reduced model, excluding the pre-
dictor or the set of predictors in question. Only results and statistics of the post hoc
model comparisons are reported in the main results section. We performed these
GLMM analyses using the lme4 package92 in RStudio93, specifying a binomial logit
model in the family argument of the glmer function for decision accuracy, a binary
dependent variable, and a gamma model for RT, a continuous dependent variable
while selecting the bobyca optimizer. The predictor modality was entered in mean-
centered form (deviation coding), whereas the predictor visual evidence (four
levels) was entered using mean-centered backward difference coding. By using
mean-centered coding schemes, we accounted for small imbalances in trial num-
bers between a predictor’s levels. Random correlations were excluded for
both GLMMs.

To quantify evidence for and against specific nonsignificant interaction effects
in our two GLMMs, we complemented these models with model comparisons of
two Bayesian linear mixed models (using the lmBF function and default priors of
the BayesFactor package94 in RStudio93). We report a Bayes Factor indicating the
available evidence for the alternative model (i.e., a reduced model omitting the
interaction in question) given the data and a proportional error estimate for the
Bayes Factor resulting from 500.000 Markov chain Monte Carlo (MCMC)
iterations. All models in this study used single-trial data as input and are based on
the following mean amount of trials per condition across participants: Vcar=
178.53, Vface= 178.78, AVcar= 178.33, and AVface= 177.88. The respective mean
absolute deviation was Vcar= 1.74, Vface= 1.6, AVcar= 2.18, and AVface= 2.81
trials. Note that 180 trials per condition were originally presented to all
participants.

To quantify whether single-trial RT distributions are bimodal, we standardized
(z-scored) RTs on the participant level before fitting a mixture of exponentially
modified Gaussian (expGaussian) distributions (using maximum likelihood
estimation) to the resulting RT distribution. Further, to formally rule out that our
choice of participant-specific levels of auditory evidence could exclusively explain
individual improvements in decision accuracy in AV trials, we correlated these
measures across participants, using a robust bend correlation analysis95.
Specifically, we evaluated whether the individual levels of auditory noise correlated
with the difference in accuracy between V and AV trials (i.e.,
accuracyAV–accuracyV) across participants. As part of this correlation analysis, we
computed the mean accuracy across all trials of each level of visual evidence and
modality for each participant separately. In addition, to demonstrate that
participants who performed well in V trials also performed well in AV trials, we
complemented the above analysis by correlating decision accuracy (one value per
participant calculated across visual coherence levels) between V and AV trials,
using robust bend correlation analysis95.

EEG data acquisition and preprocessing. We acquired continuous EEG data in a
sound-attenuated and electrostatically shielded room from a 64-channel EEG
amplifier system (BrainAmps MR-Plus, Brain Products GmbH, Germany) with Ag/
AgCl scalp electrodes placed according to the international 10–20 system on an
EasyCap (Brain Products GmbH, Germany). A chin electrode acted as ground and
all channels were referenced to the left mastoid during recording. We adjusted the
input impedance of all channels to <20 kΩ. The data were sampled at a rate of
1000 Hz and underwent online (hardware) filtering by a 0.0016–250 Hz analog
band-pass filter. We used PsychoPy90 and Brain Vision Recorder (BVR; version
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1.10, Brain Products GmbH, Germany) to record trial-specific information,
including experimental event codes and button responses simultaneously with the
EEG data. These data were collected and stored for offline analysis in MATLAB.
Offline data preprocessing included applying a software-based fourth-order but-
terworth band-pass filter with cutoff frequencies between 0.5 and 40 Hz. To avoid
phase-related distortions, we applied these filters noncausally (using MATLAB
filtfilt). Finally, the EEG data were re-referenced to the average of all channels.

We removed eye movement artifacts, such as blinks and saccades, using data
from an eye movement calibration task completed by participants before the main
task on the testing day. During this calibration task, participants were instructed to
blink repeatedly upon the appearance of a black fixation cross on light gray
background in the center of the screen before making several lateral and horizontal
saccades according to the location of the fixation cross on the screen. Using
principal component analysis, we identified linear EEG sensor weights associated
with eye movement artifacts, which were then projected onto the broadband data
from the main task and subtracted out45. We excluded all trials from all subsequent
analyses where participants exceeded the RT limit of 1.5 s, indicated a response
within <300 ms after onset of the stimulus or the EEG signal exceeded a maximum
amplitude of 150 μV during the trial (0.8%, 0.06%, and 0.03% of all trials across
participants, respectively).

EEG data analysis. We employed a linear multivariate single-trial discriminant
analysis of stimulus- and response-locked EEG data45,46 to identify early sensory
and late decision-related EEG components discriminating between face and car
trials as in previous work (e.g., refs. 36–38,42). We performed this analysis separately
for V and AV trials to independently identify the sensor signals discriminating the
relevant visual evidence in each sensory modality condition, and allow direct
comparisons between them in terms of overall discrimination performance. All
single trials were included in all discriminant analyses.

Specifically, we identified a projection of the multichannel EEG signal, xi, where
i= (1…N trials), within short time windows (i.e., a sliding window approach) that
maximally discriminated between face and car trials (i.e., V discrimination: face-vs-
car; AV discrimination: face/speech vs car/street sounds). All time windows had a
width of 60 ms and onset intervals every 10 ms. These windows were centered on
and shifted from −100 to 1000 ms relative to stimulus onset on stimulus-locked
data and from −600 to 500 ms relative to the response button press on response-
locked data. Specifically, a 64-channel spatial weighting wðτÞ was learned by means
of logistic regression45 that achieved maximal discrimination within each time
window, arriving at the one-dimensional projection yi(τ), for each trial i and a
given window τ:

yðτÞ ¼ wðτÞTx τð Þ ¼
XD

i¼1

wiðτÞxiðτÞ: ð1Þ

Here, T refers to the transpose operator and D refers to the number of EEG
sensors. In separating the two stimulus categories, the discriminator was designed
to map component amplitudes yiðτÞ for face and car trials, to positive and negative
values, respectively. These values are a weighted reflection of all available neural
evidence with respect to the specific decision task (face-vs-car) that we asked
participants to perform. By performing separate analyses for each modality
condition, any unspecific effects present across trials—such as memory recollection
or attention—would not be contributing to the estimation of the relevant
classification weights separating face from car trials, and would effectively be
subtracted out96.

To quantify the performance of our discriminator for each time window, we
used the area under a ROC curve97, referred to as an Az value, combined with a
leave-one-trial-out cross-validation procedure to control for overfitting36–38,42.
Specifically, for every iteration, we used N-1 trials to estimate a spatial filter w,
which was then applied to the left out trial to obtain out-of-sample discriminant
component amplitudes (y) and compute the Az value. Moreover, we determined
significance thresholds for the discriminator performance (rather than assuming an
Az of 0.5 as chance performance) using a bootstrap analysis, whereby face and car
labels were randomized and submitted to a separate leave-one-trial-out test. This
randomization procedure was repeated 1000 times, producing a probability
distribution for Az, which we used as reference to estimate the Az value leading to a
significance level of p < 0.05 (participant average Azsig= 0.57). Note that this EEG
analysis pipeline was performed on individual participants such that each
participant became their own replication unit98.

Finally, the linearity of our model allowed us to compute scalp projections of
our discriminating components resulting from Eq. (1) by estimating a forward
model as:

a τð Þ ¼ xðτÞyðτÞ
y τð ÞTyðτÞ ; ð2Þ

where the EEG data (x) and discriminating components (y) are now in a matrix
and vector notation, respectively, for convenience. Such forward models can be
displayed as scalp topographies and interpreted, as the coupling between the
observed EEG and the discriminating component amplitudes (i.e., vector α reflects
the electrical coupling of the discriminating component y that explains most of the
activity in x). These forward models were computed separately for V and AV face-
vs-car discriminant analyses.

Optimizing number of distinct spatiotemporal components. During periods of
sustained significant discriminating activity, we used the forward model estimates
resulting from Eq. (2) above to identify temporal transitions between different
components based on differences in scalp distribution, which are typically sug-
gestive of changes in the underlying cortical sources. Specifically, we used a k-
means clustering algorithm using a Euclidean distance metric on the intensities of
vector a(τ) for the entire time range of interest and optimized k (i.e., the number of
different time windows with similar scalp topographies) using silhouette values99,
as implemented in MATLAB’s evalclusters function. Our results remained robust
regardless of the choice of criterion (e.g., Silhouette, CalinskiHarabasz, etc.), the
distance metric used for clustering, and the conditions it was applied to (i.e., V or
AV trials). We used the resulting temporal components in all relevant EEG
analyses.

Temporal cluster-based bootstrap analysis. To quantify if and when the dis-
criminator performance differed between V and AV trials, we used a percentile
bootstrap technique for comparing the group-level Az difference between two
dependent samples49. Specifically, on a sample-by-sample basis, we created a dis-
tribution of shuffled Az difference scores (i.e., AV–V) across participants (drawing
with replacement). We repeated this shuffling procedure 1000 times for each
sample, whereby we created a random bootstrap distribution of median Az dif-
ference scores from every iteration. We computed the median of this bootstrap
distribution for a given sample along with the 95% confidence interval (2.5–97.5%)
of the resulting distribution of median difference scores. To test whether our
bootstrapped median difference was significantly different from zero for each
sample, we compared it against the lower bound of the estimated confidence
interval (i.e., at the 2.5% threshold; p < 0.025).

To form contiguous temporal clusters and avoid transient effects due to false
positives, we required a minimum temporal cluster size of at least three significant
samples. This threshold was determined by means of the 95th percentile of a data-
driven null distribution of maximum cluster sizes. Specifically, while in the analysis
above the relationship between adjacent samples was preserved, here, we first
applied a permutation procedure (i.e., shuffling temporal samples without
replacement) to abolish the relationship across temporal samples, while keeping the
relative difference between V and AV Az values unchanged, for each sample and
participant. We generated the null distribution of maximum cluster sizes by
computing and storing the maximum number of adjacent significant samples of the
largest cluster for each of the 1000 iterations. Similar to the analysis on our original
data, we performed this analysis on the discriminator performance (Az) of both
stimulus- and response-locked data (Figs. 3b and 4b, respectively), which yielded
an average of at least three significant samples. This procedure corrects for multiple
comparisons and is comparable to the temporal cluster-based nonparametric
permutation test reported in ref. 100.

This entire procedure determined the extent of the temporal window used for
the selection of the single-trial EEG component amplitudes (y-values), which we
subsequently included in the neurally informed drift diffusion modelling analysis
(see section below). Since our sample-based procedure was performed directly on
discriminator accuracy (Az), these times effectively represent the centers of the
original discrimination windows, which consider data from a wider window (60
ms). To capture the full extent of these windows, we extended the selection window
by 30 ms on either side of the significant clusters determined by our temporal
cluster-based bootstrap analysis.

To ensure that neural effects were also reliably traceable in individual
participants without group-level averages masking variability, we also computed
the proportion of participants who demonstrated a participant-level effect in line
with the general group-level effect per sample (that is, higher AV Az value for a
given sample, see Figs. 3c and 4c). We performed these statistical analyses building
on MATLAB code obtained from the Figshare and GitHub repositories associated
with refs. 49,50.

To quantify evidence for and against the effects of sensory modality and
decision accuracy on the subject-specific component amplitudes (y) based on trial
accuracy (Figs. 3e and 4e), we computed two additional Bayesian linear mixed
models analyses (using the generalTestBF function and default priors of the
BayesFactor package94 in RStudio93). Here, splitting trials into correct and
incorrect responses, we report a Bayes Factor indicating the available evidence for
the alternative model (i.e., a larger model including the predictor in question
compared to a reduced model omitting the predictor in question) given the data.
Note, when examining an interaction between sensory modality and decision
accuracy the alternative model is the one omitting the interaction term.

Lastly, we performed a robust bend correlation analysis95 to test the
topographical consistency between the late stimulus-locked and response-locked
components. We computed the average scalp map (i.e., forward models) across
participants at the point of peak discrimination for the two components (500 ms
poststimulus and 100 ms prestimulus, respectively) and assessed their similarity by
computing their correlation. We also used two similar bend correlation analyses to
test the extent to which the individual onset times in the Early component
predicted (1) the difference in the stimulus-locked Late component discriminator
amplitudes across the two modalities (AV vs V), and (2) the peak time of the
stimulus-locked Late component.
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Hierarchical drift diffusion modelling of behavioral data. We fit the partici-
pants’ performance (i.e., face or car choice and RT) with an HDDM101. Similar to
the traditional DDM, the HDDM assumes a stochastic accumulation of sensory
evidence over time toward one of two decision boundaries representing the two
choices (face or car). The model returns estimates of internal components of
processing, such as the rate of evidence accumulation (drift rate), the distance
between decision boundaries controlling the amount of evidence required for a
decision (decision boundary), a possible bias toward one of the two choices
(starting point) and the duration of nDT processes, which include stimulus
encoding and response production.

The HDDM uses MCMC sampling to iteratively adjust the above parameters to
maximize the summed log-likelihood of the predicted mean RT and accuracy. The
DDM parameters were estimated in a hierarchical Bayesian framework, in which
prior distributions of the model parameters were updated on the basis of the
likelihood of the data given the model, to yield posterior distributions52,101,102. The
use of Bayesian analysis, and specifically the HDDM, has several benefits relative to
traditional DDM analysis. First and foremost, this framework supports the use of
other variables as regressors of the model parameters to assess relations of the
parameters with other physiological or behavioral data51,76,78–80,103. This property
of the HDDM allowed us to establish the link between the EEG components and
the aspects of the decision-making process they are implicated in. Second, posterior
distributions directly convey the uncertainty associated with parameter
estimates102,104. Third, the Bayesian hierarchical framework has been shown to be
especially effective when the number of observations is low105. Fourth, within this
hierarchical framework, all observers in a dataset are assumed to be drawn from a
group, which yields more stable parameter estimates for individual participants52.

To implement the hierarchical DDM, we used the Wiener module101 in
JAGS106, via the Matjags interface in MATLAB to estimate posterior distributions.
For each trial, the likelihood of accuracy and RT was assessed by providing the
Wiener first-passage time distribution with the three model parameters (boundary
separation, nDT, and drift rate). Parameters were drawn from group-level Gaussian
distributions. The means and SDs of these group-level distributions had non-
informative normally or uniformly distributed priors. Specifically, all SD priors
were uniformly distributed U(0.01, 2). The mean priors of nDT, boundary
separation, and starting point were also uniformly distributed: nDT ~U(0.01, 1), α
~U(0.01, 3), β ~U(0.1, 0.9). The priors of all the regression coefficients γi means
were Gaussians N(0, 3). For each model, we ran five separate Markov chains with
5500 samples each; the first 500 were discarded (as “burn-in”) and the rest were
subsampled (“thinned”) by a factor of 50 following the conventional approach to
MCMC sampling, whereby initial samples are likely to be unreliable due to the
selection of a random starting point, and neighboring samples are likely to be
highly correlated101. The remaining samples constituted the probability
distributions of each estimated parameter from which individual parameter
estimates were computed.

To ensure convergence of the chains, we computed the Gelman–Rubin R̂
statistic (which compares within-chain and between-chain variance), and verified
that all group-level parameters had an R̂ close to 1 and always lower than 1.03. For
comparison between models, we used the DIC, a measure widely used for fit
assessment and comparison of hierarchical models54. DIC selects the model that
achieves the best trade-off between goodness-of-fit and model complexity. Lower
DIC values favor models with the highest likelihood and least degrees of freedom.

We first estimated a nHDDM that used our EEG discrimination analysis to
inform the fitting of the behavioral data. In this model, we input the single-trial
RTs and (face or car) choices of all 40 participants, and hypothesized that the
evidence accumulation rate during each trial would be dependent on the amount of
neural evidence about face or car choice in that trial. Therefore, as part of the
model fitting within the HDDM framework, we used the single-trial EEG measures
of the face-vs-car discrimination analysis as regressors of the drift rate (δ) as
follows:

δ ¼ γ0 þ γ1 � ysEarly þ γ2 � ysLate � C; ð3Þ
where ysEarly and ysLate are the single-trial discriminator amplitudes of participant-
specific stimulus-locked Early EEG components (individual peak Az across V and
AV in the time range 180–360 ms poststimulus) and Late EEG components
(individual peak Az difference between AV and V in the time range established in
Fig. 3b; 490–540 ms (expanded further by 30 ms on either side to account for the
resulting Az values being obtained with 60 ms training windows centered on these
times)), respectively. The coefficients γi weight the slope of the drift rate by the
values of ysEarly and ysLate of that specific trial, with an intercept γ0. Here, we
estimated γi ’s for each participant and sensory condition. C is the phase coherence
level of the image presented in each trial. This value represents the quality of visual
evidence available in each trial and has been shown to be proportional to the
amplitude of the Late component38,42,43. Hence, by using these regression
coefficients, we were able to test the influences of each of the two identified
components on the drift rate in both sensory conditions78. Posterior probability
densities of each regression coefficient were estimated using the sampling
procedure described above. Significantly positive (negative) effects were determined
when >99.9% of the posterior density was higher (lower) than 0. To test the
significance of differences between the two sensory conditions (V vs AV), we
performed a “hierarchical” t test comparing the population-level distributions of

the parameters under consideration. This statistical testing has been shown to
reduce biases induced by ignoring the hierarchical structure of the model (and
testing at the participant level) and to actually yield conservative effect sizes107.

For comparison, we also estimated a HDDM without including any neural
correlates. We fit the HDDM to RT distributions for face and car choices
conditioned on the sensory condition (V or AV) for each trial. Overall drift rate,
boundary separation, starting point, and nDT were estimated for each individual
participant and were dependent on the sensory condition. As per common practice,
we assumed that evidence strength affected the drift rate; thus, we modeled a linear
relationship between drift rate and coherence level81.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The full neural and behavioral data required to reproduce the main analyses supporting
this work, as well as the visual stimuli used in this study are available from the study’s
Open Science Framework repository (https://osf.io/rhx6y/). The raw EEG dataset is
available from the corresponding authors upon request. Source data are provided with
this paper.

Code availability
Linear discriminant analysis code can be downloaded from the study’s Open Science
Framework repository (https://osf.io/rhx6y/). Code for reproducing all other analyses is
available from the authors upon request.
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