

This is a repository copy of *Kinetic study of the reactions of AIO and OAIO relevant to planetary mesospheres*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/166926/

Version: Supplemental Material

Article:

Mangan, TP orcid.org/0000-0001-7053-5594, Harman-Thomas, JM, Lade, RE et al. (2 more authors) (2020) Kinetic study of the reactions of AlO and OAlO relevant to planetary mesospheres. ACS Earth and Space Chemistry, 4 (11). pp. 2007-2017. ISSN 2472-3452

https://doi.org/10.1021/acsearthspacechem.0c00197

© 2020 American Chemical Society. This is an author produced version of a journal article published in ACS Earth and Space Chemistry. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supporting Information

Kinetic study of the reactions of AlO and OAlO relevant to planetary mesospheres

Thomas P. Mangan¹, James M. Harman-Thomas¹⁺, Rachel E. Lade¹, Kevin M. Douglas¹, John M. C. Plane^{*1}.

School of Chemistry, University of Leeds.
+ Now at School of Mechanical Engineering, University of Sheffield.

* corresponding author. Email: <u>j.m.c.plane@leeds.ac.uk</u>

Contents:

Table S1. List of second-order rate coefficients for reactions R2 - R7, as a function of temperature and pressure.

Table S2. Molecular properties and heats of formation (at 0 K) of AlO, $OAlO_2$, AlO_3 , OAlO, and $AlCO_3$, and the stationary points on the AlO + O_2 and AlO + CO_2 potential energy surfaces. The geometries are illustrated in Figure 9 in the main paper.

Reaction No.	Reaction	Pressure / torr	T / K	Rate coefficient / cm ³ molecule ⁻¹ s ⁻¹
R2	AlO + O ₂ (+ N ₂) \rightarrow OAlO ₂	5.3	192	$(2.44 \pm 0.31) \times 10^{-12}$
			200	$(1.58 \pm 0.03) \times 10^{-12}$
		10		$(2.43 \pm 0.07) \times 10^{-12}$
		14.7	300	$(3.29 \pm 0.18) \times 10^{-12}$
		17.3		$(3.48 \pm 0.1) \times 10^{-12}$
		5.3	351	$(1.34 \pm 0.04) \times 10^{-12}$
			413	$(1.06 \pm 0.11) \times 10^{-12}$
			491	$(8.03 \pm 0.8) \times 10^{-13}$
			600	$(4.89 \pm 0.51) \times 10^{-13}$
			812	$(2.44 \pm 0.36) \times 10^{-13}$
R3	$\begin{array}{c} AlO + CO_2 \left(+ N_2 \right) \rightarrow \\ AlCO_3 \end{array}$	5.4	193	$(8.09 \pm 1.81) \times 10^{-13}$
				$(3.61 \pm 0.44) \times 10^{-13}$
		9.9	300	$(6.13 \pm 0.21) \times 10^{-13}$
		14.8		$(8.77 \pm 0.3) \times 10^{-13}$
		5.4	421	$(1.77 \pm 0.24) \times 10^{-13}$
			599	$(6.94 \pm 1.54) \times 10^{-14}$
			813	$(2.68 \pm 0.79) \times 10^{-14}$
R4	$AlO + O_3 \rightarrow AlO_2 + O_2$	5.8	295	$(1.25 \pm 0.19) \times 10^{-10}$
R5	$AlO + CO \rightarrow Al + CO_2$	1.0	295	$(1.95 \pm 0.35) \ge 10^{-12}$
R6	$OAlO + CO \rightarrow AlO + CO_2$	1.0	295	$(2.6 \pm 0.7) \ge 10^{-11}$
R7	$OAlO + O \rightarrow AlO + O_2$	1.0	295	$(1.9 \pm 0.8) \times 10^{-10}$

Table S1. List of measured second-order rate coefficients for reactions R2 - R7, as a function of temperature and pressure.

Table S2. Molecular properties and heats of formation (at 0 K) of AlO, OAlO₂, AlO₃, OAlO, and AlCO₃, and the stationary points on the AlO + O_2 and AlO + CO_2 potential energy surfaces. The geometries are illustrated in Figure 10 in the main paper.

Molecule	Geometry	Rotational	Vibrational	$\Delta_{\rm f} H^{\rm o}(0 \ {\rm K})$
(electronic state)	(Cartesian co-ordinates in	constants	frequencies	(kJ mol ⁻¹) ^b
	Å) ^a	(GHz) ^a	$(cm^{-1})^{a}$	``´´
AlO	Al, 0., 0., -0.008	18.916	946 ^c	70 ^d
$(^{2}\Sigma^{+})$	O, 0., 0., 1.623			
OAlO ₂	Al, 0., 0., -0.394	33.702	189, 192,	-148
$(^{2}A_{2})$	O, 0., -0.684, 1.318	4.0970	454, 556,	
< -/	O, 0., 0.685, 1.318	3.6530	1109, 1157	
	O, 0., 0., -1.994			
TS from OAlO ₂	Al, 0.931, 0.120, 0.567	14.560	339 <i>i</i> , 183,	-83
to AlO ₃	O, -0.537, 0.973, 0.744	4.8875	218, 645,	
(TS1)	O, -0.239, -1.084, 0.877	3.6592	783, 987	
	0, 2.621, 0.349, 0.253			
AlO ₃	Al, 0.432, 0.281, -0.002	7.1732	170, 190,	-92
$(^{2}B_{2})$	0, 2.034, 0.951, 0.088	6.7640	256, 644,	
	0, 0.257, -1.450, -0.057	3.4813	859, 868	
A10 (analia)	0, -0.923, 1.370, -0.031	24.9252	226 504	22
AIO_2 (cyclic)	$A_{1}, 0., 0., 1.010$	34.8353	336, 504,	32
$(^{2}A_{2})$	0, 0, 0.075, -0.022 0, 0, -0.673, -0.822	10.2871	1180	
	0, 0., 0.075, 0.022	7.9410		
OAlO	Al, 0.0, 0.072, -0.0	5.7786	183, 214,	-69
$(^{2}\Pi_{a})$	O, 1.653, 0.071, -0.0		773, 830	
(11g)	O, -1.654, 0.072, 0.0			
AlO-CO ₂	C, 1.432, 0.072, 0.043	9.1531	37, 57, 64,	-342
	0, 0.343, -0.213, -0.266	2.0912	141, 650,	
	0, 2.522, 0.307, 0.344	1.7023	675, 944,	
	AI, -1.125, 2.435, -0.230		1360, 2394	
	O, 0.389, 2.863, 0.205			
TS from AlO-	Al, 1.445, 0.820, -0.004	9.7093	-223 <i>i</i> , 116,	-335 ^e
CO_2 to $AlCO_3$	O, -0.736, 1.075, 0.049	3.2467	206, 281,	
(TS1)	C, -1.0/1, -0.0/4, 0.015	2.4331	559, 655,	
	0, -1.002, -1.059, -0.008		930, 1276,	
	0, 1.134, -0.797, -0.034		2305	
AlCO ₃	AI, 0.0, -1.589, 0.	12.789	189, 500,	-480
$({}^{3}B_{1})$	0, -1.111, -0.219, 0.	4.1025	577, 658,	
	0, -0.0, 0.0005, 0.	3.1061	/94, 862,	
	0, 0.0, 1.111 - 0.219 0		911, 1010, 1862	
	A1 0 072 0 2215 0 0	01.5001	1002	260
TS from AlO-	$\begin{array}{c} \text{A1, } 0.973, -0.3213, 0.0 \\ 0 & 0.660, 0.027, 0.0 \end{array}$	21.5321	383i, 86,	-269
CO_2 to UAIO-	0, -0.000, 0.937, 0.0	2.05810	125, 185,	
	$C_{1} = 1.385 = -0.0446 = 0.0$	1.0010/	494, 511,	
(182)			996, 1168,	

	O, -2.358, -0.671, 0.0		2184	
OAIO-CO	Al, -0.891, -0.004, 0.0 O, 0.618, 0.996, 0.001 O, -2.463, -0.329, 0.002 C, 1.253, -0.148, 0.0 O, 2.35, -0.549, 0.0	22.2861 2.17845 1.98447	140, 155, 193, 366, 474, 725, 1039, 1112, 1925	-314

^a Calculated at the B3LYP/6-311+g(2d,p) level of theory ¹

^b Calculated at the CBS-QB3 level of theory,² with reference values for $\Delta_f H^o(Al) = 327.3 \text{ kJ} \text{ mol}^{-1}$, $\Delta_f H^o(O) = 246.8 \text{ kJ mol}^{-1}$, $\Delta_f H^o(CO) = -113.8 \text{ kJ mol}^{-1}$, $\Delta_f H^o(CO_2) = -393.2 \text{ kJ mol}^{-1}$ and $\Delta_f H^o(H_2O) = -238.9 \text{ kJ mol}^{-1}$ at 0 K.³

^c Experimental values: $r_e(Al-O) = 1.6179 \text{ Å}; \omega_e = 979 \text{ cm}^{-1.4}$

^d Calculated using $D_0(AlO) = 502.8 \text{ kJ mol}^{-1}$ determined with the very accurate W1BD complete basis set method.¹

^e RRKM fit of the barrier (see text in the main paper). The CBS-QB3 energy is 13 kJ mol⁻¹ lower.

References

1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H., et al. *Gaussian 16, Revision B.01*, Gaussian, Inc.: Wallingford, CT, USA, 2016.

2. Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A Complete Basis Set Model Chemistry. VII. Use of the Minimum Population Localization Method. *J. Chem. Phys.* **2000**, *112*, 6532-6542.

3. Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. *NIST-JANAF Thermochemical Tables 1985 Version 1.0*. National Institute of Standards and Technology Gaithersburg, MD, 1985.

4. Linstrom, P. J.; Mallard, W. G. *NIST Chemistry WebBook*. National Institute of Standards and Technology: Gaithersburg MD, Vol. <u>https://doi.org/10.18434/T4D303</u>, (retrieved May 14, 2020).