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ABSTRACT

Many spatial statistics methods require neighbourhood structures such as the one de-
termined by a Voronoi tessellation, so understanding statistical properties of Voronoi
cells is crucial. While distributions of cell properties when data locations follow an
unbounded homogeneous Poisson process have been studied, little attention has
been given to how these properties change when a boundary is imposed. This is
important when geographical data are gathered within a restricted study area, such
as a national boundary or a coastline.

We study the effects of imposing a boundary on the cell properties of a Poisson
Voronoi tessellation. The area, perimeter and number of edges of individual cells
with and without boundary conditions are investigated by simulation. Distributions
of these properties differ substantially when boundaries are imposed, and these dif-
ferences are affected by proximity to the boundary. We also investigate how changes
in such properties when boundaries are imposed vary over two-dimensional space.

KEYWORDS
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1. Introduction

Voronoi tessellation is a standard subdivision method which partitions a space into
smaller disjoint regions called Voronoi cells based on point locations. Poisson point
processes are useful models to portray the behaviour of spatial data points [1]. The
spatial tiling produced by the Voronoi tessellation induced by points following a homo-
geneous Poisson process is referred to as a Poisson-Voronoi tessellation (PVT). Ripley
[2] discusses the importance of space subdivision methods to investigate spatial splines,
and gives examples of different spatial point patterns for both simulated and real data
to relate the subject to the estimation of distributions of the locations within a region
using the Voronoi tessellation. The Voronoi tessellation has been applied in different

CONTACT Fatih Gezer. Email: mmfge@leeds.ac.uk



sciences such as in seismology where Schoenberg [3] investigated the distribution of
cell areas in a Voronoi tessellation based on the locations of earthquakes in Southern
California; astronomy [4–6] to discover how galaxies are distributed in space; to inves-
tigate the conditions of the habitat of animals when they are establishing territories
[7]; in agriculture for maximal weed suppression in plant crops [8] and to study atomic
crystals [9], liquids [10], glasses [11], and wireless networks [12,13]. An application of
constrained Voronoi tessellation is used in micro-structure modeling [14] where a new
space subdivision method is introduced using inverse Monte Carlo based on condi-
tions such as moving the randomly placed points until their geometric features obey
a particular distribution.

Numerous authors have investigated the geometrical and statistical properties, such as
the cell area, perimeter, numbers of edges or vertices, and vertex angles, of Voronoi cells
in one, two, and three-dimensional spaces. Preliminary studies [15,16] investigated the
mean of cell area, edge length, and number of faces for an aggregate of crystals which
refers to points in the space, and Møller [17] emphasized the algebraic calculation of
the first two moments. Koufos and Dettmann [13] have shown that the features of
Poisson Voronoi cells do not change by conditioning on the location of a point in an
infinite plane.

Even though the distributions of the properties of Voronoi cells has been investigated
empirically, no exact distribution has yet been found. However, various authors have
found that useful approximations can be made using the gamma distribution with ap-
propriately chosen parameters. Kiang [18] proposed an appropriate fit for the length
of Voronoi line segments in one dimension, the area of cells in two dimensions and the
volume of polyhedrons in three dimensions using Monte Carlo methods. In addition,
Weaire et al. [19] suggested analytic derivation of the properties and tested its per-
formance through larger computer simulations. Other similar approaches to estimate
the distribution of such properties of Voronoi cells for homogeneous Poisson point
process are also done in [20–23] with increasing precision as the computational power
increased over time. A generalized gamma distribution introduced by Stacy [24] was
used in [21,23] and found to have a good fit. A recent paper investigated the area
distribution of bounded Poisson Voronoi cells [13].

Our aim is to investigate how the properties of Voronoi cells change due to the imposi-
tion of different boundaries, which has received little attention in previous work. Our
study is based on the Voronoi tessellation of a homogeneous Poisson point pattern, as
discussed in Section 2. A simulation to investigate the boundary effect on the Pois-
son Voronoi cells is described in Section 2. Results are presented and discussed and
comparisons are made to previous work in Sections 3 and 4 respectively. In Section 5,
the change in behaviour of cells due to different point intensities is investigated and
conclusions are made in Section 6

2. Voronoi tessellation and imposed boundaries

Consider a finite set of n recorded points X = {xi ∈ Ω; i = 1,2, ..., n} uniformly dis-
tributed within some finite region Ω ⊂ R2 and let the points X follow a homogeneous
Poisson process so that n ∼ Po(ρ∣Ω∣) with intensity ρ > 0, where ∣Ω∣ denotes the area of
the region Ω. The standard Voronoi tessellation partitions the region into a collection
of disjoint subregions V = {Vi; i = 1, . . . , n} called Voronoi cells. These cells have the
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properties that Vi ∩ Vj = ∅ for i ≠ j and V1 ∪⋯ ∪ Vn = Ω. Each cell Vi is defined to be
that segment of Ω which is closer to the corresponding point xi than any other point
in X, hence

Vi = {x ∈ Ω∣∥x −xi∥ ≤ ∥x −xj∥ for j = 1,2, ..., i − 1, i + 1, ..., n}

where ∥.∥ denotes Euclidean distance. Since the points X follow a homogeneous Pois-
son process, the resulting tessellation V is referred to as a Poisson Voronoi tessellation

(PVT) and each Vi is called the Poisson Voronoi cell corresponding to location xi.
This PVT allows key cell summaries to be defined, for example area, perimeter and
number of cell edges.

The left panel of Figure 1 shows an example of the PVT with ρ = 200 within the
unit square, Ω = [0,1]2, where the circles (open or filled) are the locations of the
recorded points. The solid rectangle is the boundary of the region within which the
uniform random points are generated, and dashed lines indicate the convex hull of
the recorded points. The locations shown with filled circles are the observed points
located on the convex hull whereas the open circles are strictly interior to the convex
hull. The small polygons, shown with solid lines, define the cells of the PVT with each
cell containing exactly one point. The cell edges are perpendicular bisectors adjacent
data points and the intersection of two edges defines a vertex. If all pairs of points
sharing an edge are joined, then the resulting collection of lines is known as a Dirichlet
triangulation.

In some applications there may be a pre-defined region within which points are
recorded, such as a national boundary, or the region may be an artefact of the data
collection process, such as quadrat counting. In other cases, however, the true location
of the region may not be recorded and instead may need to be defined as part of the
data analysis. In the analysis, the bounding region can be a suitable rectangle, the
convex hull of the points, or some other specified region that plays a key role in this
study. The right panel of Figure 1 is a close-up of a section of a PVT showing the
range of different possible effects on PVT cells caused by imposing a boundary on a
set of points. Faint grey points and cells are excluded from the data by the imposition
of the vertical boundary. Open circles indicate points whose cells are unaffected by
the boundary. Squares indicate data points whose original cells are intersected by the
boundary. Filled circles indicate points whose original cells are not intersected by the
boundary but are still changed by the imposition of the boundary due to the removal
of points outside the boundary. Note that cells affected by the boundary may shrink
or grow depending on the configuration of points outside the boundary.

Let N denote the number of edges, P the perimeter and A the area of a Voronoi cell.
Meijering [15] showed

E(N) = 6, E(P ) = 4
√
ρ
, E(A) = 1

ρ
(1)

for the two-dimensional case. Since the cell perimeter and area depend on ρ, it can be
useful to standardize these by dividing by their expectation. We use actual, or non-
standardized, values to visualize and show the summary statistics of these properties
when we wish to consider the effects of changing the intensity. Standardization with
respect to ρ is applied for parameter fitting purposes in later sections to yield parameter
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estimates comparable across intensities, within different boundary scenarios, and with
previous work.

3. Distributions of characteristic properties

3.1. General

We initially study by simulation cell properties of PVT on the infinite plane to establish
a benchmark, and then impose unit square and convex hull boundaries to investigate
how this affects the properties of cells compared to absence of a boundary. Estimated
distributions of the properties will be compared for different boundary conditions and
previous work through standardized values obtained from (1). Standardized cell area
and perimeter are defined as A∗ = A × ρ and P ∗ = √ρ/4 × P , therefore, E(A∗) =
E(P ∗) = 1 for the standardized forms. The number of edges E(N) is not standardized
since it is independent of ρ.

Initially, we set the Poisson intensity of the points to ρ = 200. For each PVT realization,
n spatially uniform random points in [0,1]2 are generated with n ∼ Po(ρ) and their
Voronoi tessellation computed. We sample from the distribution of PVT cells in the
infinite plane using a process proposed by Tanemura [23]. One cell (say xj) is selected
uniformly at random and moved to the centre of the region, so xj is translated by a
vector ν = (0.5,0.5)′ − xj . The positions of the other points are moved by the same
translation using periodic boundary conditions to retain those which move outside
[0,1]2. Finally, properties of the selected cell are calculated. This procedure is repeated
for r = 106 realizations, sampling one cell from each to generate an independent sample
of Voronoi cells.

3.2. Cell area

Figure 2 shows the distribution of cell areas in the (a) infinite plane, (b) unit square
and (c) convex hull cases — in the latter two, the histogram for the infinite plane is
also shown, in grey, for comparison. Corresponding summary statistics are shown in
Table 1. Results for the infinite plane use all 106 cell areas. However, our focus is on
changes induced by imposing a boundary, so for the unit square and convex hull cases
only cells whose area changes are included, to avoid domination by the majority of
cells for which the imposed boundary has no effect. In our simulations, 28% of the
cells were affected by the imposed boundaries.

In Figure 2, all three distributions are clearly positively skewed and unimodal, with
a range from 0 to about 0.02 and mode slightly below the analytically calculated
expectation of 0.05 for the infinite plane. Using the sample distribution for the infinite
plane as a base-line, the peak in the distribution with the unit square boundary is lower
and the spread greater, especially towards the right. With the convex hull boundary
the distribution increases more rapidly, with a lower peak and with slower decay than
in the infinite plane case.

Table 1 shows that the mean cell area for the infinite plane case equals the theoretical
value, but is larger for the unit square and smaller for the convex hull among those
cells affected by the boundary. The variability is similar in all cases and while all cases
are positively skewed there is an increase in skewness when boundaries are imposed.
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For the (excess) kurtosis, all are leptokurtic with the most extreme being the unit
square case and the infinite plane case being closest to normal distribution kurtosis.

To further investigate how the mean cell area is affected by the imposition of bound-
aries, consider Figure 3 which shows the spatial variation of mean cell area as image
plots (left) and as line plots along transects (right). Results are shown for both unit
square (top row) and convex hull (bottom row) boundaries. Due to the vertical and
horizontal symmetry, we have ‘folded’ the results into the bottom-left quadrant of the
unit square to make patterns more clearly visible and reduce random sampling vari-
ation. Lighter intensities in the image plot indicate smaller cell area; recall that the
expected mean area for the infinite plane is 1/ρ = 0.005. The line plots present data
following three transects through the image plot. The diagonal transect is from the
origin to (0.5,0.5)′; the centre transect includes data both horizontally from (0,0.5)′
to (0.5,0.5)′ and vertically from (0.5,0)′ to (0.5,0.5)′; the edge transect combines data
along both axes starting from the origin. In each case the x-axis gives distance from
the origin; the diagonal transect is longer than the others and the excess part of the
diagonal transect is omitted since it shows no meaninful variation.

In the unit square case, the smallest values are in the corner of the region with low
values along each edge. Slightly in from the edge the mean areas are higher and then
return to the overall expected mean area. These patterns are more clearly visible in
the line plots (right) where the diagonal starts at a very low value, peaking before
returning to the average. Hence, it is clearly demonstrated that areas close to the
boundary of the unit square, on average, start small then increase above the infinite
plane mean when moving inwards but then return to the overall expected level.

Next, consider the bottom row of Figure 3, which shows the spatial variation in cell
area when imposing the convex hull boundary. Again, the smallest mean areas are in
the corner of the region, but this time the largest areas are only slightly above the
overall expected mean value. There is a clear pattern of small areas near the boundary
and a gradual increase moving inwards until the overall mean value is reached.

3.3. Cell perimeter

The empirical distributions of cell perimeter length for the infinite plane, unit square
and convex hull cases are shown in Figure 4. All have a more symmetric appearance
than the corresponding plots for cell area. Comparing the unit square case, panel (b),
with the infinite plane case, the peak is lower and slightly further to the right with
a slightly broader spread. In contrast, for the convex hull case, panel (c), the peak
is slightly to the left, but is still lower, and again the variability is greater. From the
numerical summaries in Table 1, the unit square case has the largest mean and the
convex hull the smallest. The standard deviations for the infinite plane case is the
smallest, with the other two having similar but much larger values. The unit square
case is slightly more skew but has the only positive (excess) kurtosis. However, all
skewness values are close to zero indicating symmetry and all kurtosis values indicate
a distribution close to the kurtosis of the normal distribution. Hence, cell perimeter
values might be approximated by a normal distribution.

Figure 5 show the spatial variation of the cell perimeter length for the unit square and
convex hull cases. Recall that the expected value for the infinite plane case would be
constant at 4/√ρ ≈ 0.283. For the unit square, the smallest perimeter occurs in the
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corner with the highest value close by on the diagonal. All cells along the boundaries
have shorter perimeter length with a band of higher perimeter cells slightly in from
the boundary. In the interior, the perimeters follow the value of the cells in the infinite
plane. For the convex hull case, again the smallest perimeter is for cells in the corner
with small values along the boundary also. The peak along the diagonal from the
corner is only slightly higher than surrounding cells and is only noticeable from the
line plot.

3.4. Number of cell edges

Figure 6 shows the distributions for the number of edges of a cell for the infinite
plane, unit square and convex hull cases with corresponding summaries in Table 1.
The minimum number of edges is N = 3, corresponding to a triangle, and there are
very few cells with more than 9 edges – the expected number of edges for the infinite
plane is E(N) = 6. All three cases show a slightly positive skew with a lower peak for
the infinite plane case which has a slightly greater spread. For the infinite plane case
the mode is at 6, but it is at 5 when a boundary is imposed. These observations are
supported by the summary statistics in Table 1, with the infinite plane case having
higher mean and greater standard deviation. In contrast, it has lower skewness and
lower (excess) kurtosis. Overall, there is little difference between the unit square and
convex hull cases.

The number of cell edges is shown as a surface plot and transects for the unit square
boundary and for the convex hull cases in Figures 7. Recalling that E(N) = 6 over the
infinite plane, cells affected by an imposed boundary are likely to have fewer edges with
the smallest numbers for cells at the boundary and especially in the corner. There is
no place that the cells are having more than 6 edges on average. Diagonal and central
slices from the surface plot show similar patterns. Even though there are many cells
with more than 6 edges, they do not concentrate at particular locations but are spread
over the region uniformly at random. The number of cell edges is slightly larger in the
convex hull case than for the unit square for cells close to the boundary, possibly
because of having irregular shapes of bounding regions in the convex hull compared
to the unit square where the bounding is a straight line. This reduces the number of
cell edges intersecting the boundary.

The cell area, perimeter and number of cell edges are seriously affected by the intro-
duction of boundaries. These variations are high around the corner but milder near
the sides of the region.

4. Parametric modelling

We now consider fitting parametric distributions, first to the properties of interest
and then to the changes to these properties which occur when a finite boundary is
imposed.

4.1. Distributions of cell area, perimeter and number of edges

In this section, our aim is to approximate the distributions of the cell properties by
parametric distributions for infinite plane, unit square, and convex hull boundaries.
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Then, the approximations will be compared across different boundary cases and the
previous work. The standardized properties explained in Section 3.1 are used when
estimating the parameters of distributions.

Summary statistics are given in Table 2 for the properties of Voronoi cells in three
different cases. As in section 3, only the cells affected by the boundary are included
in the calculations for the unit square and convex hull cases. Mean cell area Ā∗I and
perimeter P̄ ∗I calculated for cells in the infinite plane are very close to the analytically
calculated expectations, however, the mean cell area and perimeter for the unit square
case are calculated as Ā∗U = 1.137 and P̄ ∗U = 1.097 and for the convex hull case Ā∗C =
0.886 and P̄ ∗C = 0.951. On average, cells bounded by a unit square boundary will have
larger area and perimeter than the cells in the infinite plane, and convex hull bounded
cells will have the smallest area and perimeter.

Our main tool for parametric modelling of PVT properties is the three-parameter
gamma distribution due to [24], which has density function

f(x∣a, b, c) = abc/a

Γ(c/a)x
(c−1)e−bx

a

, 0 < x <∞ a, b, c > 0, (2)

where b is the shape parameter, c is the rate parameter, and a is the location pa-
rameter. Note that (2) reduces to the probability density function of the standard
two-parameter gamma distribution when a = 1. In addition to the gamma distribution
results presented here, we have considered the Weibull and log-normal distributions
but they did not fit the data as well as the gamma distribution. Maximum likelihood
estimates of parameters fitting the two and three-parameter gamma distributions to
the standardized properties for each boundary scenario are listed in Table 3 in the top
and bottom panels respectively. Corresponding density lines for fitted three-parameter
gamma distributions are shown in in Figure 8 as solid, dashed and dotted lines for the
different boundary cases.

Plotted symbols signify the mid points of the top of the histogram bins of properties
for infinite plane (●), unit square (∎) , and convex hull (▲) boundary cases as indicated
in the figure legend. The excellent fit of the density lines to the observed properties
demonstrates that the three-parameter gamma distribution shows a good fit to the
statistical properties of bounded and unbounded Poisson Voronoi cells.

The parameter estimates presented in Table 3 verify the disparities of the behaviours
of cells in different boundary cases. Parameter estimates for the infinite plane case
agree with those reported by Hinde and Miles [21] and Tanemura [23] for the three-
parameter gamma distribution, and with Weaire [19], Kumar and Kurtz [22] and
Koufos and Dettmann [13] for the two-parameter gamma distribution.

Koufos and Dettmann [13] investigated the the area distribution of bulk ‘interior’,
edge and corner cells rather than the mixture of these cells. Their results regarding
the bulk cells can be directly compared to the interior cells in Table 3. However,
further investigation is necessary to make our current results directly comparable to
those in [13] by separating the edge and corner cells. The results are provided in
the supplemental material. Our findings for edge and corner cells show substantial
differences to those in [13], and this indicates the importance of the cell classification
method used.
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The separation of cell types is not always straightforward. Koufos and Dettmann [13]
generate their locations in a different way to our approach. They initially fix a point at
a particular location at or close to the edges or corner of the quadrant, then generate
the remaining points and investigate the properties of the initially generated point.
Alternatively, one could identify edge cells as those which have a vertex located on the
boundary, and corner cells to have a corner point as one of its vertices. However, this
is not straightforward in all boundary scenarios such as the convex hull boundary. It
is also possible to identify cell types by partitioning the finite plane into sub-regions.
Since this study is primarily intended to investigate the imposition of different bound-
aries, the the mixture of cell types is considered.

Lastly, fitted density lines for cell area and perimeter conditional on the number of cell
edges are shown in Figures 9 and 10 for all boundary cases. Since the fitted gamma
distributions show little difference for cells having more than 7 edges, observations
for N = 8, . . . ,15 are aggregated and denoted as N > 7. Infinite plane, unit square,
and convex hull cases are signified with ( ), ( ), and ( ) respectively. It
is obvious that cells with different numbers of edges lead to different distributions of
cell area and perimeter. The fitted distributions for different boundary cases never
coincide as the number of cell edges change. Consequently, the mean of the fitted
gamma distributions are different for different values of N . The mean µ is smallest
when N = 3 and it increases for larger N . We note that the cell perimeter distributions
are more similar for the two bounded cases than for the infinite plane case, while the
cell area distributions do not show this pattern.

4.2. Distributions of changes to cell area and perimeter

We define the area reduction and ratio of an unbounded cell when it is bounded to be

area reduction = (area with no boundary - area with boundary)

area ratio = (area with no boundary / area with boundary),

with equivalent definitions for cell perimeter and number of edges. Histograms and
surface plots showing the reductions in and ratios of area, perimeter and number of
edges when the unit square boundary is imposed on the unbounded cells are shown in
Figure 11. Cells which are not affected by the boundaries are not included here and,
due to a small number of extreme values, the histograms are clipped from both tails to
improve the visualization. Histograms, especially of area reduction and ratio, show a
high peak where the change is very small. Surface plots indicate that cells very close to
the unit square boundary had shrinkage in their area, perimeter and number of edges;
the cells close to the corner shrank the most. Looking at the right panel, highest ratios
in the properties are observed at the corners of the surface where the cells shrank the
most.

Reductions and ratios for convex hull bounded cells are visualized in Figure 12, showing
significant shrinkage in the area, perimeter and number of edges near the boundary
and smallest at the corner. Not all of the convex hull bounded cells shrunk. There is
an exception for some cells that had expansion in their area and perimeter. These cells
are located parallel but not very close to the edges and the corner where slightly darker
colour is seen. The extreme reduction in area and perimeter of convex hull bounded
cells causes high area and perimeter ratios.
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5. Influence of different point intensities

In this section, Poisson Voronoi tessellation for different intensities is explored. All
simulation results discussed so far are based on PVT with intensity ρ = 200, however,
it is important to discover whether the patterns of cells vary as ρ changes. Hence, we
conducted further simulations with ρ = {30,50,100,300} for r = 106 realizations and
compared the results to those obtained with ρ = 200. We compare the standardized
area, standardized perimeter, and number of edges.

Line plots are shown in Figure 13 following a transect across the centre of the data.
Different ρ values are indicated by grey scale with darker lines representing larger ρ.

The occurrence of different patterns across the region is clear and matches the patterns
seen earlier, with the variation from the expected values for the infinite plane case
greatest on the cells closer to the boundary of the region. These patterns are more
pronounced for smaller values of ρ. There is little deviation from the infinite plane case
close to the centre of the region, corresponding to cells that are not affected by the
boundary, except when ρ = 30. The initial intuition for ρ = 30 is that the number of
the points generated for such low intensity are small enough that a randomly sampled
cell could still be affected by the boundary even though it is located relatively close
to [0.5,0.5].
To investigate the effect of having fewer points on the patterns observed in the cell
properties, we conducted another simulation to estimate the probability of a ran-
domly sampled cell being affected by the boundary when the number of points is
n ∈ {10,15,20,30,50,100,200,300}. In this simulation, the number of points n is fixed
in each realization instead of being Poisson distributed to avoid the variability on the
number of points generated for each specified intensity especially when the ρ is very
small. For each n, the simulation was repeated for r = 105 realizations.

The proportion of simulated cells being affected by the boundary is plotted against
the number of points in Figure 14. When n = 10, almost every randomly sampled
cell is affected by the boundary and the proportion decreases as the number of points
increases. The proportion of cells affected by the convex hull is slightly higher than
the unit square case but the proportions converge at higher n. The different pattern
observed in Figure 13 for ρ = 30 is also highlighted here for lower intensities in general.

6. Conclusion

We have investigated the changes in the properties of Poisson Voronoi cells in two
dimensional space as boundaries are imposed on data observed in a finite region. Using
the unit square and the convex hull of points as boundaries, cell area, perimeter,
and the number of cell edges can be estimated using the three-parameter gamma
distribution. The difference in the fitted distributions raises the importance of taking
into account these boundary effects in the analysis of spatial data which usually comes
with its own boundary case.

The classification of cells as interior, edge and corner as in [13] is not completely
obvious for the unit square boundary which has simple properties, and is even more
complicated for irregular boundary cases. Although we have briefly discussed the chal-
lenges of classification of cell types, we leave detailed consideration of the properties
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of different cell types as potential future work.

Cells affected by the two different boundaries we have considered do not have identical
properties. Hence, in practice, further study considering other specifically determined
boundaries or real boundaries such as state borders or coastlines may need to be
performed for any given data set.

Results from different intensities lead to different properties of Voronoi cells, hence
using intensities representative of any given data set would be necessary. We have only
considered the homogeneous Poisson point process, and further work may investigate
how our results would change for other point patterns. For example, Schoenberg [3]
studied the Voronoi tessellation of the locations of earthquakes in Southern California
and found that the Pareto distribution to fit the cell area and perimeter well.
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Table 1. Mean, standard deviation, skewness and kurtosis of area,

perimeter and number of edges of Poisson Voronoi cells in infinite
plane, and for unit square and convex hull boundaries. In bounded
cases, only cells affected by the boundaries are included.

Case Mean SD Skewness Kurtosis

A
re
a

A

Infinite plane 0.0050 0.0027 1.023 1.525
Unit square 0.0057 0.0033 1.164 2.247
Convex hull 0.0045 0.0030 1.171 1.900

P
er
im

.

P

Infinite plane 0.2835 0.0689 0.190 -0.025
Unit square 0.3104 0.0832 0.240 -0.106
Convex hull 0.2703 0.0870 0.130 -0.150

E
d
g
es

N

Infinite plane 5.996 1.334 0.432 0.204
Unit square 5.364 1.203 0.497 0.278
Convex hull 5.418 1.185 0.516 0.331

12



Table 2. Mean, standard deviation, skewness and kurtosis of stan-

dardized area, perimeter and number of edges of Poisson Voronoi
cells in infinite plane, and for unit square and convex hull bound-
aries.

Case Mean SD Skewness Kurtosis

A
re
a

A

Infinite plane 1.004 0.531 1.022 1.525
Unit square 1.137 0.654 1.164 2.247
Convex hull 0.886 0.599 1.186 1.957

P
er
im

.

P

Infinite plane 1.002 0.244 0.190 -0.025
Unit square 1.097 0.294 0.240 0.106
Convex hull 0.951 0.307 0.146 -0.141

E
d
g
es

N

Infinite plane 6.000 1.334 0.432 0.204
Unit square 5.364 1.203 0.497 0.278
Convex hull 5.432 1.185 0.509 0.321

13



Table 3. Parameter estimates with 95% confidence intervals for the two- and three-parameter gamma

distributions fitted to the area, perimeter and number of edges of Poisson Voronoi cells in infinite plane,
and with unit square and convex hull boundaries. Top and bottom panels show parameter estimates of two

and three-parameter gamma distributions respectively.

Case â b̂ ĉ

A
re
a

Infinite plane - 3.510 (3.500-3.520) 3.526 (3.516-3.535)
Unit square - 2.626 (2.612-2.640) 2.986 (2.971-3.000)
Convex hull - 2.271 (2.259-2.284) 2.012 (2.003-2.022)
Kiang [18] - 4.0 4.0
Weaire [19] - 3.63 3.63
Kumar & Kurtz [22] - 3.7176 3.7174
Koufos & Dettmann [13] - 3.5691 3.5691

P
er
im

. Infinite plane - 16.038 (15.993-16.082) 16.074 (16.030-16.118)
Unit square - 11.903 (11.840-11.965) 13.062 (12.995-13.129)
Convex hull - 8.892 (8.846-8.938) 8.464 (8.422-8.507)

E
d
g
es Infinite plane - 3.370 (3.361-3.380) 20.220 (20.164-21.276)

Unit square - 3.740 (3.721-3.760) 20.064 (19.960-20.167)
Convex hull - 3.911 (3.891-3.931) 21.245 (21.137-21.353)

A
re
a

Infinite plane 1.080 (1.073-1.106) 3.015 (2.961-3.069) 3.311 (3.285-3.336)
Unit square 1.089 (0.969-0.987) 2.195 (2.123-2.267) 2.792 (2.755-2.828)
Convex hull 1.336 (1.320-1.352) 1.336 (1.304-1.367) 1.667 (1.652-1.681)
Tanemura [23] 1.0795 3.0322 3.3112
Hinde & Miles [21] 1.0787 3.0328 3.3095
Koufos & Dettmann [13] 1.097 2.919 3.253

P
er
im

.

Infinite plane 2.334 (2.313-2.356) 2.963 (2.906-3.019) 7.593 (7.533-7.654)
Unit square 2.278 (2.242-2.314) 2.062 (1.987-2.137) 6.412 (6.326-6.498)
Convex hull 2.917 (2.882-2.953) 1.156 (1.126-1.186) 3.779 (3.746-3.812)
Tanemura [23] 2.33609 2.97006 7.58060
Hinde & Miles [21] 2.3389 2.9563 7.5579

E
d
g
es

Infinite plane 0.931 (0.920-0.941) 4.406(4.222-4.590) 21.706 (21.469-21.943)
Unit square 0.775 (0.768-0.783) 9.088 (8.807-9.368) 25.804 (25.543-26.064)
Convex hull 0.813 (0.805-0.820) 8.089 (7.843-8.335) 25.928 (25.675-26.181)
Tanemura [23] 0.96853 3.80078 20.86016
Hinde & Miles [21] 1.0186 3.130 19.784
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Figure 3.

Figure 4.
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Figure 5.

Figure 6.
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Figure 7.

Figure 8.
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Figure 9.

Figure 10.
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Figure 11.

Figure 12.
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Unit square Convex hull

Figure 13.

Figure 14.
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(1) Left: Voronoi tessellation of homogeneous Poisson points with intensity ρ = 200
bounded by the unit square (black solid square) and the convex hull of points
(dashed polygon). Right: Zoomed in version of a Voronoi tessellation showing
the effects of imposing a boundary. Gray lines are the original tessellation lines
before any boundary is used. Dashed lines are the tessellation lines after the
vertical solid line is imposed as a boundary to the points on the right side. Cells
with solid black square points had an intersection with the boundary, and cells
with black solid circle points did not have an intersection with the boundary but
have had a transformation in their shapes. Gray and black circles indicate the
points of remaining cells.

(2) Empirical distribution of cell area in (a) infinite plane, (b) unit square and (c)
convex hull.

(3) Surface plot of cell area in bounded region (left). Averaged cell area over the
grids against the distance of the direction being followed from the origin (right).
Results shown for unit square (top row) and convex hull (bottom row). The gray
horizontal dashed line shows the expected cell area.

(4) Empirical distribution of cell perimeter in (a) infinite plane, (b) unit square and
(c) convex hull.

(5) Surface plot of cell perimeter in bounded region (left). Averaged cell perimeter
over the grids against the distance of the direction being followed from the origin
(right). Results shown for unit square (top row) and convex hull (bottom row).
The gray horizontal dashed line shows the expected cell perimeter.

(6) Empirical distribution of number of cell edges in (a) infinite plane, (b) unit
square and (c) convex hull.

(7) Surface plot of number of cell edges in bounded region (left). Averaged number
of cell edges over the grids against the distance of the direction being followed
from the origin (right). Results shown for unit square (top row) and convex hull
(bottom row). The gray horizontal dashed line shows the expected number of
cell edges.

(8) Density functions of three-parameter gamma distributions using the parameter
estimates from Table 3 for standardized cell area (left), standardized perimeter
(centre), and number of edges (right). Points show the mid points of the his-
togram bins of simulated cell properties and different line types show infinite
plane, unit square and convex hull cases.

(9) Density lines of three-parameter gamma distribution for the estimated param-
eters of standardized area for infinite plane ( ), unit square ( ), and
convex hull ( ) cases conditioned on the number of cell edges N = 3,4, ...,7
and N > 7.

(10) Density lines of three-parameter gamma distribution for the estimated parame-
ters of standardized perimeter for infinite plane ( ), unit square ( ), and
convex hull ( ) cases conditioned on the number of cell edges N = 3,4, ...,7
and N > 7.

(11) Histograms and surface plots of reduction (left panel) and ratio (right panel) of
the cell properties when unbounded cells are bounded with a unit square.
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(12) Histograms and surface plots of reduction (left panel) and ratio (right panel) of
the cell properties when unbounded cells are bounded with convex hull of points.

(13) Standardized PVT properties for intensities ρ = 30,50,100,200,300 for points
across the centre of the region. Each ρ value is indicated by a different shade of
grey showing the pattern of different intensities over the surface for standardized
properties. Left panel show the results for unit square and right panel is for the
convex hull bounded cells.

(14) Proportion of boundary-affected cells in 106 realizations for varying numbers of
points n ∈ {10,15,20,30,50,100,200,300}.
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