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The propagation of slow sausage surface waves in a multi-layered magnetic configuration is
considered. The magnetic configuration consists of a central magnetic slab sandwiched between two
identical magnetic slabs~with equilibrium quantities different from those in the central slab! which
in turn are embedded between two identical semi-infinite regions. The dispersion equation is
obtained in the linear approximation. The nonlinear governing equation describing waves with a
characteristic wavelength along the central slab much larger than the slab thickness is derived.
Solitary wave solutions to this equation are obtained in the case where these solutions deviate only
slightly from the algebraic soliton of the Benjamin–Ono equation. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1371520#

I. INTRODUCTION

Magnetized plasmas in geophysical and astrophysical
conditions are highly inhomogeneous. Very often they con-
sist of filament structures stretched along the magnetic field
lines, and strongly inhomogeneous in a direction perpendicu-
lar to the magnetic field. Such structures are usually called
magnetic flux tubes~see, e.g., Ref. 1!. Flux tubes can support
new types of magnetohydrodynamic~MHD! waves with the
wave energy confined to the tube or its vicinity. The waves
are called surface and body modes.2–6

The simplest model of a magnetic tube is a magnetic
cylinder with homogeneous plasmas inside and outside the
cylinder, and with the surface of the cylinder being a MHD
tangential discontinuity. The analysis is even simpler when a
magnetic slab, which consists of two parallel identical MHD
tangential discontinuities with a homogeneous plasma be-
tween them, and identical homogeneous plasmas in the two
outer regions, is used as a planar model of a magnetic tube.
The properties of sausage~axisymmetric! wave modes in a
magnetic cylinder and those of sausage modes in a magnetic
slab are quite similar.3,6 It is this similarity together with the
relative simplicity of the analysis that has made the magnetic
slab a popular model for studying wave propagation in a
magnetically structured plasma. In sausage modes, oscilla-
tions are symmetric about the central axis of the magnetic
configuration; the central axis remains undisturbed in the
motions.

The linear theory of waves in magnetic slabs has been
developed in Refs. 3, 6–9. Different types of nonlinear
waves in magnetic slabs have been studied in Refs. 10–19.
In particular, it has been shown10,11,13 that, in the long-
wavelength approximation, the propagation of nonlinear

slow sausage waves in a magnetic slab is described by the
Benjamin–Ono~BO! equation, previously derived for waves
in fluids with the infinite depth.20,21

Although the representation of magnetic filaments by
magnetic slabs enabled us to understand many important
properties of magnetic flux tube oscillations, this approxima-
tion is not particularly realistic. Real magnetic flux tubes are
inhomogeneous and, in particular, characterized by a con-
tinuous dependence of equilibrium quantities on the radial
distance. Hence, more sophisticated models are needed for a
comprehensive study of magnetic flux tube oscillations.

In this paper we aim to narrow the gap between the
model of magnetic tube or slab and the reality. It studies the
propagation of nonlinear slow sausage waves in a magnetic
configuration more complicated than a simple magnetic slab.
The configuration consists of a central magnetic slab sand-
wiched between two identical magnetic slabs with equilib-
rium quantities different from those in the central slab. This
three-slab configuration is, in turn, embedded between two
semi-infinite regions with identical equilibrium quantities.
Such a magnetic configuration can be considered as a model
of a number magnetic structures in astrophysical plasmas,
e.g., as a model of a magnetic loop with a thin core in the
solar corona.

The paper is organized as follows. In the next section we
describe the equilibrium state and present the governing
equations and boundary conditions. In Sec. III we study
wave propagation in the linear approximation. In Sec. IV we
derive the governing equation for nonlinear slow sausage
surface waves; this is a new result. We go on in Sec. V to
obtain an approximate solution to the nonlinear governing
equation in the form of a solitary wave in the case where the
wave differs only slightly from the algebraic soliton of the
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BO equation. A summary of our results is presented in Sec.
VI.

II. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

To describe the plasma motion we use the ideal MHD
equations,
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]t
1“•~rv!50, ~1!

]v

]t
1~v•“ !v52

1

r
“p1

1

mr
~“ÃB!ÃB, ~2!
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]t
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rgD1v•“S p
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Herer is the plasma density,p the pressure,v the velocity,B
the magnetic induction,m the magnetic permeability of a
vacuum, andg the ratio of specific heats.

In what follows we study wave motion in the equilib-
rium configuration shown in Fig. 1. This configuration con-
sists of five regions, separated by tangential MHD disconti-
nuities parallel to theyz-plane in the Cartesian coordinates
x, y , z. The equilibrium magnetic field is in thez-direction.
There is no equilibrium flow. The equilibrium quantities are
the same in regions I and V; in regions II and IV they are
also the same~and in general distinct from regions I and V!.
Quantities in regions I and V are labeled with the subscript
‘‘0 e, ’’ and quantities in regions II and IV with the subscript
‘‘0 i. ’’ Equilibrium quantities in the inner region~region III!
are labeled with the subscript ‘‘0.’’

A number of special cases of particular interest are in-
cluded in our treatment. For example, the case of an isolated
magnetic slab corresponds to choosingB0i5B0e50, and is
of particular interest in solar photospheric studies~e.g., Refs.
3–9!. The case ofB0i , B0e , andB0 all broadly comparable
corresponds to solar coronal circumstances.4–6

We consider only planar motions where perturbations of
all quantities are independent ofy , and they-component of
the velocity and the magnetic induction is zero, so that the

velocity and the perturbation of the magnetic induction are
(u,0,w) and (bx,0,bz), respectively. This eliminates Alfve´n
waves. In addition, we restrict our analysis to motions sym-
metric with respect to thez-axis. This restriction enables us
to consider Eqs.~1!–~4! in the regionx.0 only, and to
impose symmetry conditions atx50:

u5bx50,
]r
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]x
5

]w

]x
5

]bz

]x
50. ~5!

Let the equations of the perturbed boundaries between
regions III and IV, and between regions IV and V, bex5a
1h(t,z) andx5a1L1z(t,z) respectively. At these bound-
aries, the kinematic boundary conditions and the conditions
of total pressure balance have to be satisfied:
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at x5a1L1z, ~7!

where P5p1B2/2m is the total pressure in a plasma with
magnetic field strengthB5uBu. In addition, perturbations of
all variables are assumed to vanish asx→`.

Equations~1!–~4! and the boundary conditions~5!–~7!
will be used in what follows to study the propagation of a
sausage wave.

III. LINEAR THEORY

In this section we study the propagation of sausage
waves in the linear approximation. We linearize Eqs.~1!–~4!
and take perturbations of all quantities to be proportional to
exp@i(kz2vt)# with real wavenumberk and frequencyv.
Eliminating perturbations of all quantities in favor ofu and
P85p81B0bz /m ~the prime indicates the perturbation of a
quantity!, we obtain the system of equations~see Refs. 2, 3!
describing the wave motion in the central region~region III!,

du
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2
1vA

2 !~v2
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2k2!
P8,

~8!
dP8
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ir0~v2
2vA

2 k2!

v
u,

where the squares of the Alfve´n, sound, and cusp speeds are
given by

vA
2

5

B0
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mr0
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2
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2
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2
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2

cS
2
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The system of equations describing the motions in regions
IV and V are obtained from Eq.~8! by substituting the un-
labeled quantities by the corresponding quantities with the
labels ‘‘i ’’ and ‘‘ e, ’’ respectively.

The linearized boundary conditions are

u52ivh, u i52ivh, P85P i8 , at x5a, ~10!

FIG. 1. A sketch of the equilibrium configuration. The equilibrium quanti-
ties are the same in regions I and V, and also in regions II and IV. The
dashed lines show the perturbed boundaries separating the regions with
different equilibrium quantities.
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u i52ivz, ue52ivz, P i85Pe8 , at x5a1L. ~11!

The solution to Eq.~8! in region III, satisfying the
boundary conditions~5!, is

u5vm0A0 sinh~m0x !,

P85ir0A0~v2
2vA

2k2!cosh~m0x !, 0,x,a, ~12!

where

m0
2
5

~cS
2k2

2v2!~vA
2 k2

2v2!

~cS
2
1vA

2 !~cT
2k2

2v2!
, ~13!

andA0 is an arbitrary constant. The quantitym0
2 can be either

positive or negative. In the latter case we takem05ium0u.
The solution to Eq.~8! in region IV is

u i5vm i~A1em ix1A2e2m ix!,

P i85ir0i~v2
2vAi

2 k2!~A1em ix2A2e2m ix!,

a,x,a1L, ~14!

whereA1 andA2 are arbitrary constants, andm i
2 is given by

Eq. ~13! with the equilibrium quantities labeled with ‘‘i. ’’
Once againm i

2 can be either positive or negative, and in the
latter case we takem i5ium iu.

The solution to Eq.~8! in region V, vanishing as
x→`, is

ue5vmeAee2mex,

Pe852ir0e~v2
2vAe

2 k2!Aee2mex, x.a1L, ~15!

whereme
2 is given by Eq.~13! with the equilibrium quanti-

ties labeled with ‘‘e. ’’ In order that this solution vanishes at
infinity, the quantityme

2 must be positive.
Substituting Eqs.~12!, ~14!, and~15! into Eqs.~10! and

~11!, we obtain a homogeneous system of six linear algebraic
equations forh, z, A0 , A1 , A2 , andAe . The condition for
the existence of a nontrivial solution to this system gives the
dispersion relation. Writingre in place ofr0e andr i in place
of r0i , we obtain

r im0~vAi
2 k2

2v2!

r0m i~vA
2 k2

2v2!
tanh~m0a !

52

r ime~vAi
2 k2

2v2!1rem i~vAe
2 k2

2v2!tanh~m iL !

rem i~vAe
2 k2

2v2!1r ime~vAi
2 k2

2v2!tanh~m iL !
.

~16!

In what follows we concentrate on the long wavelength
approximation whereuaku!1. Note thatukLu can be arbi-
trary. In the case of an isolated slab there is a surface sausage
wave propagating with the velocitycT along the slab.3 For
this wave the conditionuam0u!1 is satisfied. We look for a
solution of the same type to Eq.~16!. A straightforward cal-
culation yields

v5cTk1kukuw~k !, w~k !5b i

12l exp~22k iukuL !

11l exp~22k iukuL !
,

~17!

where
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2
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2

2cT
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l5
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,

and the suffixa5i,e. The quantityk i
2 can be either positive

or negative. In the latter case we takek i5iuk iu. It is straight-
forward to check thatw(k) is real whenk i5iuk iu. In order
that perturbations vanish at infinity, the quantityke

2 must be
positive. This implies that one of the following two inequali-
ties has to be satisfied:

cT,cTe or min~cSe ,vAe!,cT,max~cSe ,vAe!. ~19!

The second inequality is readily satisfied in applications to
the solar corona, where the Alfve´n speed is much larger than
the sound or cusp speed in all three regions. In the solar
photosphere withvAe50 the condition~19! is reduced to
cT,cSe .

In what follows we assume that the denominator of the
expression forl is nonzero, and so is the denominator of the
expression forw(k). The first condition is readily satisfied in
applications to the solar corona; however, the second condi-
tion can be broken ifk i is purely imaginary.

When L50, there is no region IV, and the considered
configuration is a magnetic slab. In this case the dispersion
relation ~17! coincides with that given in Ref. 6. WhenL
→`, region V disappears. In this case we once again have
the slab configuration, and Eq.~17! coincides with that given
Ref. 6 ~with the external equilibrium quantities labeled with
‘‘ i ’’ instead of ‘‘e ’’ !.

It is convenient to introduce the dimensionless amplitude
of perturbations, writinge5maxuhu/a. Then, using the linear-
ized MHD equations, the solution to the linear problem and
the dispersion relation~17!, it is straightforward to show that
the dimensionless amplitudes ofr8, p8, w, bz , andz are all
of order e, while the dimensionless amplitudes ofu and bx

are of ordereauku (!e). The dimensionless amplitudes of
perturbations of all quantities in regions IV and V are of
ordereauku. One additional and very important observation
is that the characteristic scale of variation ofr8, p8, w, and
bz in thex-direction isk21. Hence, they are almost indepen-
dent of x in the long wavelength approximation, where
uaku!1.

IV. DERIVATION OF THE NONLINEAR GOVERNING
EQUATION

To derive the nonlinear equation governing the propaga-
tion of slow surface sausage waves in the central magnetic
slab ~region III! we use the reductive perturbation method
~e.g., Refs. 22, 23!. The procedure is similar to that used in
Ref. 13 to derive the BO equation for slow waves in a mag-
netic slab. We consider nonlinear waves with amplitudes of
the order e, propagating in the positivez-direction with
phase velocity close tocT . Our aim is to obtain the equation
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describing the competition between nonlinearity and disper-
sion. The effect of dispersion is comparable with the effect
of nonlinearity when the ratio of the dispersion correction,
which is the second term on the right-hand side of the dis-
persion relation~17!, to the main term, which is the first
term, is of the ordere. This implies thatauku;e, and the
characteristic scale in thez-direction ise21a. To take into
account this estimate, and the fact that perturbations propa-
gate in thez-direction with a phase speed that is close tocT ,
we introduce the running variableu5e(z2cTt).

Since the nonlinear and dispersive effects are both of
order e, they cause the evolution of the wave shape on a
time-scale of ordere21 multiplied by the characteristic wave
period. To take this slow evolution into account, we intro-
duce the ‘‘slow’’ timet5e2t.

The thicknessL of region IV can be much larger than
the thickness 2a of region III, so thata cannot be considered
as a characteristic scale in thex-direction in region IV. Since
region V is semi-infinite, the characteristic wavelength is the
only spatial scale present in this region. This observation
inspires us to introduce the stretched variableX5ex in re-
gions IV and V.

In accordance with the reductive perturbation method,
we look for the solution in the form of asymptotic expan-
sions with respect toe. Taking into account our estimates for
the order of magnitude of perturbations of different quanti-
ties, obtained at the end of the previous section, and the
estimateauku;e, we write the expansions in the form

f 5e f (1)
1e2f (2) . . . , ~20!

for r8, p8, w, bz , h, andz, and in the form

g5e2g (1)
1e3g (2) . . . , ~21!

for u, bx , and for the perturbations of all quantities in re-
gions IV and V. In addition, in accordance with our note at
the end of the previous section, we assume thatf (1) is inde-
pendent ofx. We solve the MHD equations in regions III,
IV, and V separately, and then match the solutions at the
boundaries. The solutions in region III and regions IV and V
are given in Appendices A and B, respectively. To obtain the
governing equation we substitute Eq.~B9! into Eq. ~A16!,
return to the original variablest and z, and takeh'eh (1).
As a result, we finally obtain

]h

]t
1cT

]h

]z
1qh

]h

]z
2b iHS ]2h

]z2 D2b iLS ]2h

]z2 D50,

~22!

where the Hilbert transformH is given by ~B10!, and the
operatorL is determined by

L~ f !5E
2`

`

G~z2s ! f ~s !ds,

~23!

G~z !5

l

pL E
0

` sin~rz/2L !

l1erk i
dr.

Equation~22! is our main goal in this paper. It describes the
weakly nonlinear, weakly dispersive behavior of slow mag-
netosonic sausage waves in a slab configuration.

WhenL→`, L( f )→0 and Eq.~22! reduces to the BO
equation previously derived in Refs. 10, 11, 13. WhenL
'a, it is straightforward to show thatG(z)→2l(1
1l)21

P(1/z), and thenL( f )→22l(11l)21
H( f ) and

Eq. ~22! once again reduces to the BO equation, however,
with be substituted forb i . All these results are in agreement
with those obtained in the previous section in the linear ap-
proximation.

V. SOLITARY WAVE

In this section we obtain a solution to Eq.~22! in the
form of a solitary wave. We look for a solution whereh
vanishes at infinity, andh depends onq5z2(cT1V)t
rather than onz and t separately. In this case Eq.~22! re-
duces to

Vh2

q

2
h2

1b iHS dh

dq
D1b iLS dh

dq
D50. ~24!

Equation~24! is a complicated integro-differential equation,
and at present we are unable to find its solution. To make
analytical progress we assume thatulu!1. This condition is,
in particular, satisfied if the equilibrium quantities in region
IV differ only slightly from those in region V, which is rel-
evant for the solar corona. We now use the regular perturba-
tion method to obtain the solution. We expand the denomi-
nator in the expression~23! for G(z) in the power series with
respect tol. The corresponding integrals are easily calcu-
lated, and we arrive at the following expression for the op-
eratorL:

L5 (
n51

`

ln
Ln ,

~25!

Ln„f ~z !…5
2~21!n11

p
E

2`

` ~z2s ! f ~s ! ds

~z2s !2
1n2s2 ,

wheres52k iL. Now we look for a solution in the form of
a power seriesh5h01lh11l2h21¯ . In the zeroth order
approximation we obtain the BO equation forh0 . It pos-
sesses a solution in the form of an algebraic soliton~e.g.,
Refs. 20, 21, 24!,

h05

24b il

q~ l2
1q2!

, Vl52b i , l.0. ~26!

The quantityl is the half-width of the soliton, and24b i /lq
is its amplitude.

In the first order approximation we obtain

2Vh11qh0h12b iHS dh1

dq
D5b iF1~q !, ~27!

F1~q !5L1S dh0

dq
D5

8Vl

q

d

dq

q

q2
1~ l1s !2 . ~28!

Using the identity

E
2`

`

fH~g ! dq52E
2`

`

gH~ f ! dq,
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it is straightforward to show that the operator on the left-
hand side of Eq.~27! is self-adjoint inL2 . Differentiating the
equation forh0 we show thatdh0 /dq is an eigenfunction of
this operator corresponding to the zero eigenvalue. It can be
also shown that the eigenspace corresponding to the zero
eigenvalue is one-dimensional, so thatdh0 /dq is the only
eigenfunction~apart from a multiplicative constant!. This
implies that Eq.~27! has a solution fromL2 if and only if
F1(q) is orthogonal to dh0 /dq, i.e., if *

2`
` F1(q)

3(dh0 /dq) dq50. SinceF1(q) is even anddh0 /dq is
odd, this condition is obviously satisfied.

Proceeding to the second order approximation, we obtain
an equation similar to Eq.~27!, but with h2 and F2

5(d/dq)@L1(h1)1L2(h0)# substituted forh1 and F1 , re-
spectively. Once again, the solvability condition for this
equation is the orthogonality ofF2(q) and dh0 /dq. The
expression forL2(dh0 /dq) is obtained by the substitution
of 2s for s in Eq. ~28!, so the solvability condition of the
second order approximation reduces to the orthogonality
condition of L1(dh1 /dq) and dh0 /dq. Let h1(q) be a
solution to Eq.~27!, satisfying the solvability condition of
the second order approximation. Since Eq.~27! is invariant
with respect to the substitution2q→q, h̄1(q)5h1(2q)
is also a solution to Eq.~27!, and, obviously,L1(dh̄1 /dq)
and dh0 /dq are also orthogonal. Thenh̃1(q)5h1(q)
2h̄1(q) is a solution to Eq.~27! with F1[0 and, conse-
quently, h̃1(q)5Cdh0 /dq, whereC is constant. And, of
course,L1(dh̃1 /dq) and dh0 /dq are orthogonal. This or-
thogonality condition reduces to

CE
2`

` dh0

dq

d2
L1~h0!

dq2 dq50. ~29!

A direct calculation with using Eq.~28! shows that the inte-
gral in this expression is nonzero, which implies thatC50.
Henceh1(2q)5h1(q), i.e., h1(q) is an even function.

In what follows we consider a more general problem.
Let F1(q) be an arbitrary continuously differentiable even
function, F1(q)PL2 . Our task is to find an even function
h1(q) satisfying Eq.~27!. The perturbation theory for the
BO equation has been studied by many authors~see, e.g.,
Ref. 25 and references therein!. In principle, the solution to
the considered problem can be obtained on the basis of the
general theory developed in Ref. 25. However, from our
point of view, it is convenient to give a direct solution to the
problem based on a very simple analysis. In addition to its
simplicity, our approach has another advantage in compari-
son with that used in Ref. 25. The theory developed in Ref.
25 is based on the complete integrability of the BO equation.
Our approach does not use the integrability and can also be
applied to nonintegrable BO-type equations.

We start our analysis by introducing the Cauchy integral,

h̃~q !5

1

2pi E2`

` h1~s ! ds

s2q
, ~30!

whereq is now considered a complex variable, andT(q)
Þ0, whereT indicates the imaginary part of a quantity.
Equation ~30! determines two analytical functions of the
complex variableq. The functionh15h̃ is analytical in the

upper half of the complex plane@T(q).0#, and the func-
tion h25h̃ is analytical in the lower half of the complex
plane @T(q),0#. The boundary values of these two func-
tions at the real axis@T(q)→60# are given by the Plemelj
formulas,

h6~q !56
1
2 h1~q !2

1
2 iH~h1!. ~31!

The relationh2(q)52@h1(q* )#* ~the asterisk indicates a
complex conjugate value! enables us to consider onlyh1 in
what follows.

Let us now apply the Hilbert transform to Eq.~27!. Us-
ing the formulas

H
2
521, HS f ~q !

q2n
D5

H~ f !

q2n
2

1

p~q2n !
E

2`

` f ~s ! ds

s2n
,

whereq is real andn is an arbitrary complex quantity with
the nonzero imaginary part@T(n)Þ0#, we obtain

2VH~h1!1qh0H~h1!1b i

dh1

dq

5b iH~F1!28b i

qh1~ il !

q2
1l2 . ~32!

Note thath1(il) is real. Now we multiply Eq.~27! by i, and
add the result to Eq.~32!. As a result we obtain an equation
for h1(q),

b i

dh1

dq
2ih1~V2qh0!5ib iF124b i

qh1~ il !

q2
1l2 [b ih,

~33!

where the functionF1(q) is determined in terms ofF1(q)
in the same manner ash1(q) is determined in terms of
h1(q). Sinceh0(q) can be analytically continued on the
whole complex plane, we can consider Eq.~33! in the upper
half of the complex plane. The solution to Eq.~33! is
straightforward:

h1~q !5e2iq/lS q2il

q1il D
2H C11E

0

q

h~s !e is/lS s1il

s2il D
2

dsJ ,

~34!

whereC1 is constant. It is easy to check thath1(q) deter-
mined by Eq.~34! tends toh1(il) as q→il, so that the
solution ~34! is self-consistent. In general, the pointil is a
branch point forh1(q), which contradicts the property of
h1(q) to be analytic in the upper half of the complex plane.
This point is regular only if the expansion of the integrand in
the vicinity of il does not contain the term (q2il)21. This
condition results in the relation

h1~ il !5il2F
1
8 ~ il !, ~35!

where the prime denotes the derivative with respect to the
argument. The fact thath1(q) is even implies that
h1(2q)5h

1
* (q) for real q. This relation is satisfied only

whenC1 is real. The condition thath1(q)→0 asq→2`
leads to

C15E
2`

0

h~q !e iq/lS q1il

q2il D
2

dq. ~36!
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The condition thatC1 is real requires that

E
2`

`

h~q !e iq/lS q1il

q2il D
2

dq50. ~37!

In accordance with the Jordan Lemma and the Residue Theo-
rem, the integral on the left-hand side of Eq.~37! is equal to
2pi times the residue of the integrand with respect to the
pole atq5il. Equation~35! guarantees that this residue is
zero, so that Eq.~36! is satisfied. Hence, eventually, we ar-
rive at

h1~q !5e2iq/lS q2il

q1il D
2E

2`

q

h~s !e is/lS s1il

s2il D
2

ds, ~38!

whereh(q) is given by Eqs.~33! and ~35!. Equation~37!
guarantees thath1(q)→0 asq→`. The functionh1(q) is
given byh152R(h1), whereR indicates the real part.

When the functionF1(q) is given by Eq.~28!, direct
calculation yields

h15

24Vl~q2il !2

q~s12l !3~q1il !2 H 4il2@~2l2s !q1ils#

~q2il !2

2

is2~s12l !

q1i~ l1s !
2

s

l
@~s1l !2

13l2#e2iq/l

3E
2`

q e is/lds

s1i~ l1s ! J . ~39!

It is easy to check thath15O(q22) as uqu→`, so that
h1 /h0 is uniformly bounded on the real axis.

Let us study how this expression agrees with the two
limiting cases considered at the end of the previous section.
The limiting caseL→` corresponds tos→`. In this case
h1→0 as it should, becauseh0 is an exact solution to Eq.
~22!. In the second limiting caseL→0, which corresponds to
s→0, the exact solution to Eq.~22! is given by Eq.~26!,
with be and le52be /V substituted forb i and l, respec-
tively ~recall that we fixV!. Using the relationbe5b i(1
22l)1O(l2), we immediately obtain that the solution to
Eq. ~23! can be written as

h5h01l
16b ilq

2

q~q2
1l2!2 1O~l2!. ~40!

The use of Eq.~39! gives the same result.
It is straightforward to see that the quantityqh1 /V, con-

sidered as a function ofq/l, depends only on one parameter,
x511s/l. This is shown in Fig. 2 for different values ofx.
The first order correction to the solitary wave amplitude is
lh1(0), whereh1(0) is given by

h1~0!5

8V~x21!@x~x2
13!ex Ei~2x !1x2

24x21#

qx~x11!3 ,

~41!

with Ei(x)5*
2`
x s21es ds (x,0) the integral exponent. The

dependence of2h1(0)/h0(0) on x is shown in Fig. 3. For
small and large values of (x21) the quantityh1(0)/h0(0)
is given by the asymptotic expressionsh1(0)/h0(0)
;24.2(x21) as x→1, and h1(0)/h0(0);26x22 as
x→`.

Finally, we calculate the first order correction to the soli-
tary wave width, H. We determineH by the equation
h(H)5

1
2h(0). In the zeroth order approximation we have

H5H05l. Then it is straightforward to obtain that in the
first order approximation,

H5H01lH1 , H15

h1~0!22h1~ l !

2h08~ l !
, ~42!

where the prime indicates the derivative. The explicit expres-
sion forH1 is very complicated, and we do not write it down.
In Fig. 4 the quantity2H1 /l is shown as a function ofx.

FIG. 2. The dependence ofqh1 /V on q/l for different values ofx. The
solid, dashed, dotted, and dashed–dotted curves correspond tox51, x

51.5, x55, andx540, respectively.

FIG. 3. The dependence of2h1(0)/h0(0) onx. Note the logarithmic scale
used in the horizontal axis.

FIG. 4. The dependence of2H1 /l on x. Note the logarithmic scale is used
in the horizontal axis.
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VI. SUMMARY

In this paper we have studied wave propagation in a
planar symmetric magnetic configuration consisting of a cen-
tral magnetic slab and two side magnetic slabs embedded in
two semi-infinite regions. Equilibrium quantities are constant
in all five regions, and they have jumps at the boundaries of
the regions. We have derived a dispersion relation for linear
waves propagating in this configuration, and shown that in
the long wavelength approximation it possesses a solution
describing slow sausage waves in the central slab. When the
thickness of the side slabs tends either to zero or to infinity,
this solution reduces to the dispersion relation for slow sau-
sage waves in a single magnetic slab.

Using the method of multiple scales we have derived an
equation governing the nonlinear evolution of slow sausage
waves in the central slab. This equation reduces to the
Benjamin–Ono~BO! equation when the thickness of the side
slab tends either to zero or to infinity. Using the regular
perturbation method we have studied the solution to this
equation in the form of a solitary wave in the case where it
differs only slightly from the BO equation. This condition is,
in particular, satisfied if the equilibrium quantities in region
IV differ only slightly from those in region V,
which is relevent in, for example, solar coronal loops with a
thin core. We have used the BO soliton as a zeroth order
approximation, and then calculated the small correction to it.
In particular, we have calculated the corrections to the soli-
ton amplitude and width as functions of the thickness of the
side slabs. The study of such magnetic configurations is of
particular importance in solar and magnetospheric physics.

In keeping with the regular perturbation method, the so-
lution describing a solitary wave in the multi-layered con-
figuration differs only slightly from the BO algebraic soliton.
Nevertheless, on the basis of this solution, we can make an
interesting conclusion about solitary waves in coronal loops
with a thin core. Assuming that the equilibrium quantities in
regions IV and V are only slightly different from one an-
other, and that the density and temperature in region IV are
larger than those in region V, and the variations of these
quantities are of the same order, we immediately conclude
that, for typical coronal conditions,l,0. It then follows
from Figs. 3 and 4 that the presence of the side slabs~regions
II and IV! increases the amplitude and width of the solitary
wave, so that its amplitude and width are larger than those of
the BO soliton propagating with the same velocity.
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APPENDIX A: SOLUTION IN REGION III

In this appendix we obtain the solution in region III.
Using the new variablesu and t, we rewrite the system of
MHD equations~1!–~4! as

e
]r

]t
2cT

]r

]u
1e21

]~ru !

]x
1

]~rw !

]u
50, ~A1!

e2
]u

]t
2ecT

]u

]u
1u

]u

]x
1ew

]u

]u

52

1

r

]

]x S p1

Bz
2

2m
D 1e

Bz

mr

]bx

]u
, ~A2!

e
]w

]t
2cT

]w

]u
1e21u

]w

]x
1w

]w

]u

52

1

r

]

]u
S p1

bx
2

2m
D 1e21

bx

mr

]bz

]x
, ~A3!

]bx

]t
2e21cT

]bx

]u
5e21

]

]u
~uBz2wbx!, ~A4!

e
]bz

]t
2cT

]bz

]u
5e21

]

]x
~wbx2uBz!, ~A5!

e
]

]t S p

rgD2cT

]

]u S p

rgD1e21u
]

]x S p

rgD1w
]

]u S p

rgD50.

~A6!

The boundary conditions~6! give

e21u5e
]h

]t
2cT

]h

]u
1w

]h

]u
, p1

B2

2m
5p i1

B i
2

2m
,

at x5a1h. ~A7!

We substitute the expansions~20! and ~21! into Eqs.~A1!–
~A7!, and collect terms of ordere. As a result we obtain a
system of equations and boundary conditions for the vari-
ables of the first order approximation, which are the vari-
ables with the superscript ‘‘1.’’ The solution to this system is
straightforward. It gives the expressions of all variables in
terms ofu (1) andw (1),

r (1)
5

r0cT

cS
2 w (1), p (1)

5r0cTw (1),

~A8!

bz
(1)

52

B0cT

vA
2 w (1), bx

(1)
52

B0

cT
u (1),

and the relations foru (1), w (1), andh (1),

u (1)
52

cT
2x

vA
2

]w (1)

]u
, w (1)

5

vA
2h (1)

cTa
. ~A9!

When deriving Eq.~A9! we have used the symmetry condi-
tions ~5!, and the fact thatw (1) is independent ofx.

In the second order approximation we do not use Eq.
~A4!. Collecting terms of the order ofe2 in Eqs.~A1!–~A3!,
~A5!, and ~A6!, we obtain the system of equations of the
second order approximation. Using Eqs.~A8! and ~A9!, we
write this system in the form

cT

]r (2)

]u
2r0

]u (2)

]x
2r0

]w (2)

]u

5

r0cT
2

cS
2 S ]w (1)

]t
1

]~u (1)w (1)!

]x
12w (1)

]w (1)

]u D , ~A10!
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]

]x S p (2)
1

B0

m
bz

(2)D50, ~A11!

cT

]w (2)

]u
2

1

r0

]p (2)

]u
5

]w (1)

]t
1

cT
2

vA
2 w (1)

]w (1)

]u
, ~A12!

cT

]bz
(2)

]u
2B0

]u (2)

]x
52

B0cT

vA
2

]w (1)

]t
1

B0cT

cS
2

]~u (1)w (1)!

]x
,

~A13!

]

]u
~p (2)

2cS
2r (2)!5

~g21!r0cT
2

cS
2 w (1)

]w (1)

]u
. ~A14!

The second boundary condition~A7! gives atx5a,

p (2)
1

B0

m
bz

(2)
5p i

(1)
1

B0i

m
bzi

(1)
2

1

2m
~bz

(1)!2. ~A15!

Sincebz
(1) is independent ofx, it follows from Eq.~A11! that

Eq. ~A15! is valid for x<a ~howeverp i
(1) andbzi

(1) are cal-
culated atx5a!.

The homogeneous system of equations of the second or-
der approximation, obtained by taking the right-hand parts of
Eqs. ~A10!–~A15! equal to zero, coincides with the system
of the first order approximation. The system of the first order
approximation admits a nontrivial solution and, conse-
quently, so does the homogeneous system of the second or-
der approximation. This implies that the inhomogeneous sys-
tem of the second order approximation has a solution only
when the right-hand sides of Eqs.~A10!–~A15! satisfy a
compatibility condition. To derive this condition we elimi-
nate all variables of the second order approximation from
Eqs.~A10!–~A15!. As a result, using Eq.~A9!, we arrive at

]h (1)

]t
1qh (1)

]h (1)

]u
52

acT
3

2r0vA
4

]

]u S p i
(1)

1

B0i

m
bzi

(1)D ,

~A16!

where the right-hand side is calculated atx5a, and coeffi-
cient q is given by

q5

vA
4 @3cS

2
1~g11!vA

2 #

2acT~cS
2
1vA

2 !2 . ~A17!

APPENDIX B: SOLUTION IN REGIONS IV AND V

In this appendix we obtain the solution in regions IV and
V. In these regions we use the system of MHD equations
written in the variablesu, t, andX. This system is obtained
from Eqs.~A1!–~A6! by substituting the operatore]/]X for
the operator]/]x. Collecting terms of the ordere2 in this
system, we obtain the linear system of equations for the vari-
ables with the superscript ‘‘1.’’ Eliminating all variables
from this system exceptua

(1) andPa
(1)

5pa
(1)

1B0abza
(1)/m, we

arrive at the system of two equations:

cT

]Pa
(1)

]X
5ra~cT

2
2vAa

2 !
]ua

(1)

]u
,

~B1!
]ua

(1)

]X
5

cT~cSa
2

2cT
2!

ra~cSa
2

1vAa
2 !~cTa

2
2cT

2!

]Pa
(1)

]u
,

wherea5i,e. The boundary conditions~6! and ~7! give in
the first order approximation,

u i
(1)

52cT

]h (1)

]u
, at X50, ~B2!

u i
(1)

5ue
(1)

52cT

]z (1)

]u
, P i

(1)
5Pe

(1) , at X5eL. ~B3!

In addition,ue
(1) and Pe

(1) has to vanish asX→`. Note that
the boundary condition~B2! should be written atX5ea;
however, with the standard approach of linear theory, we
have moved it toX50. The quantityeL is arbitrary, so that
we cannot do the same with the boundary condition~B3!.

To solve the system of equations~B1! with the boundary
conditions~B2! and~B3!, we introduce the Fourier transform
with respect tou,

f̂ ~k !5E
2`

`

f ~u !e2ikudu, f ~u !5

1

2p
E

2`

`

f̂ ~k !e ikudk.

~B4!

The Fourier-transformed equations~B1!–~B3! take the form

cT

] P̂a
(1)

]X
5ira~cT

2
2vAa

2 !kûa
(1) ,

~B5!
] ûa

(1)

]X
5

icT~cSa
2

2cT
2!kP̂a

(1)

ra~cSa
2

1vAa
2 !~cTa

2
2cT

2!
,

û i
(1)

52icTkĥ (1), at X50, ~B6!

û i
(1)

5 ûe
(1)

52icTk ẑ (1), P̂ i
(1)

5 P̂e
(1) , at X5eL. ~B7!

The solution to this system of equations and boundary con-
ditions is straightforward, so that we omit details and give
only the expression forP̂ i

(1) at X50, which is the only quan-
tity that we need in what follows:

P̂ i
(1)uX505

2r0vA
4 ukuw~ek !ĥ (1)

acT
3 , ~B8!

where l and w(k) are given by Eqs.~17! and ~19!. The
inverse Fourier transform gives

P i
(1)uX5052

2r0vA
4b i

acT
3 HHS ]h (1)

]u D2

l

peL E
2`

` ]h (1)

]s

3dsE
0

` sin@r~2eL !21~u2s !#

l1erk i
drJ , ~B9!

where the Hilbert transform is determined by~see, e.g.,
Sneddon26!

H~ f !5

1

p
PE

2`

` f ~s ! ds

s2u
, ~B10!

with P indicating the principal Cauchy part of an integral.
When deriving Eq.~B9! we have used the formula for the

Fourier transform of the Hilbert transform26
H~f !̂

5i f̂ sign(k).
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Note thatulu51 whenk i5iuk iu. This implies that the
denominator in the second integrand in Eq.~B9! may be zero
for some values ofk. These values ofk correspond to reso-
nances between slow surface waves in region III and body
waves in region IV. To avoid this difficulty we assumed that
k i

2
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