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The propagation of slow sausage surface waves in a multi-layered magnetic configuration is
considered. The magnetic configuration consists of a central magnetic slab sandwiched between two
identical magnetic slab@vith equilibrium quantities different from those in the central $lahich

in turn are embedded between two identical semi-infinite regions. The dispersion equation is
obtained in the linear approximation. The nonlinear governing equation describing waves with a
characteristic wavelength along the central slab much larger than the slab thickness is derived.
Solitary wave solutions to this equation are obtained in the case where these solutions deviate only
slightly from the algebraic soliton of the Benjamin—Ono equation. 2@1 American Institute of

Physics. [DOI: 10.1063/1.1371520

I. INTRODUCTION slow sausage waves in a magnetic slab is described by the
Benjamin—OndBO) equation, previously derived for waves

Magnetized plasmas in geophysical and astrophysicah fluids with the infinite deptii®?
conditions are highly inhomogeneous. Very often they con-  Although the representation of magnetic filaments by
sist of filament structures stretched along the magnetic fielthagnetic slabs enabled us to understand many important
lines, and strongly inhomogeneous in a direction perpendicuproperties of magnetic flux tube oscillations, this approxima-
lar to the magnetic field. Such structures are usually calledion is not particularly realistic. Real magnetic flux tubes are
magnetic flux tubegsee, e.g., Ref.)1Flux tubes can support inhomogeneous and, in particular, characterized by a con-
new types of magnetohydrodynan{®dHD) waves with the tinuous dependence of equilibrium quantities on the radial
wave energy confined to the tube or its vicinity. The wavesdistance. Hence, more sophisticated models are needed for a
are called surface and body modeS. comprehensive study of magnetic flux tube oscillations.

The simplest model of a magnetic tube is a magnetic In this paper we aim to narrow the gap between the
cylinder with homogeneous plasmas inside and outside thmodel of magnetic tube or slab and the reality. It studies the
cylinder, and with the surface of the cylinder being a MHD propagation of nonlinear slow sausage waves in a magnetic
tangential discontinuity. The analysis is even simpler when &onfiguration more complicated than a simple magnetic slab.
magnetic slab, which consists of two parallel identical MHD The configuration consists of a central magnetic slab sand-
tangential discontinuities with a homogeneous plasma bewiched between two identical magnetic slabs with equilib-
tween them, and identical homogeneous plasmas in the twidum quantities different from those in the central slab. This
outer regions, is used as a planar model of a magnetic tubé&iree-slab configuration is, in turn, embedded between two
The properties of sausagaxisymmetri¢ wave modes in a semi-infinite regions with identical equilibrium quantities.
magnetic cylinder and those of sausage modes in a magnet8uch a magnetic configuration can be considered as a model
slab are quite similat® It is this similarity together with the of a number magnetic structures in astrophysical plasmas,
relative simplicity of the analysis that has made the magnetie.g., as a model of a magnetic loop with a thin core in the
slab a popular model for studying wave propagation in asolar corona.
magnetically structured plasma. In sausage modes, oscilla- The paper is organized as follows. In the next section we
tions are symmetric about the central axis of the magnetidescribe the equilibrium state and present the governing
configuration; the central axis remains undisturbed in theequations and boundary conditions. In Sec. lll we study
motions. wave propagation in the linear approximation. In Sec. IV we

The linear theory of waves in magnetic slabs has beenerive the governing equation for nonlinear slow sausage
developed in Refs. 3, 6-9. Different types of nonlinearsurface waves; this is a new result. We go on in Sec. V to
waves in magnetic slabs have been studied in Refs. 10—18btain an approximate solution to the nonlinear governing
In particular, it has been showh''3that, in the long- equation in the form of a solitary wave in the case where the
wavelength approximation, the propagation of nonlineamwave differs only slightly from the algebraic soliton of the
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velocity and the perturbation of the magnetic induction are
v (u,0w) and (,,0b,), respectively. This eliminates Alfve
waves. In addition, we restrict our analysis to motions sym-
metric with respect to the-axis. This restriction enables us
to consider Egs(1)—(4) in the regionx>0 only, and to
impose symmetry conditions at=0:
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—(a+1) P a{ at+L Let the equations of the perturbed boundaries between
regions Ill and 1V, and between regions IV and V, be a

FIG. 1. A sketch of the equilibrium configuration. The equilibrium quanti- 7](t Z) andx=a+L+ é’(t Z) respectively. At these bound-
ties are the same in regions I and V, and also in regions Il and IV. The_ ."*"’ . . ’ . .
dashed lines show the perturbed boundaries separating the regions with €S the kinematic boundary conditions and the conditions

different equilibrium quantities. of total pressure balance have to be satisfied:
J J J J
. . . u:_77+ _77! ui:_n+wi_7]1 P:Piv

BO equation. A summary of our results is presented in Sec. dt Jz gt dz
VI at x=a+ 7, ©6)
Il. GOVERNING EQUATIONS AND BOUNDARY y _r7_§+W 9 U _(?_§+W 9 b_p
CONDITIONS ot 19z’ e ot €9z’ I er

To describe the plasma motion we use the ideal MHD gt x—a+ | +¢, 7)
equations,

where P=p-+B?/2u is the total pressure in a plasma with
ap magnetic field strengtB=|B|. In addition, perturbations of
N + . — . L]
ot V-(pv)=0, @ all variables are assumed to vanishxas .
p 1 1 Equations(1)—(4) and the boundary condition®)—(7)
—V+(v~V)v: - ~Vp+—(VXB)XB, (2)  Will be used in what follows to study the propagation of a
p mp

ot sausage wave.
JB
EzVX(vXB), V-B=0, 3
Ill. LINEAR THEORY
- % +v.V pﬂy)=0- (4) In this section we study the propagation of sausage

waves in the linear approximation. We linearize Ed3$—(4)
Herep is the plasma density the pressurey the velocity,B and take perturbations of all quantities to be proportional to
the magnetic inductiony the magnetic permeability of a €XHi(kz—wt)] with real wavenumbek and frequencyw.
vacuum, andy the ratio of specific heats. Eliminating perturbations of all quantities in favor ofand

In what follows we study wave motion in the equilib- P'=p’+Bgb,/ux (the prime indicates the perturbation of a
rium configuration shown in Fig. 1. This configuration con- quantity, we obtain the system of equatio(eee Refs. 2,3
sists of five regions, separated by tangential MHD discontidescribing the wave motion in the central regioegion 1),
nuities parallel to theyz-plane in the Cartesian coordinates du iw(wz—cékz)
X, Y, z. The equilibrium magnetic field is in thedirection. - 7 7 2P
There is no equilibrium flow. The equilibrium quantities are X po(Cstua)(w—cTk?)
the same in regions | and V; in regions Il and IV they are  gpr (w2~ y2k2) ()
also the saméand in general distinct from regions | and.V o e W
Quantities in regions | and V are labeled with the subscript
“0 e,” and quantities in regions Il and IV with the subscript where the squares of the Alfugsound, and cusp speeds are
“01i.” Equilibrium quantities in the inner regioftregion IIl) given by
are labeled with the subscript “0.”

2 2.2
A number of special cases of particular interest are in- 2 :& szy_po 2_ oA (9)
. . UA ] S Il T 2 2 -
cluded in our treatment. For example, the case of an isolated HPo Po Cstua

magnetic slab corresponds to choosByg=By.=0, and is

g ' - . The system of equations describing the motions in regions
of particular interest in solar photospheric studies., Refs.

IV and V are obtained from Eq8) by substituting the un-

3-9. The case 0Bg;, Boe, andB, all broadly comparable |apejed quantities by the corresponding quantities with the
corresponds to solar coronal circumstantés. labels “i” and “ e,” respectively.

We consider only planar motions where perturbations of  The linearized boundary conditions are
all quantities are independent pf and they-component of )
the velocity and the magnetic induction is zero, so that the U=—lw7n, U=-lw7, =P/, atx=a, (10
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U=—liwl, U=—iwl, P{=P,, at x=a+L. (11

The solution to EQq.(8) in region Illl, satisfying the
boundary conditions5), is

u= wmpAg sinh(mgyx),
P’ =ipoAg(w?—v3k?)cosiimgx), 0<x<a, (12)
where

, (C&kP—w?)(vak?*~ w?)

Mo=—""72_" 22 '
O (ci+v3)(cik?—w?)

13

andA, is an arbitrary constant. The quanting can be either
positive or negative. In the latter case we takg=i|mg|.
The solution to Eq(8) in region IV is

Ui=om;(A e™*+A_e~MX),
P/ =ipoi(w’—vak?) (A ™ —A_e™),
a<x<a+L, (14)

whereA, andA _ are arbitrary constants, almq2 is given by
Eqg. (13) with the equilibrium quantities labeled withi:”

Once agairmi2 can be either positive or negative, and in the

latter case we taken,=i|m;]|.
The solution to EQ.(8) in region V, vanishing as

X—00, IS
Ue=wmAe M,

PL=—ipe 0~ vikDAL ™, x>atl, (19

wheremﬁ is given by Eq.(13) with the equilibrium quanti-
ties labeled with ‘€.” In order that this solution vanishes at
infinity, the quantitymg must be positive.

Substituting Eqs(12), (14), and(15) into Egs.(10) and

(11), we obtain a homogeneous system of six linear algebraic

equations fory, ¢, Ag, A, , A_, andA,. The condition for

the existence of a nontrivial solution to this system gives th

dispersion relation. Writing, in place ofpge andp; in place

of pgi, we obtain

piMo(v k> — w?) tank(mea)

T 2,22y 0

poMi(v k> — w?)

MK = 02) + pem; (v K* — w?)tant(miL)
PeMi(Vaek® = %) + piMe(v iz k*— w?)tankm;L) ’

(16)

In what follows we concentrate on the long wavelength

approximation wheréak|<1. Note that|kL| can be arbi-

trary. In the case of an isolated slab there is a surface sausa@%2

wave propagating with the velocity; along the slals. For
this wave the conditiohamg| <1 is satisfied. We look for a
solution of the same type to E¢L6). A straightforward cal-
culation yields

1—\ exp(—2k;|K|L)

w=crk+klkle(k), ¢(k)=Bi7 exp(—2x|kIL) ’
(1

where

Ruderman et al.

3, 2 2
_ apaCT(vAa_ CT)
“ ZPOKQUi
2 2v/..2 2
(Csa—CT)(Vag—CT)

=72 2 2 25
(CSa+ vAa)(CTa_ CT)

2

Ky

(18

2 2 2 2
_ PiKe(Va;—CT) ~ peki(Vpe—CT)

= 72 2 2
pike(Uai —CT) + peki(vae—CT)

and the suffixa=i,e. The quantityfq2 can be either positive
or negative. In the latter case we take=i| «;|. It is straight-
forward to check thatp(k) is real whenx;=i|x;|. In order
that perturbations vanish at infinity, the quantjetgl must be
positive. This implies that one of the following two inequali-
ties has to be satisfied:

(19

The second inequality is readily satisfied in applications to
the solar corona, where the Alfwespeed is much larger than
the sound or cusp speed in all three regions. In the solar
photosphere withv ,,=0 the condition(19) is reduced to
Cr<Cse-

In what follows we assume that the denominator of the
expression fol is nonzero, and so is the denominator of the
expression fokp (k). The first condition is readily satisfied in
applications to the solar corona; however, the second condi-
tion can be broken ik; is purely imaginary.

When L=0, there is no region IV, and the considered
configuration is a magnetic slab. In this case the dispersion
relation (17) coincides with that given in Ref. 6. When
—oo, region V disappears. In this case we once again have
the slab configuration, and E(.7) coincides with that given
Ref. 6 (with the external equilibrium quantities labeled with
“i” instead of “e").

It is convenient to introduce the dimensionless amplitude
of perturbations, writing:=max »|/a. Then, using the linear-

Cr<<Cte O MIN(Cge,Upe)<CT<MaXCse,Upe)-

é'zed MHD equations, the solution to the linear problem and

the dispersion relatiofiL7), it is straightforward to show that
the dimensionless amplitudes of, p’, w, b,, and{ are all

of order ¢, while the dimensionless amplitudes wfand b,
are of orderealk| (<e€). The dimensionless amplitudes of
perturbations of all quantities in regions IV and V are of
order ealk|. One additional and very important observation
is that the characteristic scale of variationgdf p’, w, and

b, in the x-direction isk . Hence, they are almost indepen-
dent of x in the long wavelength approximation, where
lak|<1.

DERIVATION OF THE NONLINEAR GOVERNING
UATION

To derive the nonlinear equation governing the propaga-
tion of slow surface sausage waves in the central magnetic
slab (region Ill) we use the reductive perturbation method
(e.g., Refs. 22, 23 The procedure is similar to that used in
Ref. 13 to derive the BO equation for slow waves in a mag-
netic slab. We consider nonlinear waves with amplitudes of
the ordere, propagating in the positive-direction with
phase velocity close to;. Our aim is to obtain the equation
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describing the competition between nonlinearity and disper- WhenL—~, £(f)—0 and Eq.(22) reduces to the BO
sion. The effect of dispersion is comparable with the effectequation previously derived in Refs. 10, 11, 13. WHen
of nonlinearity when the ratio of the dispersion correction,~a, it is straightforward to show thatG(z)—2\(1
which is the second term on the right-hand side of the dis-+\) " 'P(1/z), and thenZ(f)— —2X(1+\) YH(f) and
persion relation(17), to the main term, which is the first Eg. (22) once again reduces to the BO equation, however,
term, is of the ordere. This implies thata|k|~¢, and the with 8, substituted foB; . All these results are in agreement
characteristic scale in thedirection ise 'a. To take into  with those obtained in the previous section in the linear ap-
account this estimate, and the fact that perturbations propgroximation.
gate in thez-direction with a phase speed that is close{o
we introduce the running variable= e(z— c+t).

Since the nonlinear and d_lsperswe effects are both o{/_ SOLITARY WAVE
order ¢, they cause the evolution of the wave shape on a
time-scale of ordee ! multiplied by the characteristic wave In this section we obtain a solution to E(2) in the
period. To take this slow evolution into account, we intro- form of a So|itary wave. We look for a solution Whepﬁ
duce the “slow” time 7= €*t. vanishes at infinity, andy depends ond=z—(cy+ V)t

The thicknesd of region IV can be much larger than rather than orz andt separately. In this case E(R2) re-
the thickness & of region lll, so thata cannot be considered dyces to
as a characteristic scale in tkealirection in region IV. Since
region V is semi-infinite, the characteristic wavelength is the V- q 772+,8-H(d—7’
only spatial scale present in this region. This observation 2 "rldy

msplreﬁ/ us (;ovmtroduce the stretched varialite ex in re- Equation(24) is a complicated integro-differential equation,
gions fv-and V. and at present we are unable to find its solution. To make

:n le(xcfcordr?nce |W|_th the Led?ctlve ]EJerturban_n mGthOdanaIytical progress we assume thelt<1. This condition is,
we look for the solution In the form of asymptotic expan-;, particular, satisfied if the equilibrium quantities in region

sions with respect F@' Taking into acgount our.estimates for_ IV differ only slightly from those in region V, which is rel-
t_he order .Of magnitude of perturbatlon.s of d'ﬁeTe”‘ quantl-, ant for the solar corona. We now use the regular perturba-
tleg, obtained at the e_nd of the previous section, and thﬁon method to obtain the solution. We expand the denomi-
estimatea|k|~e, we write the expansions in the form nator in the expressiof23) for G(z) in the power series with

dy B
+BiL| 35| =0. (24)

f=efM4 2 (200  respect tok. The corresponding integrals are easily calcu-
. lated, and we arrive at the following expression for the op-
for p’, p’, w, b,, 7, and{, and in the form eratorL:
g=e’gM+e3g? . ., (21) ®
. o L=, \"L,,
for u, b,, and for the perturbations of all quantities in re- n=1

gions IV and V. In addition, in accordance with our note at il
the end of the previous section, we assume tffdtis inde- £ (f(2))= 2(-1) f* (z—9)f(s)ds
pendent ofx. We solve the MHD equations in regions I, " _»(z—8)%*+n%c?’
IV, and V separately, and then match the solutions at the B o
boundaries. The solutions in region Il and regions IV and VWhereo—Z:fiL._Noerv)\\/e Iioi(zforfus‘c’ll:t'(iﬂ n thet;;orrr:j of
are given in Appendices A and B, respectively. To obtain the® POWET SENESy= 7o A 771 72 - IN € zeroth order

governing equation we substitute E@9) into Eq. (A16), approximation we _obtaln the BO equation f%' It_pos-
return to the original variablesandz, and takepy~en(t.  3€35€5 @ solution in the form of an algebraic soligeny.,

As a result, we finally obtain Refs. 20, 21, 24

— 4
an  dny an #*n P\ no=—7rez, VI=—8, 1>0. (26)
E“TE“WE‘W(?)‘M(?)—0' all™+9%)

(25

(220 The quantityl is the half-width of the soliton, and 43;/1q

where the Hilbert transforni is given by (B10), and the Is its amplit_ude. L :
operatorc is determined by In the first order approximation we obtain

- ~Vanta —B-H(% = BiFy(9) (27
E(f):f_wG(z_s)f(s)ds, AN Pt gy iri(v),
N [*sin(rz/aL) @3 Fy(9)=L (dno) Va9 (28)
_ 1 Ll G9 T A AS 9211+ 2"
G(Z)_EJ’()WC”. do q dd 9+ (l+0)

Using the identity
Equation(22) is our main goal in this paper. It describes the
weakly nonlinear, weakly dispersive behavior of slow mag- Jw fH(g) d9=— Jm gH(f) d®,
netosonic sausage waves in a slab configuration. — —
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it is straightforward to show that the operator on the left-
hand side of Eq(27) is self-adjoint inL, . Differentiating the
equation forny, we show thatl n,/d ¥ is an eigenfunction of

Ruderman et al.

upper half of the complex planeg(9)>0], and the func-
tion »_="7 is analytical in the lower half of the complex
plane[Z(9)<0]. The boundary values of these two func-

this operator corresponding to the zero eigenvalue. It can bgons at the real axig3(9)— *+0] are given by the Plemelj

also shown that the eigenspace corresponding to the ze
eigenvalue is one-dimensional, so thg,/d9 is the only
eigenfunction(apart from a multiplicative constantThis
implies that Eq.(27) has a solution froni, if and only if
F.(9) is orthogonal to dxny/dd, ie., if [T F;(9)
X(dng/d¥) d9¥=0. SinceF(¥9) is even anddzy/d¥ is
odd, this condition is obviously satisfied.

Proceeding to the second order approximation, we obtai
an equation similar to EQq(27), but with #», and F,
=(d/dN[ L1(7n1) + Lo(70)] substituted forpy, andF,, re-
spectively. Once again, the solvability condition for this
equation is the orthogonality d¥,(dJ) anddznqe/dd. The
expression forl,(d»y/d) is obtained by the substitution
of 20 for o in EQ. (28), so the solvability condition of the

second order approximation reduces to the orthogonality

condition of £1(d#,/d¥) and dznq/d9. Let 5(9) be a
solution to Eq.(27), satisfying the solvability condition of
the second order approximation. Since E2j0) is invariant
with respect to the substitution O— &, 71(9) = 7(—9)
is also a solution to Eq.27), and, obviously,L,(d7;/d®)
and dzng/dd are also orthogonal. They, ()= n()
—74(9) is a solution to Eq(27) with F;=0 and, conse-
quently, 77,(9) =Cd#y/d?, whereC is constant. And, of
course,L(d%,/d¥) andd#ny/dd are orthogonal. This or-
thogonality condition reduces to

= dng d?Ly( 70)
T Wdﬂ—o. (29
A direct calculation with using Eq28) shows that the inte-
gral in this expression is nonzero, which implies tat 0.
Henceni(—9) = 5.(9), i.e., n1(9) is an even function.

In what follows we consider a more general problem.
Let F,() be an arbitrary continuously differentiable even
function, F(9) e L,. Our task is to find an even function
71(0) satisfying Eq.(27). The perturbation theory for the
BO equation has been studied by many authses, e.g.,
Ref. 25 and references thergimn principle, the solution to
the considered problem can be obtained on the basis of t

general theory developed in Ref. 25. However, from our™

point of view, it is convenient to give a direct solution to the
problem based on a very simple analysis. In addition to it
simplicity, our approach has another advantage in compar
son with that used in Ref. 25. The theory developed in Ref
25 is based on the complete integrability of the BO equation

Our approach does not use the integrability and can also b

applied to nonintegrable BO-type equations.

fBrmulas,

7:(9)=%3 () = 3iH(71). (31)

The relationy_ ()= —[ 5, (9*)]* (the asterisk indicates a
complex conjugate valuenables us to consider onby, in
what follows.

Let us now apply the Hilbert transform to EQ7). Us-

ﬂ1g the formulas
fx f(s)ds
—w STV

where} is real andv is an arbitrary complex quantity with
the nonzero imaginary paf(v)# 0], we obtain

f(9)
d—v

~H(f) 1
T 9-v m(d—v)

2_

-1,

dn,

dd
I7.(il)

F2+12

—VH(#n1) +adnoH(71) + Bi

=BiH(F1)—8B; (32

Note thatz, (il) is real. Now we multiply Eq(27) by i, and
add the result to Eq32). As a result we obtain an equation

for 7.(9),
d . . G, (il)
Bige—in,(V=ano) =i BiF . — 4B~z =7 =i,
33

where the functiorF . () is determined in terms df ()

in the same manner ag, (J) is determined in terms of
71(9). Since ny(¥) can be analytically continued on the
whole complex plane, we can consider E8Q) in the upper
half of the complex plane. The solution to E(J) is

straightforward:
1?2 c +Fh o[ il 2d
g |Gt e s ) g8y
(34)

7 (9)=e

h\gherecl is constant. It is easy to check that () deter-

ined by Eq.(34) tends ton,(il) as 9—il, so that the
solution (34) is self-consistent. In general, the poititis a

g)ranch point forn, (), which contradicts the property of

7. () to be analytic in the upper half of the complex plane.
I'I'his point is regular only if the expansion of the integrand in
the vicinity of il does not contain the termy-il) 1. This

%ondition results in the relation

7. (iH=il?F’ (il), (39

We start our analysis by introducing the Cauchy integral,

1

27T| —o

= 7u(s)ds

7(9) p— (30

where ¥ is now considered a complex variable, af¢hy)
#0, where¥ indicates the imaginary part of a quantity.
Equation (30) determines two analytical functions of the
complex variabled. The functionn, =7% is analytical in the

Downloaded 31 Oct 2006 to 129.11.23.57. Redistribution subject to A

where the prime denotes the derivative with respect to the
argument. The fact thatyp,(9) is even implies that
74 (=)= 5% (9) for real 9. This relation is satisfied only
whenC; is real. The condition thaty, ()—0 asd— —o
leads to
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C,= foxh(ﬁ)e“’”(g%::) do (36)
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FIG. 2. The dependence afy,/V on 9/l for different values ofy. The
solid, dashed, dotted, and dashed—dotted curves correspoge-10 x
=1.5, x=5, andy=40, respectively.

The condition thatC, is real requires that

o (9l 2
f h(9)e'?! —) d9=0.

=il S

In accordance with the Jordan Lemma and the Residue Thed-71
rem, the integral on the left-hand side of Eg§7) is equal to

2 times the residue of the integrand with respect to ther1(0)=
pole atd=il. Equation(35) guarantees that this residue is

zero, so that Eq36) is satisfied. Hence, eventually, we ar-

rive at

2 i\ 2
i g—il el h(s)eid! s+il d

where h(?) is given by Eqs.(33) and (35). Equation(37)
guarantees thag, (9)—0 asd— . The functiony(9) is
given by n,=2%R(7,), wheref indicates the real part.

When the functionF,(9) is given by Eq.(28), direct
calculation yields

 —AVI(9—iD)?
T+ Qo+ 203 (9 +i1)2

4il (21— o) +ilo]
(9—il)?

ioc?(o+2l) _
ST ey LD

s eislgs
XJ'OQS-H(H-O')]' 39
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FIG. 3. The dependence of 7,(0)/7,(0) on x. Note the logarithmic scale
used in the horizontal axis.

The use of Eq(39) gives the same result.

It is straightforward to see that the quantity, /V, con-
sidered as a function a¥#/I, depends only on one parameter,
x=1+0o/l. This is shown in Fig. 2 for different values gf
The first order correction to the solitary wave amplitude is
(0), where 1(0) is given by

8V(x—1)[x(x?+3)eXEi(— x)+ x*—4x—1]
ax(x+1)3

(42)

with Ei(x) = [* ..s leSds (x<0) the integral exponent. The
dependence of- %,(0)/7,(0) on y is shown in Fig. 3. For
small and large values ofy(— 1) the quantityz,(0)/7y(0)

is given by the asymptotic expressiong,(0)/7y(0)
~—4.2(x—1) as x—1, and 7,(0)/59(0)~—6x "2 as
X— .
Finally, we calculate the first order correction to the soli-
tary wave width,H. We determineH by the equation
n(H)=37(0). In the zeroth order approximation we have
H=Hgy=I. Then it is straightforward to obtain that in the
first order approximation,

0)—2n,(!
HoHotaH,, Hy= A0 2m®
2mg(1)

where the prime indicates the derivative. The explicit expres-
sion forH is very complicated, and we do not write it down.
In Fig. 4 the quantity—H, /I is shown as a function of.

(42)

It is easy to check thaty;=O(9 ?) as |9 —», so that
71/ g is uniformly bounded on the real axis.
Let us study how this expression agrees with the two

limiting cases considered at the end of the previous section.

The limiting caselL — o corresponds ter—«. In this case
n,—0 as it should, becausg, is an exact solution to Eq.
(22). In the second limiting case— 0, which corresponds to
o—0, the exact solution to Eq22) is given by Eq.(26),
with B, and | .= — B./V substituted forB; and |, respec-
tively (recall that we fixV). Using the relationB.= 8;(1
—2\)+O(N?), we immediately obtain that the solution to
Eq. (23) can be written as

168;1 92

n= myf-)\m'f'oo\z). (40

ot

1

2

3

5

10

20

40

FIG. 4. The dependence ofH, /I on y. Note the logarithmic scale is used
in the horizontal axis.
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VI. SUMMARY Jau ou Ju Ju

2
. . . . €T——€eCy—tU—+ew—
In this paper we have studied wave propagation in a d7 o6 " ox a6

planar symmetric magnetic configuration consisting of a cen-

2
tral magnetic slab and two side magnetic slabs embedded in  _ _ 1 i( p+ E + EE a_bx (A2)
two semi-infinite regions. Equilibrium quantities are constant p X 2u pp 30
in all five regions, and they have jumps at the boundaries of
the regions. We have derived a dispersion relation for Iineag_W_CT&_W+ 6—1u‘9_W+W‘9_W
waves propagating in this configuration, and shown that in 97 a0 X a6
the long wavelength approximation it possesses a solution 14 b2 b. db
describing slow sausage waves in the central slab. Whenthe =—- - —/| p+ _X) +e X2 (A3)
thickness of the side slabs tends either to zero or to infinity, p d0 2p mp 09X
this solution reduces to the dispersion relation for slow sau-, Jb 9
sage waves in a single magnetic slab. &_: — 6—1CT5_0X = 6_1ﬁ(UBz—be), (A4)

Using the method of multiple scales we have derived an
equation governing the nonlinear evolution of slow sausage b b J
waves in the central slab. This equation reduces to the_Z_cT_Zzefl_(be_uBZ), (A5)
Benjamin—OndBO) equation when the thickness of the side IT 90 X
slab tends either to zero or to infinity. Using the regular 0 (p [ p [ p g (p
perturbation method we have studied the solution to thise—(—) (—)+e‘1u—(—)+w—(—)=o.
p? ax\p” a6\ p”

—Ce—
equation in the form of a solitary wave in the case where it Jt\p? T30

differs only slightly from the BO equation. This condition is, (AG)
in particular, satisfied if the equilibrium quantities in region The boundary conditionés) give

IV differ only slightly from those in region V,

which is relevent in, for example, solar coronal loops witha _, 7 an an B? _ B

thin core. We have used the BO soliton as a zeroth ordef U~ €57 ST "W P¥ o, ~Pit5
approximation, and then calculated the small correction to it.

In particular, we have calculated the corrections to the soli- at x=a+ 7. (A7)

ton amplitude and width as functions of the thickness of they/e supstitute the expansiof@0) and (21) into Egs.(A1)—
side slabs. The study of such magnetic configurations is 0(fA7), and collect terms of ordes. As a result we obtain a

particular importance in solar and magnetospheric physics.gystem of equations and boundary conditions for the vari-
~In keeping with the regular perturbation method, the so-4pe5 of the first order approximation, which are the vari-
lution describing a solitary wave in the multi-layered con- gpjeg with the superscript “1.” The solution to this system is

figuration differs only slightly from the BO algebraic soliton. straightforward. It gives the expressions of all variables in
Nevertheless, on the basis of this solution, we can make aRms ofu® andw®

interesting conclusion about solitary waves in coronal loops

with a thin core. Assuming that the equilibrium quantities in (1)_PoCT (1) 1y_ ()
regions IV and V are only slightly different from one an- p= Cg W PET= poCrW,
other, and that the density and temperature in region IV are (A8)
larger than those in region V, and the variations of these BocC B
. : . pV= — ZCT W@ p®=_2%,@
guantities are of the same order, we immediately conclude "z '~ v2 WL D= cr ur,

that, for typical coronal conditions\<0. It then follows
from Figs. 3 and 4 that the presence of the side sledgions  and the relations fou®, wV, and %),
Il and 1V) increases the amplitude and width of the solitary

. . . c2x oW 2
wave, so that its amplitude and width are larger than those of u=_ T2 w = A" (A9)
the BO soliton propagating with the same velocity. vf\ a0’ cra
ACKNOWLEDGMENTS When deriving Eq(A9) we ha\_/e.used the symmetry condi-
tions (5), and the fact thaw® is independent ok.

The authors acknowledge the support from the INTAS-  |n the second order approximation we do not use Eq.
97-31931 grant. E.N.P. also acknowledges the support frompa). Collecting terms of the order af in Egs.(A1)—(A3),
the INTAS-99-1068 grant. (A5), and (A6), we obtain the system of equations of the

second order approximation. Using E¢a8) and (A9), we
APPENDIX A: SOLUTION IN REGION Il write this System in the form

In this appendix we obtain the solution in region Ill. ﬁp(z) ou®@ ow®
Using the new variableg and 7, we rewrite the system of c; 78 PO TPo g
MHD equations(1)—(4) as

2 1 1 1 1
P 9P 0U) W) (A1) iy o auw®) (A10)
€or oo ¢ ox P cg | o7 28 6
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Bo
p@1 0@ | =
x| P m b ) 0, (A11)
ow® 1 gp@ W  cf a0y W Alo
U790 pe 90 or w2V a6 (A12)
b 5 o  Bocr awt?)  Bocr a(uPwh)
o0 T T 02 Tar & x
(A13)
J (y=1)poct ,,owD
— (p(2)—2,(2)) = (1)
M(p cgp') &z W —o (A14)
The second boundary conditidA7) gives atx=a,
B Boi 1
@4 2%p@ = nM 4 20 @) (p)y2
pr+ 1 by =pi7+ m b3 2,u(bz )< (A15)

Sinceb{" is independent o, it follows from Eq.(A11) that
Eq. (A15) is valid for x<a (howeverp{") andb{} are cal-
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wherea=i,e. The boundary conditioné) and(7) give in
the first order approximation,

9
uM=—cq 5+ at X=0, (B2)
(94’(1)
Ui(l)zu(el)Z—CTW, Pi(l)IP((al), at X=e€L. (B3)

In addition,ul” and P! has to vanish aX— . Note that
the boundary conditioriB2) should be written aX=e€a;
however, with the standard approach of linear theory, we
have moved it toX=0. The quantityeL is arbitrary, so that
we cannot do the same with the boundary conditiB8).

To solve the system of equatio(®1) with the boundary
conditions(B2) and(B3), we introduce the Fourier transform
with respect tob,

f(k):j:of(ﬁ)e—ik@da, f(ﬁ)zijmmf(k)eikodk_

culated atx=a). (B4)
The homogeneous system of equations of the second 0t Foyrier-transformed equatiofB1)—(B3) take the form

der approximation, obtained by taking the right-hand parts of

Egs. (A10)—(A15) equal to zero, coincides with the system

of the first order approximation. The system of the first order ¢t (9; =ip,(c2—v3 kad,

approximation admits a nontrivial solution and, conse-

quently, so does the homogeneous system of the second or- e icr(c2 —c2)kPW) (BS)
der approximation. This implies that the inhomogeneous sys- @ _ T\*Se ~T/™ «a

tem of the second order approximation has a solution only X Pa(CéaJFU/Z\a)(C%a_C%)’

when the right-hand sides of Eq6A10)—(Al5) satisfy a D LA B

compatibility condition. To derive this condition we elimi- 0i=—icrkyn'~, at X=0, (B6)

nate all variables of the second order approximation from

NE JEPN ) NS B5(1)_p _
Egs.(A10)—(A15). As a result, using EqA9), we arrive at oP=0M=—icrk®, PM=PM, at X=eL. (B7)

The solution to this system of equations and boundary con-
ditions is straightforward, so that we omit details and give
only the expression faP{") at X=0, which is the only quan-

tity that we need in what follows:

acd ¢

(977(1)
or

(1)
I

+agnl —
Y7750 = 2pgvl 90

Bni
o+ 2h,
(A16)

where the right-hand side is calculatedxata, and coeffi-

cientq is given by 2p0v4A|k|<p(ek) ;](1)

p(1 —
I:>i( )|X=0_ ac3
T

) B8
_ val3cs+(y+1)vi] =

2acr(c3+vi)?

(A17)
where N and ¢(k) are given by Eqgs(17) and (19). The
inverse Fourier transform gives

2PoU4A/3i[ (377(1)) A fw an)

acs 90 | el |_.. s

APPENDIX B: SOLUTION IN REGIONS IV AND V

F’i(1)|x=0: -

In this appendix we obtain the solution in regions IV and
V. In these regions we use the system of MHD equations
written in the variable®), 7, andX. This system is obtained
from Eqgs.(A1)—(A6) by substituting the operata/oX for
the operatord/dx. Collecting terms of the orde¢? in this
system, we obtain the linear system of equations for the variwhere the Hilbert transform is determined ligee, e.g.,
ables with the superscript “1.” Eliminating all variables Sneddoff)
from this system except’Y) andPM=pM+ B, b{Y/ 1, we
arrive at the system of two equations: H(F)= ipfw f(s) ds’ (B10)

o

P , out) = sl
Crow = Pa(CT—VaL) TR

= sinr(2eL) 1(6—9)]
><dsJ'0 N d

r}, (B9)

with P indicating the principal Cauchy part of an integral.
When deriving Eq(B9) we have used the formula for the

Fourier transform of the Hilbert transfoffh H(f)
=if sign().

Bl
oulM) cr(c,—c2) opP) B1)

IX  pa(Cet A, (CT,—CT) 90

Downloaded 31 Oct 2006 to 129.11.23.57. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



2690 Phys. Plasmas, Vol. 8, No. 6, June 2001

Note that|\|=1 whenk;=i|«;|. This implies that the
denominator in the second integrand in E89) may be zero
for some values ok. These values df correspond to reso-
nances between slow surface waves in region Il and body;
waves in region IV. To avoid this difficulty we assumed that s

k2>0.
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