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ABSTRACT To enable full-duplex (FD) in underwater acoustic (UWA) systems, a high level of self-

interference (SI) cancellation (SIC) is required. This can be achieved by using a combination of SIC

methods, including digital SIC. For digital SIC, adaptive filters are used. In time-invariant channels, the

SI can be effectively cancelled by classical recursive least-square (RLS) adaptive filters, such as the sliding-

window RLS (SRLS) or exponential-window RLS, but their SIC performance degrades in time-varying

channels, e.g., in channels with a moving sea surface. Their performance can be improved by delaying the

filter inputs. This delay, however, makes the mean squared error (MSE) unsuitable for measuring the SIC

performance. In this paper, we propose a new evaluation metric, the SIC factor (SICF), which gives better

indication of the SIC performance compared to MSE. The SICF can be used to evaluate the performance

of digital SIC techniques without the need of implementing a full FD system. A new SRLS adaptive filter

based on parabolic approximation of the channel variation in time, named SRLS-P, is also proposed. The

SIC performance of the SRLS-P adaptive filter and classical RLS algorithms (with and without the delay)

is evaluated by simulation and in lake experiments. The results show that the SRLS-P adaptive filter can

significantly improve the SIC performance, compared to the classical RLS adaptive filters.

INDEX TERMS Adaptive filter, full-duplex, self-interference cancellation, time-varying channel estima-

tion, underwater acoustic communications

I. INTRODUCTION

In recent years, full-duplex (FD) operation of terrestrial radio

systems, such as communication systems, has demonstrated

an ability to increase the system throughput [1]–[5]. If FD

operation can be adopted in underwater acoustic (UWA)

systems, e.g., in UWA communication systems, the capacity

of the acoustic links can be almost doubled. Active sonar

systems can also benefit from the FD operation by expanding

the signal family used for transmission. Despite the benefits

of FD, it is not widely considered for UWA systems mainly

due to the severe self-interference (SI) introduced by the

near-end transmission. Various SI cancellation (SIC) tech-

niques have been proposed for FD terrestrial radio systems.

A combination of SIC methods is used, including digital SIC.

Normally, a certain amount of SI is cancelled in the analogue

domain before digital cancellation to avoid the saturation

in the analogue-to-digital converter (ADC) [1], [6], [7]. For

FD UWA systems, due to the lower frequencies of acoustic

signals, high resolution ADCs are available. Thus, digital

cancellation can be considered as the main practical approach

for SIC in FD UWA systems [8]–[10].

One of the major limitations of the digital cancellation

performance is due to the hardware imperfection in the

transmit and receive chains, among which the non-linearity

introduced by the power amplifier (PA) is the dominant

factor [11]. A general approach to deal with the PA non-

linearity is to estimate the non-linear distortion, e.g. using the

Hammerstein model and its extensions, and then compensate

it in the received signal [5], [8], [12]. To accurately model

the non-linearity, high order basis functions are required. The
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FIGURE 1. Block diagram of the FD UWA system with digital cancellation.

The system works at two sampling frequencies. The index of the signal sample

with the high (passband) sampling rate is denoted by n, and the low

(baseband) sampling rate sample index is i. The analogue (passband) signals

are: the PA output s(t); the SI r(t); the noise n(t); the far-end signal f(t);
and the received (hydrophone) signal x(t). The digital (passband) signals are:

the PA output s(n) and the received signal x(n). The digital baseband signals

are: the transmitted data symbols a(i) and the residual signal after the digital

cancellation e(i). DAC is the digital-to-analogue converter. See more details

in [9].

disadvantages of this approach are the high complexity of

the non-linear model and a large number of parameters to

be estimated. Another approach is to use the PA output as the

reference signal for SIC [9], [13], [14]. In this case, lower

complexity linear adaptive filters can be used for the SIC.

In [9], we show that, with the use of the PA output as the

reference signal, a high level of SIC can be achieved in slow-

varying UWA SI channels by using classical recursive least-

square (RLS) adaptive filters. The general block diagram of

the FD system with digital cancellation using PA output as

the reference signal is shown in Fig. 1.

Adaptive filters operate efficiently if the power spectral

density of the input signal (regressor) does not have zeros,

i.e., the regressor correlation matrix is full rank. This, how-

ever, requires sampling the baseband signal at a (symbol)

rate, which is lower than the Nyquist frequency. As a result,

the performance of the adaptive filter is sensitive to the

delay between the regressor (PA output) and the desired

(hydrophone) signal. To overcome this problem and ensure

robust SIC performance regardless of the delay, the digital

cancellation scheme from [9] is extended in [15]; the block

diagram of the scheme is shown in Fig. 2. In this scheme,

two branches are used with symbol rate sampling in each

branch, with odd and even samples, respectively, taken from

a twice oversampled baseband signal at the PA output. In this

paper, the SIC performance using different adaptive filters is

investigated with this digital cancellation scheme.

Another phenomenon that limits the SIC is the time-

varying surface reflections [16], [17]. While a high level of

SIC can be achieved for time-invariant SI channels (e.g., in

a water tank [9]) using classical RLS adaptive filters, the

cancellation performance is limited in experiments with a

moving surface. The main limitation is the tracking ability

of the classical adaptive filters. The Kalman filter is con-

sidered as a good candidate for estimation of time-varying

channels [18], [19]. However, for using the Kalman filter, the

channel statistics should be known, which is often not the

case in practice. To improve SIC performance in fast time-

varying channels, other schemes are required.

To measure the performance of a SI canceller, the best

approach would seem to be to implement a whole FD system

and investigate its performance. However, so far the FD

UWA technology is not mature enough to make this approach

practical. It is still a problem to cancel the SI close to the

noise level. The signal distortions in the SI channel and their

influence onto the SI cancellation performance have not been

yet well understood. Such issues have been partly addressed

separately or in some combination as the PA nonlinear-

ity [8], [9], the nonlinearity in the preamplifier of the hy-

drophone [20], passband to baseband conversion [15], mod-

elling of the near-end surface reflections [14], modelling of

the self-loop interference through the mounting system [21],

acoustic isolation of the projector and hydrophone [22], etc.

In this paper, we propose an improved technique for dealing

with the fast time-variability of the SI channel in digital SI

cancellers. Other problems that need to be dealt with are the

acoustic cavitation [23] and nonlinear signal distortion in the

projector. To build a whole FD system, all these issues should

be taken into account together, which will be done in the

future.

In time-varying channels, the SIC performance can be

significantly improved if the input signals are delayed with

respect to the time-varying estimate of the channel response

as shown in Fig. 3. However, to our knowledge, this op-

portunity for FD systems has not been investigated yet.

Introducing a delay between the channel estimate and the

inputs to the adaptive filter results in a problem in mea-

suring the cancellation performance. The residual SI power

is normally used to characterise the SIC performance [5],

[24], [25], which can be measured by the mean squared error

(MSE) [22]. However, the MSE in an adaptive filter with

a delay is unsuitable for this purpose, since, in this case,

unlike the classical RLS algorithms, the same data is used for

channel estimation and computation of the MSE, resulting in

over-fitting. Therefore, another measure of SIC performance

is required when using adaptive filters with a delay.

In this paper, we propose and investigate the SIC factor

(SICF) for measuring the cancellation performance and a new

adaptive algorithm for FD UWA systems with time-varying

SI channels. The contributions of this paper are as follows.

1) The SICF is proposed for evaluation of the SIC perfor-

mance in digital SI cancellers.

2) The dependence between the delay of the input signals

and the SIC performance for the exponential window

RLS (ERLS) and sliding window RLS (SRLS) adap-

tive filters is investigated.

3) The new adaptive filter (SRLS-P) is proposed, which

is derived based on parabolic approximation of the

channel variation in time.

4) The proposed algorithm is investigated using numer-

ical simulations and lake experiments, and its perfor-
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FIGURE 2. Block diagram of the digital cancellation scheme. The PA output s(n) is down-sampled to twice the symbol rate and interleaved into two branches,

s1(i) contains odd samples and s2(i) contains even samples; x(i) is the baseband received signal; e1(i) and e2(i) represent residual signals in the two

branches; w1(i) and w2(i) are weights computed as suggested in [15].

FIGURE 3. Adaptive filter with a delay.

mance is compared with that of the classical RLS

adaptive algorithms.

The rest of the paper is organized as follows. In Section II,

the new evaluation metric SICF is described. In Section III,

the SRLS-P adaptive filter is derived. Section IV and Sec-

tion V present simulation result in baseband and passband

scenarios, respectively. Section VI compares the SIC perfor-

mance provided by the adaptive filters using experimental

data. Section VII draws conclusions.

Notations: In this paper, we use capital and small bold

fonts for matrices and vectors, respectively; e.g, R and h.

We also denote the expectation as E{·}, the transpose of x as

x
T , and the Hermitian transpose of h as hH .

II. EVALUATION OF SIC PERFORMANCE

The mean squared error (MSE) and the mean squared devi-

ation (MSD) are normally used for evaluating the channel

estimation performance [19], [26]. In subsection II-A, we

discuss if it is practical to use these two metrics to evaluate

the SIC performance in FD systems. In subsection II-B, a

new metric, the SICF, is proposed for evaluation of the SIC

performance.

A. MSE AND MSD PERFORMANCE

Consider the SIC scheme shown in Fig. 3. In this scheme,

x(i) is a baseband version of the signal received by the

hydrophone, and it is modelled as:

x(i) = h
H(i)s(i) + z(i), (1)

where h(i) is the baseband SI channel response at time

instant i, s(i) is the baseband version of the PA output signal,

s(i) = [s(i), . . . , s(i−L+1)]T , and L is the channel length.

The signal z(i) contains the far-end signal, as well as noise

signals such as the ambient noise, ADC noise, etc. In terms of

an adaptive filter operating in the identification mode, s(i) is

the regressor and x(i) is the desired signal [18], [19]. Using

these signals, the adaptive filter produces an estimate ĥ(i+T )
of h(i). Note that, in classical adaptive filters, T = 0 and it is

assumed that the estimate ĥ(i) is obtained using the regressor

and desired signal up to time instant i − 1. In this case, the

FIR filter shown in Fig. 3 is not required since it is the same as

the FIR filter within the adaptive filter with the same input.

However, if T > 0, the regressors of these FIR filters are

different, they are s(i) for the adaptive filter and the delayed

regressor s(i − T ) for the FIR filter. Based on this channel

estimate, the SI is cancelled by recovering the SI signal as

ĥ
H(i)s(i− T ) and subtracting it from the received signal:

e(i) = x(i− T )− ĥ
H(i)s(i− T ). (2)

The performance of an adaptive filter is most often eval-

uated using the mean squared error (MSE) [18], [19]. The

MSE is defined as:

MSE(i) = E{|e(i)|2}. (3)

For a classical adaptive filter (with T = 0), the SIC perfor-

mance can be evaluated by computing the MSE. However, by

adjusting parameters of an adaptive filter with a delay (non-

causal adaptive filter), it is possible to make the MSE even

lower than the ‘noise-plus-far-end-signal’ floor, although this

does not mean that the SIC performance is good. It means

that not only the SI is cancelled, but also a part of the

far-end signal (i.e., the signal of interest) is also cancelled.

Essentially, the adaptive filter is over-fitted, since, due to

the delay, the same data is used for training the adaptive

filter and for the MSE computation. In these scenarios, the

MSE becomes an unreliable metric for assessment of the SIC

performance.

From the interference cancellation point of view, the SIC

performance can be evaluated by how much the near-end
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SI is cancelled. Therefore, everything apart from the near-

end SI is treated as the signal of interest (including far-end

signal and the noise), which should be recovered. The signal

to interference ratio (SIR) at the SI canceller can be written

as:

SIR(i) =
σ2
z

E{|ε(i)|2} , (4)

where σ2
z = E{|z(i)|2}, z(i) is the signal of interest that

includes the far-end signal and the noise, and ε(i) is the

residual interference.

If the far-end signal and the error signal are not correlated,

then the residual interference ε(i) can be represented as:

ε(i) = e(i)− z(i− T ), (5)

and substituting (1) and (2) into (5), we have:

ε(i) = [h(i− T )− ĥ(i)]Hs(i− T ). (6)

Assuming that s(i) are uncorrelated for different i and uncor-

related to ĥ(i), we have:

E{s(i− T )sH(i− T )} = σ2
sIL, (7)

where σ2
s = E{|s(i)|2} is the variance of the signal s(i),

which is assumed stationary. Then using (6) and (7), we

obtain:

E{|ε(i)|2} = σ2
sE{||h(i− T )− ĥ(i)||22} (8)

= σ2
sMSD(i− T ), (9)

where the MSD is defined as:

MSD(i) = E{‖h(i)− ĥ(i+ T )‖22}. (10)

Finally, we obtain:

SIR(i) =
σ2
z

σ2
s

· 1

MSD(i− T )
. (11)

Thus, the MSD is a useful characteristic of an adaptive

filter operating within an SI canceller. It shows how much

the ratio between powers of the signal of interest (including

noise) and near-end interference improves due to the accu-

racy of the near-end channel estimation. However, the MSD

computation requires knowledge of the true channel response

h(i), which is unavailable in most practical scenarios. An-

other important issue is that (11) is only applicable if ĥ(i) and

s(i) are uncorrelated, which may not be the case for adaptive

filters with delay.

B. SIC FACTOR

In [4], [5], [24], [25], the interference cancellation gain,

which is defined as the ratio of the near-end SI power to

the residual SI power, is used for evaluating the performance

of the SI canceller. Note that the residual SI is computed as

in (5) assuming that the far-end signal is not correlated with

the error signal. This assumption is no longer valid when

adaptive filters with delay are used. We now propose the

SICF, which is shown to provide a good indication of the

FIGURE 4. Block diagram of FD system with SI cancellation.

cancellation performance. It does not require the knowledge

of the true channel response, and can be used in practice for

adaptive filters with and without the delay. This SICF can

be used to evaluate the SIC performance without the need of

implementing a full FD system.

Here we consider the SI cancellation problem from the

far-end signal detection point of view. The higher far-end

signal to residual interference ratio at the SI canceller output,

the better the SIC performance. In this scenario, the far-end

signal is the signal of interest, and everything else is treated as

interference (including noise). Since the far-end signal level

is typically higher than the receiver’s noise floor, the noise

is ignored in the derivation below to simplify the expression.

Although the noise is ignored in our derivation, the metric

SICF is applicable in the case when the noise is present; this

can be seen in numerical results presented in Section IV.

Fig. 4 illustrates our description below. We artifically add

to the SI signal r(i) a known signal f(i) assumed to be a far-

end signal. The level of the signal σ2
f = E{|f(i)|2} is chosen

to guarantee a predefined input SIR:

SIRin(i) =
σ2
f

E{|r(i)|2} . (12)

The SI canceller (shown in Fig. 4) subtracts the SI estimate

produced by the adaptive filter from the received signal r(i)+
f(i). The canceller output e(i) contains the signal of interest

f(i) and a residual signal ε(i):

e(i) = f(i) + ε(i), (13)

and since both signals e(i) and f(i) are available after the

cancellation, the residual signal ε(i) can be computed as

ε(i) = e(i)− f(i).
Here we measure the SIC performance as a factor of

improvement in the SIR ratio due to the SI cancellation and

compute the SICF as:

SICF(i) =
SIRout(i)

SIRin(i)
. (14)

By introducing the artificially added far-end signal, the SICF

that we propose evaluates the SI canceller performance tak-

ing into account the loss of the far-end signal after SIC.

For classical adaptive filters without delay, the signal of

interest f(i) and the residual ε(i) are uncorrelated, thus

SIRout(i) can be computed as a ratio of their variances.
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For adaptive filters with delay, due to the over-fitting in the

adaptive filter, in general, these two signals are correlated.

Therefore, in this case, we cannot use their ratio for comput-

ing SIRout(i), another approach is required.

We now assume that the signal of interest f(i) is attenuated

due to the imperfection of the adaptive filter. More specifi-

cally, we rewrite (13) as:

e(i) = αf(i) + [(1− α)f(i) + ε(i)] (15)

= u(i) + v(i), (16)

where the modified signal of interest u(i) = αf(i) and

the modified residual interference component v(i) = (1 −
α)f(i) + ε(i) are uncorrelated.

We now find the coefficient α that zeroes the correlation

between u(i) and v(i):

E{u(i)v∗(i)} = E{αf(i)[(1− α)f(i) + ε(i)]∗} = 0. (17)

From (17), we find α as:

α = 1 +
1

σ2
f

E{f∗(i)ε(i)}. (18)

After finding α, the modified signal of interest u(i) and

residual interference v(i) can be computed from (15), and

the ratio of their variances can now be used for computation

of SIRout(i).
In experiments, the mathematical expectation in (18) is

replaced by the average over a time interval after convergence

of the adaptive filter. The output SIR can be computed as:

SIRout =
‖u‖22
‖v‖22

, (19)

where u = [u(0), . . . , u(P − 1)]T is a P × 1 vector of the

signal of interest, v = [v(0), . . . , v(P − 1)]T , and P is the

averaging interval. The averaging interval P is preferred to

be longer than the coherence time of the SI channel.

Note that the far-end signal we used to compute the SICF

is artificially added to the received signal, thus it is known at

the receiver. The SICF is intended to be used for adjusting

the parameters of the adaptive filters to ensure optimal SIC

performance can be achieved. In practical systems with real

far-end transmission, the far-end signal is unknown. In that

case, the SICF can still be computed with an artificial far-end

signal for parameter tuning at the training stage.

III. PROPOSED SRLS-P ADAPTIVE FILTER

In this section, we review the ERLS and SRLS adaptive

filters, consider their delayed versions, and propose a new

adaptive filter based on the SRLS algorithm and parabolic

approximation of channel variation in time; we call it the

SRLS-P adaptive filter.

A. CLASSICAL ERLS AND SRLS ADAPTIVE FILTERS

At every time instant i, an RLS adaptive filter updates the

solution vector ĥ(i) according to the normal equation:

R(i)ĥ(i) = β(i), (20)

FIGURE 5. Time-varying channel and time windows of the SRLSd algorithm.

where R(i) is an L × L autocorrelation matrix, β(i) is an

L × 1 cross-correlation vector, and L is the filter length.

The autocorrelation matrix and cross-correlation vector are

approximated by averaging in time.

For the classical ERLS adaptive filter, R(i) and β(i) can

be updated as:

R(i) = (λ− 1)R(i− 1) + s(i)sH(i), (21)

β(i) = (λ− 1)β(i− 1) + x∗(i)s(i), (22)

where λ is the forgetting factor, s(i) = [s(i), s(i −
1), . . . , s(i−L+1)]T is the regressor at the ith time instant,

and x(i) is the ith sample of the desired signal. The weights

of the time average window is the exponential λ|i−p|, p ≤ i.
For the classical SRLS adaptive filter, the update of R(i)

and β(i) can be written as [27], [28]:

R(i) = R(i− 1) + s(i)sH(i)− s(i−M)sH(i−M),
(23)

β(i) = β(i− 1) + x∗(i)s(i)− x∗(i−M)s(i−M),
(24)

where M is the sliding window length. The time average

window is a constant over the time interval [i − M + 1, i],
and zero otherwise. Fig. 5 shows the position of the time

window in the SRLS algorithm with respect to the time

varying channel response h(i).

B. DELAYED ERLS AND SRLS ADAPTIVE FILTERS

Since R(i) and β(i) are obtained by averaging in time, the

current channel estimate ĥ(i) can be seen as an average of

the true channel response over past time instants. If the SI

channel is time-invariant, ĥ(i) can be an accurate estimate

of h(i). However, for a time-varying channel, ĥ(i) is not an

accurate estimate of h(i).
For the SRLS adaptive filter, the channel estimate ĥ(i)

can be seen as an average of h(i) over the past M time

instants. As shown in Fig. 5, if we assume that the channel

response varies linearly in the vicinity of i, then its average

over the rectangular window is equal to h(i−M/2). In such

a case, ĥ(i) is a more accurate estimate of h(i −M/2) than

h(i). Therefore, using the delay T = M/2 in the scheme

shown in Fig. 3 should provide an improvement in the SIC

performance compared to the case T = 0. In Section IV,

we demonstrate that this is indeed the case. For the ERLS

VOLUME X, 2020 5
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FIGURE 6. Time-varying channel and time windows of the SRLS-P algorithm.

adaptive filter, the time window is infinite in length, and it is

more difficult to determine the optimal delay which provides

the highest level of cancellation. Moreover, in Section IV,

we also show that even for the same forgetting factor λ,

different channel realisations require different T . Therefore,

our proposed adaptive filter is based on the SRLS algorithm,

for which the optimal delay is well defined. We call the

ERLS and SRLS algorithms with delays as ERLSd and

SRLSd, respectively, to distinguish them from the classical

RLS algorithms.

C. SRLS-P ADAPTIVE FILTER

Compared to the SRLS algorithm, the SRLSd adaptive filter

improves the MSD performance, and, as a result, it improves

the SIC performance by applying the current channel esti-

mate found at the ith time instant to the delayed regressor

s(i − M/2), corresponding to the middle of the averaging

time window of length M . It changes the way the SI signal is

reconstructed, but the channel estimates are computed in the

same way as in the classical SRLS adaptive filter.

In fast time-varying channels, the channel estimation per-

formance provided by the SRLSd algorithm is still limited,

since the channel estimate can be viewed as simply an

average of the true channel response over the past M time

instants. To improve the tracking ability in fast time-varying

channels, we propose the SRLS-P adaptive filter. The key

idea of the algorithm is the parabolic interpolation of the

channel time variation using the estimates ĥ(i) provided by

the SRLS algorithm.

We assume that the time-varying channel response is a

second-order algebraic polynomial within a short time inter-

val around the time instant i, as shown in Fig. 6:

h(i+ k) = h0(i) + h1(i)k + h2(i)k
2, (25)

where k = −M + 1, . . . ,M , and h0(i), h1(i) and h2(i) are

three L× 1 vectors to be estimated. From (25), it can be seen

that h(i) = h0(i), and thus an estimate of h0(i) can be used

as an estimate of the channel response h(i) at time instant i.

The channel estimate ĥ(i + k) computed by the SRLS

algorithm in scenarios without noise can be expressed as (see

Appendix):

ĥ(i+k) =
1

M
R

−1(i+k)

k
∑

m=−M+k+1

Ri+mh(i+m), (26)

where R(i) = S
H(i)S(i) is the L×L auto-correlation matrix

of the regressor, S(i) = [s(i), s(i − 1), . . . , s(i −M + 1)]T

is an M × L observation matrix, s(i) is the regressor at the

ith time instant and Ri+m = s(i+m)sH(i+m).
By substituting (25) into (26) for k = 0, k = M/2, and

k = M , we obtain a system of equations with respect to the

unknown 3L×1 vector z = [h0(i);h1(i);h2(i)]. By solving

the system, we obtain an estimate ĥ0(i) of h0(i), which is

also the new channel estimate h̃(i) of h(i).
More specifically, we have:

ĥ(i) =
1

M
R

−1(i)

×
0

∑

m=−M+1

Ri+m[h0(i) +mh1(i) +m2
h2(i)]

= h0(i) +A1h1(i) +A2h2(i), (27)

where

A1 = R
−1(i)

0
∑

m=−M+1

mRi+m, (28)

A2 = R
−1(i)

0
∑

m=−M+1

m2
Ri+m. (29)

Similarly, we obtain:

ĥ(i+M/2) = h0(i) +B1h1(i) +B2h2(i), (30)

ĥ(i+M) = h0(i) +C1h1(i) +C2h2(i), (31)

where

B1 = R
−1(i+M/2)

M/2
∑

m=−M/2+1

mRi+m, (32)

B2 = R
−1(i+M/2)

M/2
∑

m=−M/2+1

m2
Ri+m, (33)

and

C1 = R
−1(i+M)

M
∑

m=1

mRi+m, (34)

C2 = R
−1(i+M)

M
∑

m=1

m2
Ri+m. (35)

We now arrive at the system of equations:










h0(i) +A1h1(i) +A2h2(i) = ĥ(i), (36)

h0(i) +B1h1(i) +B2h2(i) = ĥ(i+M/2), (37)

h0(i) +C1h1(i) +C2h2(i) = ĥ(i+M) , (38)
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or, in a compact form,

Dz = ĥ, (39)

where ĥ = [ĥ(i); ĥ(i+M/2); ĥ(i+M)] and

D =





IL A1 A2

IL B1 B2

IL C1 C2



 . (40)

After solving the system in (39), the estimate of the impulse

response is found as the first L elements in the vector z:

h̃(i) = ĥ0(i) = [z]1,...,L. (41)

Algorithm 1: SRLS-P algorithm

Input: s, x, L,M, ǫ
Output: h̃

Initialization: ĥ(0) = 0

for every sample i do

y(i) = ĥH(i− 1)s(i)
e(i) = x(i)− y(i)
R(i) = SH(i)S(i) + ǫIL
β(i) = SH(i)x(i)
ĥ(i) = R−1(i)β(i)
Compute A1,A2,B1,B2,C1,C2 as in (28), (29), and

(32)-(35)
Generate the matrix D as in (40) and

vector ĥ = [ĥ(i); ĥ(i+M/2); ĥ(i+M)]T

Solve the system of equations Dz = ĥ

h̃(i) = ĥ0(i) = [z]1,...,L
end

The SRLS-P adaptive algorithm is summarized in Al-

gorithm 1, where ǫ is a regularization parameter, s is the

transmitted signal, x is the desired signal, IL is an L × L
identity matrix, x(i) = [x(i), x(i− 1), . . . , x(i−M + 1)]T

is an M × 1 desired signal vector at the ith time instant.

The complexity of the SRLS-P algorithm will be domi-

nated by the complexity of solving the system of equations

in (39). Directly solving the system of equation requires an

order of L3 arithmetic operations. The complexity can be

reduced by solving the system of equation recursively based

on the solution obtained at the previous time instant using

the dichotomous coordinate descent (DCD) algorithm [27].

In such a case, the complexity reduces to an order of NuL
operations, where Nu is the number of DCD updates, which

is typically a small number.

IV. BASEBAND SIMULATION

In this section, we first show that the delayed RLS algo-

rithms provide improvement in the MSD performance when

identifying time-varying channels and then investigate the

dependence of the performance on the delay. It will be

shown that, for the SRLSd algorithm, the optimal delay is

T = M/2, as discussed in Section III-B. However, for

the ERLSd algorithm, there is no one-to-one relationship

between the optimal delay and the forgetting factor λ.

We show that the MSE is useful for characterising the SIC

performance if T = 0, i.e., for classical RLS algorithms.

However, if T > 0, the MSE is not a useful characteristic for

FIGURE 7. A snapshot of the channel impulse response.

this purpose. We then show that the proposed SICF metric

is suitable for characterising the SIC performance for both

the cases, in particular by comparing it with the bit error rate

(BER) performance of a far-end transmission.

In the simulation, we set the filter length to L = 50, and

model the SI channel as follows. Every element [h(i)]ℓ of

h(i) is a stationary random process with a power spectral

density cℓG(f), where G(f) is uniform within a frequency

interval [−fmax, fmax], and cℓ is the variance of the ℓth
channel tap. The UWA channel normally has a decaying

power delay profile due to the spreading and absorbtion

loss [29]. The power delay profile cℓ is generated as:

cℓ = e−γℓ, ℓ = 0, . . . , L− 1, (42)

and γ is chosen to control the ratio between the variance of

latest arrivals (ℓ = L−1) and that of the first arrivals (ℓ = 0).

In this scenario, γ is chosen to make this ratio equal to 80 dB.

The random processes [h(i)]ℓ are independent for different

ℓ, and they are generated using the FFT-method [30]. We

assume a sampling frequency fs = 1 kHz, so that one

channel tap delay is 1 ms. The parameter fmax determines

the maximum speed of the channel variation. To model fast

time-varying channels, we use fmax = 1 Hz; for slow time-

varying channels, fmax = 0.1 Hz.

In Fig. 7, a snapshot of the channel impulse response

generated through the aforementioned process is shown.

A. MSD PERFORMANCE OF RLS ALGORITHMS WITH A

DELAY

Fig. 8 shows the normalized MSD (MSD(i)/||h(i)||22) as a

function of the delay T against M for the SRLSd algorithm.

The MSD performance is averaged over 20 simulation trials.

The choice of M depends on the channel variation speed,

the level of noise and other interference. The faster the

channel variation, the smaller M should be chosen. The

higher the noise level, the higher M is required. The SRLSd
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FIGURE 8. MSD performance of the SRLS (Delay T = 0) and SRLSd

algorithms. The optimal delay minimising the MSD is T = M/2.

FIGURE 9. MSD performance of the ERLS (Delay T = 0) and ERLSd

algorithms.

algorithm can provide a significant improvement in the MSD

performance compared to the SRLS algorithm (T = 0). It can

be seen that the optimal delay is T = M/2. The minimum

MSD is achieved at T = M/2 = 50 for M = 100. Fig. 8

also shows that with further increase in the delay T , the MSD

increases and, as expected, reaches the same level at T = M
as at T = 0.

In Fig. 9, we observe that the MSD performance of the

ERLS algorithm can also be improved by introducing a delay.

As can be seen, in this simulation scenario, the minimum

MSD is achieved for λ = 0.955 and T = 37. For λ = 0.94
and λ = 0.97, the minimum MSD is achieved at T = 31 and

T = 45, respectively. For the ERLS algorithm, from Fig. 9,

one can arrive at the following approximate expression for

the optimal delay Topt:

Topt ≈
β√
1− λ

, (43)

where β = 7.8. Note that (43) cannot provide the optimal

delay precisely, it can only be used as a reference.

To test if the dependencies between the optimal delay and

the window parameters can be applied generally, we ran 1000

simulation trials to find the distribution of the optimal delay

for the SRLSd and ERLSd adaptive filters, with M = 100
and λ = 0.955. The results show that, for the SRLSd

algorithm, the optimal delay is always T = M/2 in all

simulation trials. However, for the ERLSd adaptive filter, the

minimum MSD is obtained at T = 37 in 91.5% of the trials,

while, in the other trials, the optimal delay is T = 36 or

T = 38.

B. MSE, MSD AND SIC PERFORMANCE OF SRLS,

SRLSD AND SRLS-P ALGORITHMS

Fig. 10 presents the MSE, MSD and SIC performance of the

adaptive filters in slow and fast varying channels.

The MSE, MSD and SIC performance are computed over

the steady-state part of the learning curve from 1000 to 5000

samples. The average interval for the SIC factor computation

is 4 s. These three evaluation metrics are all averaged over

20 simulation trials. We consider the case when the power of

the far-end signal is significantly higher than the noise power,

thus the noise is not added to the far-end signal. The far-end

signal to SI ratio is set to −43 dB.

We can see that, for the SRLS algorithm (T = 0), the opti-

mal sliding window length M found from the MSE and MSD

curves is about the same (M = 60 or 70). However, for the

other algorithms with T > 0, the optimal M corresponding

to the minimum MSE and MSD are different.

The SRLS-P adaptive filter has a significantly improved

MSD performance compared to the SRLSd algorithm, which

in turn outperforms the SRLS algorithm. Note that, in the

SRLS-P algorithm, there are 3L unknown parameters to be

estimated. Therefore, since the estimation interval in the

SRLS-P algorithm is 2M , the estimation requires the window

length to be at least M = 3L/2 = 75; this explains the

increase of the MSD at low M .

The results in Fig. 10 show that the MSE is lower than

the far-end signal to SI ratio for the SRLSd adaptive filter

with M < 80. This indicates that the far-end signal is partly

cancelled, therefore the MSE is not useful as a performance

measure here. In Fig. 10 (e) and (f), we show the SICF of the

adaptive filters together with the inverse MSD. It is seen that

the SICF and the inverse MSD for the SRLS adaptive filter

are nearly the same, as expected from (11). For the adaptive

filters with delay, there is some discrepancy between them for

small M . We will show in the next section that the proposed

SICF metric provides a better indication of performance of

the SI canceller than the MSD.
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FIGURE 10. MSD, MSE and SIC performance of the SRLS, SRLSd, and SRLS-P adaptive filters in slow and fast varying SI channels.

C. MSD, SIC AND BER PERFORMANCE OF SRLSD AND

SRLS-P ALGORITHMS

We now investigate the relationship between the MSD, SIC

and BER performance provided by the SI canceller in fast

time-varying channel (fmax = 1 Hz) when using the SRLSd

and SRLS-P algorithms.

Fig. 11 shows these three characteristics for different val-

ues of M . We run 500 simulation trials, and in each trial

a new time-varying channel is generated. The length of the

realization is 15s. The received signal is generated by adding

the far-end signal and noise to the SI channel output. Samples

of the noise are generated as Gaussian random zero-mean

numbers. The noise variance σ2
n is set according to the SI

to noise ratio (SNRSI), which is defined as

SNRSI =
E{|x(i)|2}

σ2
n

. (44)

We use the BPSK direct sequence spread spectrum signal

as the far-end signal. The chip rate is 1 kHz, the spreading

factor is 250. The far-end channel is assumed to be a single

path channel. The far-end signal level is defined by the far-

end SNR as σ2
f/σ

2
n. Here we set SNRSI = 43 dB, and the far-

end SNR varies from 10 dB to 19 dB. The SICF is computed

over the steady-state period from 2 to 15 s, which is about ten

times longer than the time correlation of the SI channel.

The performance of the SRLSd algorithm is shown in

Fig. 11 (a), (c) and (e). Fig. 11 (a) shows the detection

performance of the far-end data after SIC, which is an impor-

tant indicator of the performance of an FD communication

system. The best detection performance is achieved with

M = 140 or M = 160 when the far-end SNR lower than

16 dB. The BER slightly degrades for M = 120, and further

degrades for smaller M . However, the MSD gives a different

indication as the minimum MSD is achieved with M = 100
or M = 120 when the far-end SNR is lower than 16 dB.
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FIGURE 11. BER, MSD and SIC performance for the SRLSd and SRLS-P algorithms in the fast varying SI channel.
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The SICF indicates that the best performance is achieved

with M = 140 when the far-end SNR lower than 14 dB

and with M = 160 when the far-end SNR between 14 dB

and 19 dB. It is clear that the SICF provides a better indica-

tion of the optimal M for the detection performance. More

importantly, in practice, the MSD is difficult to compute

since the true channel response is unknown, whereas the

proposed SICF metric is computed without such knowledge

as explained in Section II.

In Fig. 11(b), (d) and (f), the BER, MSD and SIC per-

formance of the SRLS-P algorithm are shown. The far-end

SNR now varies from −11 dB to −2 dB. We consider

much lower far-end signal level compared to that used for

the SRLSd algorithm to generate the BER curves, as the

SIC performance is significantly improved with the SRLS-P

algorithm. It is seen that the optimal detection performance

is achieved with M = 140. The dependence between M and

the BER performance is consistent with that of the MSD and

the SICF. In overall, the SRLS-P algorithm with optimal M
outperforms the SRLSd adaptive filter by around 20 dB in

terms of the MSD and SICF. It is observed that the BER

curve with the optimal M is also shifted in the far-end SNR

by about the same value.

V. PASSBAND SIMULATION RESULTS

In this section, we investigate the SIC performance of the

SRLS, SRLSd and SRLS-P adaptive filters in scenarios with

time-varying SI channels. We use the SIC scheme shown

in Fig. 2. The SI channel has one direct path between the

projector and hydrophone and one path due to reflection from

a time-varying surface. The reflected path is 20 dB weaker

than the direct path. The surface is modelled as a sinusoid

wave of 0.5 m amplitude and 3 s period. The projector and

hydrophone are vertically separated by a distance of 0.5 m,

their depths are 9.5 m and 10 m, respectively. We will show

that the SIC performance can be significantly improved by

the SRLS-P adaptive filter which accurately models the chan-

nel variation caused by the time-varying surface reflection.

In the simulation, a 10 s signal with BPSK (binary phase-

shift keying) modulation at a 12 kHz carrier frequency and

with 1.2 kHz signal bandwidth is transmitted. The symbol

rate is fd = 1 kHz. The BPSK symbols are pulse shaped

using the root-raised cosine filter with a roll-off factor of 0.2.

The sampling rate of the passband signal is 96 kHz.

The received signal at the hydrophone is generated by

adding the far-end signal and noise to the SI channel output.

Here we set SNRSI = 100 dB and consider the far-end SNR

between 0 dB and 15 dB.

Fig. 12 shows the SIC performance of the SRLS, SRLSd

and SRLS-P adaptive filters. The SIC factor is computed over

the time interval from 2 s to 10 s, i.e., the average interval

for computing the SICF is 8 s. For each adaptive filter, the

parameter M is adjusted to provide the highest SICF. The

filter length is L = 40, which is long enough to cover both the

main path and the surface reflection. For the SRLS adaptive

filter, around 81 dB of SIC can be achieved at 0 dB far-end
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FIGURE 12. SIC performance of adaptive filters in the passband simulation.

FIGURE 13. The configuration of the lake experiments (Tx: transducer; Rx:

hydrophone).

SNR (M = 60). The SICF is improved by 3 dB when the

SRLSd adaptive filter (M = 110) is used, and it is further

improved to 98 dB (by 14 dB) with the SRLS-P adaptive filter

(M = 240).

VI. EXPERIMENTAL RESULTS

In this section, we investigate the SIC performance of the

SRLS, SRLSd and SRLS-P adaptive filters in the lake ex-

periment with the SIC scheme shown in Fig. 2. In the

experiment, a Zoom F4 multitrack recorder [31] with a high-

resolution 24-bit ADC is used to record the PA output and

the hydrophone output. The PA output is fed to the recorder
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FIGURE 14. The experimental setup. The distances are shown in meters.

FIGURE 15. Power spectrum of the hydrophone output.

through an attenuator to avoid truncation of the signal or

causing damage to the recorder due to the high voltage level.

The configuration and experimental setup are shown in

Fig. 13 and 14, respectively. The lake depth at the experi-

mental site is around 8 m. The distance between the projector

and the hydrophone is around 1.3 m. The hydrophone is

placed at 4 m depth. The experimental site is positioned in the

middle of the lake. In Fig. 16, we show a picture of the lake

surface taken during the experiment. It was observed during

the experiment that the amplitude of the surface waves varied

from 5 cm to 10 cm. More information on the experimental

site can be found in [32].

In the experiment, we transmit a 15 s BPSK signal at the

carrier frequency fc = 14 kHz with a bandwidth of 1.2 kHz;

the symbol rate is fd = 1 kHz; the pulse shaping roll-off

factor is 0.2. The sampling rate is fs = 96 kHz. At 14 kHz,

the transmit voltage response of the transducer [33] is 118 dB

re µPa/V at 1 m. During the experiment, the sound pressure

level at 1 m range is around 166 dB re µPa.

In Fig. 17, we show the SI channel estimates obtained

with the SRLS-P adaptive filter, which provides the highest

SICF among the adaptive filters we considered. It can be

seen that the SI channel consists of a strong and stable direct

path and multiple fast time-varying paths due to reflections

from the mounting system and from the lake surface and

bottom. The direct path is the one associated with the highest

amplitude (at tap 12). Apart from the direct path, there are

also a few relatively stable reflections from the structure we

used to fix the transducer and hydrophone (shown in Fig. 13).

Assuming the sound speed is 1500 m/s, the delay between the

direct path and the first surface reflection should be around

FIGURE 16. Lake surface at the field.

FIGURE 17. SI channel estimate for the lake experiment.

3.4 ms. This is consistent with the channel estimates, as the

first surface reflection arrives at the 16th tap. The rest of the

multipath components are due to multiple reflections from

the surface, bottom and the mounting system.

In the experiment, the SI to noise ratio is around 48 dB as

shown in Fig. 15. This SNR level is mostly defined by the

electrical noise and acoustic noise coming to the water from

the metallic construction. The filter length is L = 80, which

is long enough to cover the channel delay spread, including

the direct path and multiple reflections from the surface and

bottom. The SICF is computed over the time interval from 2 s

to 15 s. Fig. 18 shows the SIC performance of three adaptive

filters with the optimal sliding window lengths M . For the

SRLS adaptive filter, at 0 dB far-end SNR, 25.5 dB of SIC

is achieved when M = 110. The SICF is improved to 29 dB

when the SRLSd adaptive filter with M = 190 is used. The

SRLS-P adaptive filter with M = 220 achieves 32 dB of

SICF.

The experimental results demonstrate that the SRLS-P
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FIGURE 18. SIC performance of adaptive filters for the lake experiment.

adaptive filter provides the best SIC performance among the

three adaptive filters. More than 6 dB improvement in the

SICF can be achieved by using the SRLS-P adaptive filter

compared to that of the SRLS adaptive filter.

However, it is seen that even with the SRLS-P adaptive

filter, the level of the residual SI is still higher than the level

of the far-end signal. At 0 dB far-end SNR, with 32 dB of

SICF, the residual SI is 16 dB higher than the far-end signal.

At 15 dB far-end SNR, the SICF is around 29 dB, and the

residual SI is 4 dB higher than the far-end signal. However,

with such a level of the SI cancellation it becomes possible

to detect far-end signals with specific modulation techniques,

such as the spread-spectrum modulation as demonstrated in

Section IV.

It can be seen that the improvement in SICF for the

lake experiment is lower than that achieved in the passband

simulation. The power spectral density computed for the

first reflection from the lake surface (with an amplitude of

about 0.4 as seen in Fig. 17), has shown that fmax > 2 Hz.

For the further reflections from the lake surface and bottom,

as can be seen in Fig. 17, the variation speed is even higher.

With M = 220, the product of the estimation window length

(0.44 s) by fmax is already close to one, which is less than

the Nyquist lower boundary. With such settings, one cannot

expect high accuracy of estimating the SI channel due to high

modelling errors [34]. Still, the SRLS-P algorithm shows

improvement by 5.5 to 6 dB against the SRLS algorithm and

by 1.5 to 2.5 dB against the SRLSd algorithm.

The estimation accuracy could have been improved using

lower M . However, for the identifiability, the number of

available signal samples (2M ) should be higher than the

number of unknown parameters (3L), i.e. M > 3L/2. For M
very close to the boundary 3L/2, the algorithm performance

is limited (see Fig. 10). Reduction in L allows smaller M ,

but, in this case, the SIC performance will be limited by the

SI arrivals being truncated by the filter.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, the SICF has been proposed as a practical

measure of the SIC performance in FD UWA systems. The

SICF has been investigated in comparison with the MSE,

MSD and BER. It is shown through numerical simulation

that the proposed metric provides a good indication of the

SI canceller performance.

To improve the SIC performance of the RLS adaptive

filters, we have considered their delayed versions, the SRLSd

and ERLSd adaptive filters. The dependence of the SIC per-

formance on the delay of the input signals for these adaptive

filters has been investigated using numerical simulations. We

have shown that, for the SRLSd adaptive filter, the optimal

delay is the half of the sliding window length. For the ERLSd

adaptive filter, the relationship between the optimal delay and

the forgetting factor can differ for different channel realiza-

tions, although, with an optimal delay, the ERLS adaptive

filter can provide the same level of SIC performance as the

SRLSd adaptive filter.

We have proposed the SRLS-P adaptive filter, which is

based on the SRLS algorithm and modelling the channel re-

sponse variation within a short time interval as a second-order

algebraic polynomial. The SIC performance of the SRLS-P

adaptive filter has been investigated and compared with that

of the SRLS and SRLSd adaptive filters using numerical

and lake experiments. The SRLS-P algorithm achieves the

highest SICF among these adaptive filters.

Although the SIC performance achieved by the SRLS-P

adaptive filter is greatly improved in the simulations, the

improvement of that in the experiment is not that high due

to too fast surface variations. As further work, we will look

into modelling the time-varying channel with higher order

polynomials to improve the approximation accuracy. A full

FD setup will also be considered.

APPENDIX

We now derive the presentation (26) for the channel estimate

ĥ(i) obtained by the SRLS algorithm.

In the SRLS adaptive filter, without the noise, the estimate

at time instant i is given by

ĥ(i) = [SH(i)S(i)]−1
S
H(i)x(i),

= R
−1(i)SH(i) diag{S(i)H(i)},

= R
−1(i)SH(i)

M−1
∑

m=0

eme
T
mS(i)H(i)em,

=
1

M
R

−1(i)

M−1
∑

k=0

S
H(i)eme

T
mS(i)H(i)em, (45)

where em is a column vector of zero elements, apart from

the mth element which equals one, S(i) = [s(i), . . . , s(i −
M + 1)]T is an M × L observation matrix, H(i) =
[h(i), . . . ,h(i − M + 1)] is an L × M channel matrix, and

h(i) is the true channel impulse response at the ith time

instant. Here, we used the fact that, in the absence of noise,
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x(i) = diag{S(i)H(i)}. Equation (45) can be further written

as:

ĥ(i) =
1

M
R

−1(i)

M−1
∑

m=0

s
∗(i−m)sT (i−m)H(i)em

=
1

M
R

−1(i)

M−1
∑

m=0

s
∗(i−m)sT (i−m)h(i−m)

=
1

M
R

−1(i)
M−1
∑

m=0

Ri−mh(i−m)

=
1

M
R

−1(i)

0
∑

m=−M+1

Ri+mh(i+m),

(46)

where we use H(i)em = h(i−m), SH(i)em = s
∗(i−m),

and denote Ri−m = s
∗(i − m)sT (i − m). By replacing i

with i+ k, this can also be rewritten as:

ĥ(i+ k) =
1

M
R

−1(i+ k)

k
∑

m=−M+k+1

Ri+mh(i+m).

(47)
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