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On the Performance of Indoor Multi-storey

Small-cell Networks
Chen Chen, Student Member, IEEE, Yixin Zhang, Student Member, IEEE, Jiliang Zhang, Senior Member, IEEE,

Xiaoli Chu, Senior Member, IEEE, Jie Zhang, Senior Member, IEEE

Abstract—Mobile data traffic has been largely generated in-
doors. However, indoor cellular networks have been studied either
on a two-dimensional (2D) plane or as an intractable optimization
problem for a multi-storey building. In this paper, we develop
a tractable three-dimensional small-cell network model for a
multi-storey building. On each storey, the small-cell base sta-
tions (BS) are distributed following a 2D homogeneous Poisson
point process. We analytically derive the downlink coverage
probability, spectral efficiency (SE) and area spectral efficiency
for the indoor network as functions of the storey height, the
penetration loss of the ceiling and the BS density. Our tractable
expressions show that a higher penetration loss of the ceiling leads
to a higher coverage probability and a higher SE. Meanwhile,
with the increase of the storey height or the BS density, the
downlink coverage probability first decreases and then increases
after reaching a minimum value, indicating that certain values of
storey height and BS density should be avoided for good indoor
wireless coverage.

Index Terms—Indoor, small-cell networks, storey height,
stochastic geometry, coverage probability, spectral efficiency.

I. INTRODUCTION

The fifth generation (5G) of mobile networks is predicted

to support 1000× mobile data traffic in the next decade [1].

According to [2] [3], approximately 80% of the mobile data

is generated indoors, while over 70% of the indoor traffic is

carried by the outdoor cellular networks. Since outdoor-to-

indoor coverage is prone to suffer from the high penetration

loss of walls and other physical obstacles, it is of high

necessity to deploy indoor small-cell base stations (BS) [4]

[5].

While the modelling and analysis of outdoor networks has

been widely studied in recent years [6]–[11], there are still

open questions regarding the performance of indoor cellular

networks. The existing works mainly focus on the modelling

of blockages including walls and random blockages on two-

dimensional (2D) planes [12]–[17]. However, the study of

indoor cellular networks in multi-storey buildings should not

be limited to a 2D BS deployment.

In this paper, we present for the first time a tractable three-

dimensional (3D) small-cell network (SCN) model for the

multi-storey indoor environment by incorporating the storey

height and the penetration loss of the ceiling. Then we

derive the expressions for the coverage probability, spectral
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efficiency (SE) and area spectral efficiency (ASE) where the

user equipment (UE) association and inter-cell interference are

considered. We analyze the effects of the storey height and

the penetration loss of the ceiling on the coverage probability

and SE, and provide useful guidelines for the indoor small-

cell deployment and the design of a new building from the

perspective of wireless communications [37].

A. Related Works

Stochastic geometry has been widely used to analyze the

performance of cellular networks due to its mathematical

tractability [18]–[22]. It was also employed to model networks

for the indoor built environment, e.g. in [14], where the

authors modeled the BSs and the center points of the walls as

two independent homogeneous Poisson point process (PPP).

The results showed that higher interior-wall attenuation values

can provide higher coverage probability due to the reduced

inter-cell interference. In [13], a binomial point process was

adopted to model a finite-sized indoor network. Considering

the larger antenna arrays and shorter transmission distances of

millimeter wave (mm-Wave) networks, the authors assumed a

triangle transmitter-receiver radiation area involving the effects

of random blockages and calculated the bit error rate and

outage probability. However, these works only considered a

2D BS deployment.

The authors of [23] extended the 2D PPP distribution

of BSs to the 3D space with BS density in BSs/m3 and

employed the free space path loss channel model. It was

shown that the 3D cellular network achieved a lower coverage

probability compared with the traditional 2D models, but the

influence of the BS density was not analyzed. In [24], the

dual-slope path loss model was applied in a 3D PPP model.

The asymptotic analysis showed that the coverage probability

would diminish to zero when the density of BSs goes to

infinity. In [25], a 3D Poisson building model was proposed

to model the correlated indoor shadowing. However, these 3D

models cannot be applied to SCNs in the multi-storey in-

building scenarios, where BSs on the same storey usually have

the same height for the sake of simple deployment.

Most existing works on multi-storey BS deployment focused

on some specific optimization problems [26]–[28]. For in-

stance, the authors of [26] optimized the BS placement taking

into account the power control. After reformulating the mixed-

integer nonconvex problem into a convex problem, the optimal

number and locations of the BSs were obtained. Nevertheless,

no tractable models have been proposed to analyze SCNs in

the multi-storey building scenarios.

Dense deployment of SCN is considered as one of the key

techniques of 5G networks [32]. The traditional understanding
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of network densification is that the increase of BS density does

not change the coverage probability of the typical UE in an

interference limiting scenario [18] [29]. This conclusion indi-

cates that the area spectral efficiency scales linearly with the

BS density, namely the capacity gain can always be obtained.

However, it is worth noting that this result is based on the

simplified free space propagation channel model. Considering

the short-range propagation in dense SCNs, the authors in [30]

[31] proposed a bounded path loss model and showed that

the ultra dense network degrades the spatial throughput. In

[33], a multi-slope path loss model was employed to study

the effect of non-line-of-sight transmission on the coverage

probability. Their results showed that when the BS density

increases above a certain value, the coverage probability starts

to decrease and the increase in ASE slows down. In [34], the

authors studied the effect of the height of BS antennas on the

coverage probability and the ASE, which decrease to zero with

the BS density when the BSs are higher than the UEs.

B. Contributions

In this paper, we study the performance of a 3D SCN in

a multi-storey building. The main contributions of this paper

are summarized as follows:

• We propose a novel 3D SCN model for a multi-storey

building where BSs on each storey follow PPP distribu-

tion. Using tools from stochastic geometry, we derive the

analytical expressions of coverage probability and SE for

a building with 2M + 1 storeys, where M ≥ 1.

• Based on the results above, the numerically tractable

integral expressions for the M = 1 case are obtained

and validated by simulation results. The numerical results

show that the M = 1 case shows similar performance

in terms of coverage probability and SE as the M > 1
cases, therefore our analytical expressions for the M = 1
case can be used to numerically predict the coverage

probability and SE of a SCN in a building with 2M + 1
storeys, where M ≥ 1.

• With our analytical results, we find that both the coverage

probability and SE first decrease and then increase with

the increasing storey height. Accordingly, we identify a

range of storey heights associated with poor network

performance that should be avoided in the design of

a new building. Moreover, our results show that both

the coverage probability and SE first decrease and then

increase with the BS density on each storey. This new

finding is different from previous results obtained under

the 2D scenarios [18] [19]. It indicates that the setting of

BS density per storey in a multi-storey building should

avoid the values that result in poor coverage.

C. Paper Organization

The remainder of this paper is structured as follows. Section

II introduces the system model. Section III gives the analytical

results on the coverage probability. Section IV presents the

analytical results on the spectral efficiency. The numerical

results are discussed in Section V, with remarks shedding

some new light on the deployment of dense SCN. Finally,

the conclusions are drawn in Section VI.
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Fig. 1. An illustration of the small-cell network in a multi-storey building.

TABLE I
SUMMARY OF NOTATIONS

Notation Meaning

m
Index of the storey where m ∈

{−M, · · · , 0, · · · ,M}
Φj Set of BSs on the jth storey

λ Density of BSs on each storey

hB Height of BSs on each storey

hU Height of UEs on each storey

H Height of each storey

P Transmit power of BSs

α Path loss exponent of each storey

T Coverage probability threshold

w Penetration loss of one ceiling

N Additive white Gaussian noise power

β0 Path loss at the reference distance

Rm
Horizontal distance from the typical UE

to the nearest BS on the mth storey

lm
Distance from the typical UE

to the nearest BS on the mth storey

Pr,m
Average power of the strongest received

signal from a BS on the mth storey

Bm
Probability that the typical UE is

associated to a BS on the mth storey

Cm
Coverage probability when the typical

UE is served by a BS on the mth storey

Rm
Average ergodic rate when the typical

UE is served by a BS on the mth storey

C,R Coverage probability and average ergodic rate

II. SYSTEM MODEL

We consider a building with 2M+1 storeys, where M ≥ 1.

Table I presents a summary of notations used. As shown

in Fig. 1, all the storeys from the ground storey to the top

storey are numbered from −M to M , respectively, and we

assume that the typical UE is located on the 0th storey. The

BS height and the UE height are assumed to be hB and hU,

respectively. The height for each storey is denoted by H ,

which includes the ceiling height and the ceiling thickness.

For the jth storey, the small-cell BSs are randomly distributed

following a homogeneous PPP Φj with intensity λ BSs/m2

and UEs are also PPP distributed with a density of ρ UEs/m2.

For simplicity, we assume that the values of λ and ρ do not

change across different storeys. In this work, we adopt PPP to

model the BSs on each storey mainly for its higher analytical

tractability as compared with other point processes (such as
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binomial point process and Poisson cluster process).

For the downlink cellular network, we assume that the

desired and interference signals experience the distance depen-

dent path loss, where the same path loss exponent α is used

for all the storeys. Small scale fading is modeled as Rayleigh

fading with an unit average power for all the channels [33],

[35].

The simulation results in Fig. 3 in Section V will show that

the maximum coverage probability is obtained when the BS

height is the same as the UE height. For analytical tractability

in the following, we assume that on each storey, hB = hU.

Note that under this assumption, the value of hB and hU has

no effect on the coverage probability.

One UE can only be associated to one BS. We use m ∈
{−M,−(M−1), · · · , 0, 1, · · · ,M} as the index of the storey

that contains the serving BS for the typical UE. Let Rm denote

the horizontal distance from the nearest BS on the mth storey

to the typical UE, and then the distance from the nearest BS

on the mth storey to the typical UE is given by

lm =
√

(mH)2 +R2
m. (1)

The UE is associated to the BS providing the strongest

downlink received signal. The average power of the strongest

received signal from a BS on the mth storey is given by [12]

[36]

Pr,m = Pβ0l
−α
m w|m|, (2)

where P is the transmit power of a BS, β0 is the path loss at

the reference distance of 1 m, w(0 < w < 1) is the penetration

loss of one ceiling, and the power of the small scale fading is

averaged to be 1.

We denote the probability that the typical UE is associated

to a BS on the mth storey as Bm, and denote the horizontal

distance from the typical UE to its serving BS as Xm. The

following lemma gives the expression for the probability

density function (PDF) of Xm, which will be useful for the

derivations of the coverage probability in Section III. In our

system model as defined in Fig. 1, the PDF for the mth storey

is the same as that for the −mth storey. In the following, we

will focus on 0 ≤ m ≤ M .

Lemma 1. The PDF of the distance Xm between a typical

UE and its serving BS is

fXm
(x) =































fXm,m(x), 0 < x ≤ Im,(m+1),

· · ·
fXm,k

(x), Im,k < x ≤ Im,(k+1),

· · ·
fXm,M

(x), Im,M < x < ∞,

(3)

where Im,k is formulated as

Im,k =

{
√

(kH)2w
2(m−k)

α − (mH)2, m ≤ k ≤ M

∞, k = M + 1
(4)

and fXm,k
(x) is

fXm,k
(x) =

2πλ

Bm
xexp

{

− πλ(Fm + Fm,k)
}

, (5)

where Fm and Fm,k are given in (6), (7) in the next page.

Proof: See Appendix A.

III. COVERAGE PROBABILITY

The coverage probability C is the probability that the SINR

of the typical UE is higher than a target threshold. The typical

UE can be connected to at most one BS, so the coverage

probability is given by

C =

M
∑

m=−M

CmBm, (8)

where Bm is the probability that the typical UE associates to

the BS on the mth storey, and Cm is the corresponding cov-

erage probability. Since Cm = C−m, for clarity, we consider

0 ≤ m ≤ M , C will be

C = C0B0 + 2

M
∑

m=1

CmBm. (9)

The typical UE is in coverage when its SINR from its

associated BS is larger than the given threshold T , when the

typical UE associates to the BS on the mth storey, the coverage

probability averaged over the plane is

Cm = Ex [P [SINRm(x) > T ]] , (10)

where x is the horizontal distance from the typical UE to its

serving BS and SINRm is denoted as

SINRm =
Pgm,0(m

2H2 + x2)−
α
2 wm

∑M
j=−M

∑

i∈Φj\Bm0
Phj,i|Yji|−αw|j| + N

β0

,

(11)

where gm,0 is the Raleigh fading with an unit average power,

Bm0 denotes the serving BS, hj,i is the Raleigh fading power

gain with unit mean from the interfering BS i on the jth storey,

and |Yji| is the distance between the interfering BS i on the

jth storey and the typical UE, and N is the additive white

Gaussian noise with a constant mean power.

A. General Case and Main Result

We first give the general result of the coverage probability

and then analyze the special case of M = 1.

Theorem 1. The coverage probability of the typical UE

associated to the BS on the mth storey Cm can be computed

as

Cm =

M
∑

k=m

Cm,k, (12)

where

Cm,k =
2πλ

Bm

∫ Im,(k+1)

Im,k

xexp

{

− T

SNRm

− πλ (Fm + Fm,k)− πλQ
(

m2H2 + x2
)

w− 2m
α

− 2πλ
(

m2H2 + x2
)

M
∑

n=1

Qm,n,kw
2
α (n−m)

}

dx, (13)
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in (13), Im,k, Fm, Fm,k are defined in (4), (6), (7), respec-

tively,

SNRm =
Pwmβ0

(

m2H2 + x2
)−α

2

N
, (14)

and

Q =
2T

α− 2
2F1

[

1, 1− 2

α
; 2− 2

α
;−T

]

, (15)

Qm,n,k=







Q, n≤k

2TB2/α−1
m,n,x

α−2 2F1

[

1, 1− 2
α ; 2− 2

α ;− T
Bm,n,x

]

, n>k

(16)

where Bm,n,x = (nH)αwm−n(m2H2 + x2)−
α
2 .

Proof: See Appendix B.

B. Special Case: M = 1

Fig. 2 shows the coverage probability versus the SINR

threshold, it can be observed that the difference between the

coverage probability of the M = 1 case and M > 1 cases is

negligible. Therefore, the coverage probability of the M = 1
case can be used to predict that of cases with M > 1.

Proposition 1. When M=1, the coverage probability of the

typical UE is

CM=1 = B0C0 + 2B1C1 (17)

where B0C0 and B1C1 can be found in (18), (19), and

Q0,1

=
2TH−2w

2
αx2

α− 2
2F1

[

1, 1− 2

α
; 2− 2

α
;− T

Hαw−1x−α

]

.

(20)

Proof: The expression can be easily obtained by plugging

M = 1 into (9).

Lemma 2. For an interference-limited network (where N=0),

when λ → 0, CM=1 = CM=0, i.e., the coverage probability for

a 3-storey 3D SCN will be identical to that for a single-storey

2D SCN.

Proof: From (17), it is clear that when λ → 0, B1C1 =
1

(

w− 2
α +2

)

(Q+1)
, B0C0 = 1

(

2w
2
α +1

)

(Q+1)
, and thus CM=1 =

B0C0 + 2B1C1 = 1
Q+1 = CM=0.

Lemma 3. For an interference-limited network (where N=0),

when H → 0 or H → ∞, CM=1 = CM=0, i.e., the coverage

probability for a 3-storey 3D SCN is identical to that for a

single-storey 2D SCN.

Proof: In (17), when H → 0, B1C1 = 1
(

w− 2
α +2

)

(Q+1)
,

B0C0 = 1
(

2w
2
α +1

)

(Q+1)
, and thus CM=1 = 1

Q+1 = CM=0.

When H → ∞, B0C0=2πλ
∫∞

0
xexp

{

−πλx2 (Q+1)
}

dx =
1

Q+1 , B1C1 = 0, and thus CM=1 = 1
Q+1 = CM=0.

Fm = 2





(

m2H2 + x2
)

w− 2
α

(

1− w−
2(m−1)

α

)

1− w− 2
α

− (m− 1)m(2m− 1)

6
H2



+
(

m2H2 + x2
)

w− 2m
α + 2x2, (6)

Fm,k = 2





(

m2H2 + x2
)

w
2
α

(

1− w
2(k−m)

α

)

1− w
2
α

− k(k + 1)(2k + 1)−m(m+ 1)(2m+ 1)

6
H2



 , (7)

B0C0 = 2πλ

∫ Hw− 1
α

0

xexp

{

− T

SNR0
− πλx2

(

Q+ 2Q0,1w
2
α + 1

)

}

dx

+ 2πλ

∫ ∞

Hw− 1
α

xexp

{

− T

SNR0
− πλx2

(

Q+ 2Qw
2
α + 2w

2
α − 2

H2

x2
+ 1
)

}

dx

=2πλ

∫ Hw−1
α

0

xexp

{

− T

SNR0
−πλx2

(

Q+2Q0,1w
2
α +1

)

}

dx+

exp

{

− T
SNR0

−πλH2
(

Qw−2
α +2Q+w−2

α

)

}

(Q+ 1)
(

2w
2
α + 1

) ,

(18)

B1C1 = 2πλ

∫ ∞

0

xexp

{

− T

SNR1
− πλQ

(

H2 + x2
)

(

w− 2
α + 2

)

− πλ

(

H2 + x2

w
2
α

+ 2x2

)}

dx

=

exp

{

− T
SNR1

− πλH2
(

Qw− 2
α + 2Q+ w− 2

α

)

}

(

w− 2
α + 2

)

(Q+ 1)
, (19)
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Fig. 2. Coverage probability vs. the SINR threshold for M = 0, 1, 2 and 3.

IV. SPECTRAL EFFICIENCY

The spectral efficiency can be calculated using the average

ergodic rate of the typical UE as follows

R =

M
∑

m=−M

RmBm, (21)

where Bm is the probability that the typical UE is associated

to the BS on the mth storey. Similar to (9), (21) can be further

rewritten as

R = R0B0 + 2
M
∑

m=1

RmBm, (22)

Rm is the average ergodic rate when the typical UE connects

to the mth storey. Rm can be derived as

Rm = ESINRm
[log2 (1 + SINRm)] , (23)

Theorem 2. The average ergodic rate of the mth storey can

be derived as

Rm =
M
∑

k=m

Rm,k, (24)

where

Rm,k =
2πλ

Bm

∫ ∞

0

∫ Im,(k+1)

Im,k

xexp

{

− 2t − 1

SNRm

− πλ (Fm + Fm,k)− πλQt

(

m2H2 + x2
)

w− 2m
α

− 2πλ
(

m2H2 + x2
)

M
∑

n=1

Qm,n,k,tw
2
α (n−m)

}

dxdt,

(25)

in which

Qt =
2(2t − 1)

α− 2
2F1

[

1, 1− 2

α
; 2− 2

α
; 1− 2t

]

, (26)

Qm,n,k,t

=







Qt, n≤k

2(2t−1)B2/α−1
m,n,x

α−2 2F1

[

1, 1− 2
α ; 2− 2

α ;
1−2t

Bm,n,x

]

, n>k

(27)

where Bm,n,x = (nH)αw−n(m2H2 + x2)−
α
2 .
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Fig. 3. Coverage probability vs. the absolute value of the height difference
between BSs and UEs for different values of w and λ (BS/m2).

Proof: See Appendix C.

The area spectral efficiency in bps/Hz/m2 can be computed

as [34]

RASE = λR, (28)

where λ is the density of the BSs in BSs/m2 and R is given

in (21).

TABLE II
VALUES OF PARAMETERS

Parameter Default Value

Path loss at reference distance β0 −38.5 dB

AWGN average power N −104 dBm

Coverage probability threshold T 0 dB

Transmit power of BSs P 33 dBm

Path loss exponent α 4

BS height hB and UE height hU 1.2 m
Storey height H 3 m

BS density on each storey λ 10−2 BS/m2

Ceiling penetration loss w −10 dB

V. NUMERICAL RESULTS

In this section, we evaluate the accuracy of our analytical

expressions and further analyze the performance of our multi-

storey SCN model.

A. Validation of the Analytical Results

For numerical evaluation and simulations, the default values

of parameters are listed in Table II [20] unless otherwise stated.

As shown in Table 3 of [36], the penetration loss of one ceiling

ranges from −4 dB to −22 dB, depending on the carrier

frequencies (0.9-5.8 GHz) and building environments. Without

loss of generality, we set the default ceiling penetration loss

as −10 dB.

In Fig. 2, we compare the coverage probability of the

proposed SCN model for M = 0, 1, 2 and 3. The analytic

curves match well with those simulated by Monte Carlo meth-

ods, which demonstrates the accuracy of our mathematical

derivations. In Fig. 2(a)-(d), we can observe that the M = 0
case provides the upper bound of the coverage probability

where the BS deployment follows the traditional 2D PPP

distribution [18]. From Fig. 2(a) and Fig. 2(b), it is obvious

that when w = −5 dB, the coverage probability of the M = 0
case is much higher than that of the M ≥ 1 cases. However,

the performance of the M = 1 case is close to M = 2 and

M = 3 cases, the gap between them is up to 0.02 and thus

negligible. Additionally, when w = −10 dB, the M = 1 case

shows nearly the same coverage probability as the M = 2
and M = 3 cases. Similar phenomenon can be observed in

Fig. 2(c) and Fig. 2(d), where different values of H and λ are

included in the comparison.

Based on the results in Fig. 2, it is reasonable to approximate

the proposed multi-storey SCN model for M = 2, 3 using

the M = 1 case, the expressions of which can be found in

Proposition 1. Accordingly, we will adopt the analytical results

of the M = 1 case in the discussions hereafter.

In Fig. 3, we evaluate the impact of the absolute value of

the height difference between BSs and UEs on the coverage

probability for various values of the ceiling penetration loss

and the BS density on each storey through Monte Carlo

simulations. We fix the UE height as 1.2 m and set the

maximum BS height as 5 m following a practical upper bound

of storey height [38]. We can see that the maximum coverage

probability is achieved when the BS height is the same as the

UE height. Therefore, in the following, we assume that the BS

height and the UE height are identical to evaluate the optimal

achievable network performance of our proposed multi-storey

SCN model.

In Fig. 4, we plot the coverage probability versus the SINR

threshold for different values of the BS transmit power, BS

density on each storey, ceiling penetration loss, and height of

each storey. We can see that the coverage probability does not

change with the BS transmit power, for given BS density on

each storey, ceiling penetration loss and height of each storey.

This is mainly due to the relatively high indoor BS density

that leads to an interference-limited multi-storey SCN.

B. Effect of the BS Density

To better demonstrate the performance of the multi-storey

SCN, we ignore the thermal noise and set w as −10 dB.

It is well-known that the BS density does not affect the

network coverage probability in interference-limited networks

and the area spectral efficiency scales linearly with the network

densification [18]. This is because the increased interference

can be compensated by the shrinked distance between the

typical UE and the connected BS.

However, we observe a different scaling law in our proposed

multi-storey SCN model. In Fig. 5, we analyze the influence

of the BS density per storey to the coverage probability for

H = 3 m, H = 4 m, H = 5 m [38], [39], respectively.

Note that the M = 0 curve stands for the 2D scenario [18]

and its coverage probability CM=0 remains unchanged with

the increase of the BS density. When M = 1, the coverage

probability first decreases from CM=0 and then increases back

to CM=0 with the network densification. This phenomenon
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Fig. 4. Coverage probability vs. the SINR threshold for different values of P and λ.
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Fig. 5. The coverage probability vs. the BS density.

is referred to as the Coverage Probability Chasm hereafter.

Intuitively, when λ approaches infinity, the typical UE will

hardly associate with any storey other than the 0th storey, and

thus the coverage probability of the M > 1 cases is close to

that of the M = 0 case. Moreover, the coverage probability as

λ → 0 is in accordance with Lemma 2. The minimum value

of coverage probability and the corresponding BS density

per storey λ∗ can be obtained when CM=1′(λ∗) = 0. The

solution can be numerically found using Newton’s method,

and details are given in Appendix D. The numerical results are

10.476×10−3 BS/m2, 5.9×10−3 BS/m2, 3.8×10−3 BS/m2 for

H = 3 m, H = 4 m, H = 5 m, respectively, and the minimum

coverage probability is 0.4775. The results reveal that the

worst BS densities suffer from more than 8 percent loss of

coverage probability compared with the 2D model. Since the

spectral efficiency is the integral of the coverage probability,

a SE Chasm can also be found in Fig. 6, where the worst BS

densities can be similarly obtained with Newton’s method. The
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Fig. 6. The spectral efficiency vs. the BS density.

numerical results are 5.6× 10−3 BSs/m2, 3.1× 10−3 BSs/m2,

2 × 10−3 BSs/m2 for H = 3 m, H = 4 m, H = 5 m,

respectively, and the minimum spectral efficiency is 1.7826

bps/Hz/m2. To alleviate the performance loss, it is necessary

to avoid the Chasm area in the practical deployment of BSs.

In Fig. 7, we show the area spectral efficiency of M = 0
and M = 1 cases. For the M = 0 scenario, the ASE

increases linearly with network densification. Nevertheless, for

the multi-storey case, the ASE first increases linearly when the

BS density per storey is low and then exhibits a slowing-down

in the ASE growth when the network becomes denser. When

the network is ultra dense, the ASE returns to the linear growth

again. Such a trend of the ASE performance is not difficult

to explain according to the SE trend in Fig. 6. Moreover, we

observe that for a given storey height, a higher penetration

loss of the ceiling leads to a higher ASE.
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C. Effect of the Storey Height

In Fig. 8, we assume that the penetration loss of the ceiling

w = −5 dB, and the threshold of the coverage probability

is 0 dB. We assume that the BS height and UE height are

both 1.2 m, so the minimum storey height is 1.2 m. We

plot the 3D figure to show the influence of the storey height

with different BS densities, where a conspicuous Coverage

Probability Chasm can be observed. For most of the BS

densities, the coverage probability of the typical UE first

decreases and then increases with the increasing storey height.

The red bold line shows the locations of the storey height

H∗ corresponding to the lowest coverage probability, which

can be obtained by solving CM=1′(H∗) = 0 and numerically

found using a standard bisection searching [40]. Due to the

existing of the Coverage Probability Chasm, there is a worst

storey height that leads to the lowest coverage probability. The

worst storey height is affected by the BS density, as can be

seen, when the BS density increases, the worst storey height
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Fig. 9. Coverage probability vs. the storey height H and the ceiling
penetration loss w. The red bold line shows the storey height and ceiling
penetration loss corresponding to the lowest coverage probability.
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Fig. 10. The coverage probability vs. the ceiling penetration loss w.

decreases. It is worth noting that the coverage probability

monotonously increases when the worst storey height is less

than 1.2 m.

In Fig. 9, the BS density per storey is set to be 10−2

BS/m2 and the threshold of the coverage probability is 0 dB.

A similar Coverage Probability Chasm can be observed. The

coverage probability of the typical UE first decreases and then

increases with the increasing storey height for a particular

penetration loss of the ceiling. The red bold line also indicates

the locations of the storey height H∗ with lowest coverage

probability. Note that a smaller value of w means a higher

penetration loss of the ceiling, which indicates that the storey

height corresponding to the lowest coverage probability is

smaller when the penetration loss becomes higher.

In conclusion, the Coverage Probability Chasm exists for

any BS density and penetration loss of the ceiling, which is

in accordance with the conclusion in Lemma 3. Intuitively,

when the storey height is 0, all the BSs are on the same

storey, that is the 2D BS deployment. When the storey height
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Fig. 11. The spectral efficiency vs. the ceiling penetration loss w.

becomes large enough, the probability of the typical UE being

connected to any storey other than the 0th storey is close to 0

and the coverage probability of the M > 1 cases is close to

that of the 2D model. For the commercial success of future

5G networks, it is crucial to avoid the Coverage Probability

Chasm in the design of new buildings. Actually, with our

tractable expressions, it is convenient to find the optimal

storey height. With the acceptable range of storey height, e.g.

H1 ≤ H ≤ H2, the maximum coverage probability can be

obtained at either H1 or H2 due to the Coverage Probability

Chasm. Therefore, we only need to compute the coverage

probability at H1 and H2 respectively and choose the higher

one.

D. Effect of the Penetration Loss of the Ceiling

In Fig. 10 and Fig. 11, we analyze the influence of the

penetration loss of the ceiling (in linear scale). Larger w means

smaller penetration loss. It is observed that the coverage proba-

bility and spectral efficiency increase with stronger penetration

loss, which indicates that the cross-storey communication

is harmful to the network performance when the BSs and

UEs share the same height. When w = 0, the typical UE

only connects to the BSs on the 0th storey, so the network

performance is the same with the 2D model. According to

this conclusion, we should choose the materials with higher

penetration loss for the ceilings of a new building.

VI. CONCLUSIONS

In this paper, we have proposed a new 3D stochastic

geometry model for the small-cell networks in the multi-storey

built environment. A novel theoretical discovery has been

presented, i.e., the Coverage Probability Chasm. The coverage

probability first decreases and then increases with the increase

of the storey height and the network density. Moreover, we

show that a ceilings with a higher penetration loss can provide

a better network performance. The contributions of this paper

can shed insight on the design of new buildings and future

indoor SCN deployments.

In the future, we will further consider a more practical in-

door built environment with walls and stochastic blockages. In

addition, interference management techniques such as dynamic

power control, BS sleeping strategy, and directional antennas

will be investigated.

APPENDIX A

PROOF OF LEMMA 1

Denote n as the index of the storey that the typical UE

connected to. Given the condition that the typical UE is

associated to the BS on the mth storey, Xm > x is equal

to Rm > x, the probability of Xm > x can be computed as

P[Xm > x] = P[Rm > x|n = m] =
P[Rm > x, n = m]

P[n = m]
,

(29)

where

P[n = m] = Bm = ERm

[

P

[

Pr,m(Rm) > max
j,j 6=m

Pr,j

]]

,

(30)

the joint probability of Rm > x and n = m is

P[Rm > x, n = m]

= P

[

Rm > x,Pr,m(Rm) > max
j,j 6=m

Pr,j

]

=

∫ ∞

x

M
∏

j=−M,j 6=m

P [Pr,m(r) > Pr,j ] fRm
(r)dr, (31)

from (2), we have

P [Pr,m(r) > Pr,j ]

= P

[

(

m2H2 + r2
)−α

2 wm >
(

j2H2 +R2
j

)−α
2 w|j|

]

= P

[

R2
j >

(

m2H2 + r2
)

w
2(|j|−m)

α − j2H2
]

, (32)

when |j| ≤ m,
(

(m2H2 + r2)w
2(|j|−m)

α − j2H2
)

is non-

negative, while when |j| > m, it could be a negative number.

So P [Pr,m(r) > Pr,j ] can be divided into two parts as

P [Pr,m(r) > Pr,j ] =











P [Pr,m(r) > Pr,j ]
|j|≤m

, |j| ≤ m

P [Pr,m(r) > Pr,j ]
|j|>m

, |j| > m

(33)

since R2
j is always non-negative, so in the case of |j| > m,

when (m2H2 + r2)w
2(|j|−m)

α < j2H2, P [Pr,m(r) > Pr,j ] is

1. With these analysis, (33) can be further derived as (34),

(35).

P [Pr,m(r) > Pr,j ]
|j|≤m

= P

[

Rj >

√

(m2H2 + r2)w
2(|j|−m)

α − j2H2

]

(a)
= P

[

No BS closer than

√

(m2H2+r2)w
2(|j|−m)

α −j2H2

]

= exp
{

− πλ
(

(m2H2 + r2)w
2(|j|−m)

α − j2H2
)}

, (34)
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in (34), (a) can be derived from the null probability of a 2D

Poisson point process in an area A is exp(−λA) [18].

fRm(r) is given from

fRm
(r) =

d(1− P[Rm > r])

dr
= e−πλr22πλr. (36)

Since P[Xm > x] is the CCDF of Xm, the PDF of Xm is

fXm
(x) =

d(1− P[Xm > x])

dx

=
1

Bm

M
∏

j=−M,j 6=m

P [Pr,m(x) > Pr,j ] fRm
(x), (37)

Combining (34), (35), (36), (37), we can obtain (38), where

(a), (b) can be computed using the sum of a geometric series,

Im,k, Fm, Fm,k are defined in (4), (6), (7), which concludes

our proof.

APPENDIX B

PROOF OF THEOREM 1

From (10), when the typical UE is associated to the BS on

the mth storey, the coverage probability is

Cm =

∫ ∞

x=0

P [SINRm(x) > T ] fXm(x)dx, (39)

where fXm
(x) is given in (38). Rewrite the SINRm(x) as

γm(x) =
gm,0

P−1(m2H2+x2)
α
2 w−mQ

, where Q =
∑M

j=−M Ij +

N/β0. Then P [SINRm(x) > T ] can be derived as

P [SINRm(x) > T ]

= P

[

gm,0 > P−1
(

m2H2 + x2
)

α
2 w−mTQ

]

=

∫ ∞

0

exp
{

−P−1
(

m2H2 + x2
)

α
2 w−mTQ

}

fQ(q)dq

= EQ

[

exp
{

−P−1
(

m2H2 + x2
)

α
2 w−mTQ

}]

= exp

{

− T

SNRm

} M
∏

j=−M

LIj

(

P−1
(

m2H2+x2
)

α
2 w−mT

)

,

(40)

where SNRm is given in (14), define lm,x =
√
m2H2 + x2,

lj,y =
√

j2H2 + y2, the Laplace transform of Ij is

LIj

(

P−1lαm,xw
−mT

)

= EIj

[

exp
{

−P−1lαm,xw
−mTIj

}]

= EΦj



exp







−lαm,xT
∑

i∈Φj

hj,il
−α
j,y w

|j|−m











(a)
= exp

{

−2πλ

∫ ∞

zj

(

1− Lhj

(

lαm,xT l
−α
j,y w

|j|−m
))

ydy

}

(b)
= exp

{

−2πλ

∫ ∞

zj

(

1− 1

1 + lαm,xT l
−α
j,y w

|j|−m

)

ydy

}

= exp

{

−2πλ

∫ ∞

zj

y

1 + l−α
m,xT−1wm−|j|lαj,y

dy

}

, (41)

where (a) comes from the probability generating functional of

PPP [33], and (b) is because hj ∼ exp(1). zj is the horizontal

P [Pr,m(r) > Pr,j ]
|j|>m

=











1, r <

√

j2H2w
2(m−|j|)

α −m2H2

P

[

Rj >

√

(m2H2 + r2)w
2(|j|−m)

α − j2H2

]

, r ≥
√

j2H2w
2(m−|j|)

α −m2H2

=











1, r <

√

j2H2w
2(m−|j|)

α −m2H2

exp
{

− πλ
(

(m2H2 + r2)w
2(|j|−m)

α − j2H2
)}

, r ≥
√

j2H2w
2(m−|j|)

α −m2H2

(35)

fXm
(x) =

2πλ

Bm
xexp

{

− πλx2
}

∏

−m≤j<m

P [Pr,m(x) > Pr,j ]
|j|≤m

∏

m<|j|≤M

P [Pr,m(x) > Pr,j ]
|j|>m

=
2πλ

Bm
xexp

{

− πλx2
}

exp
{

− πλ
∑

−m≤j<m

(

(

m2H2 + x2
)

w
2(|j|−m)

α − j2H2
)}

∏

m<|j|≤M

P [Pr,m(x) > Pr,j ]
|j|>m

(a)
=

2πλ

Bm
xexp

{

− πλFm

}

∏

m<|j|≤M

P [Pr,m(x) > Pr,j ]
|j|>m

(b)
=







































2πλ
Bm

xexp
{

− πλ(Fm + Fm,m)
}

, 0 < x ≤ Im,(m+1)

· · ·
2πλ
Bm

xexp
{

− πλ(Fm + Fm,k)
}

, Im,k < x ≤ Im,(k+1)

· · ·
2πλ
Bm

xexp
{

− πλ(Fm + Fm,M )
}

, Im,M < x < ∞

(38)
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distance of the closest interfering BS on the jth storey, similar

with (33), it is derived as

zj =











zj
|j|≤m

, |j| ≤ m

zj
|j|>m

, |j| > m
(42)

where

zj
|j|≤m

=

√

(m2H2 + x2)w
2(|j|−m)

α − j2H2, (43)

zj
|j|>m

=







0, x < Im,|j|
√

(m2H2 + x2)w
2(|j|−m)

α − j2H2, x ≥ Im,|j|

(44)

where Im,|j| can be computed using (4). Then

LIj

(

P−1lαm,xw
−mT

)

can be derived as

LIj

(

P−1lαm,xw
−mT

)

=











LIj

(

P−1lαm,xw
−mT

)

|j|≤m

, |j| ≤ m

LIj

(

P−1lαm,xw
−mT

)

|j|>m

, |j| > m

(45)

employ a change of variable u =
(

l−α
j,y l

α
m,xTw

|j|−m
)−2/α

, we

can obtain

LIj

(

P−1lαm,xw
−mT

)

|j|≤m

= exp
{

−πλQl2m,xw
2(|j|−m)

α

}

, (46)

where

Q = T
2
α

∫ ∞

T− 2
α

1

1 + u
α
2
du

=
2T

α− 2
2F1

[

1, 1− 2

α
; 2− 2

α
;−T

]

for α > 2, (47)

here 2F1 [·] denotes the Gauss hypergeometric function. For

|j| > m,

LIj

(

P−1lαm,xw
−mT

)

|j|>m

=







exp
{

−πλQm,|j|l
2
m,xw

2(|j|−m)
α

}

, x < Im,|j|

exp
{

−πλQl2m,xw
2(|j|−m)

α

}

, x ≥ Im,|j|

(48)

where

Qm,|j| = T
2
α

∫ ∞

(|j|H)2

w
2(|j|−m)

α (m2H2+x2)T
2
α

1

1 + u
α
2
du,

=
2TB

2/α−1
m,|j|,x

α− 2
2F1

[

1, 1− 2

α
; 2− 2

α
;− T

Bm,|j|,x

]

,

(49)

where Bm,|j|,x = (|j|H)αwm−|j|(m2H2 + x2)−
α
2 . Plug

(46), (48) into (40), we have (50), in which Dm,k =
∑M

n=1 Qm,n,kw
2
α (n−m), Qm,n,k is given in (16). Combining

(38), (39), (50), we can get the coverage probability for the

mth storey in (12).

APPENDIX C

PROOF OF THEOREM 2

From (23), the average ergodic rate of the typical UE when

it is associated to the BS on the mth storey is

Rm =

∫ ∞

0

ESINRm
[log2 (1 + SINRm(x))] fXm

(x)dx,

(51)

P [SINRm(x) > T ] = exp

{

− T

SNRm

}

∏

|j|≤m

LIj

(

P−1lαm,xw
−mT

)

|j|≤m

∏

m<|j|≤M

LIj

(

P−1lαm,xw
−mT

)

|j|>m

= exp

{

− T

SNRm

}

exp







m
∑

j=−m

−πλQl2m,xw
2(|j|−m)

α







∏

m<|j|≤M

LIj

(

P−1lαm,xw
−mT

)

|j|>m

=







































exp
{

− T
SNRm

− πλQ
(

m2H2 + x2
)

w− 2m
α − 2πλ

(

m2H2 + x2
)

Dm,m

}

, 0 < x ≤ Im,(m+1)

· · ·
exp

{

− T
SNRm

− πλQ
(

m2H2 + x2
)

w− 2m
α − 2πλ

(

m2H2 + x2
)

Dm,k

}

, Im,k < x ≤ Im,(k+1)

· · ·
exp

{

− T
SNRm

− πλQ
(

m2H2 + x2
)

w− 2m
α − 2πλ

(

m2H2 + x2
)

Dm,M

}

, Im,M < x < ∞

(50)

ESINRm
[log2 (1 + SINRm(x))]

=







































∫∞

0
exp

{

− 2t−1
SNRm

− πλQt

(

m2H2 + x2
)

w− 2m
α − 2πλ

(

m2H2 + x2
)

Dm,m,t

}

dt, 0 < x ≤ Im,(m+1)

· · ·
∫∞

0
exp

{

− 2t−1
SNRm

− πλQt

(

m2H2 + x2
)

w− 2m
α − 2πλ

(

m2H2 + x2
)

Dm,k,t

}

dt, Im,k < x ≤ Im,(k+1)

· · ·
∫∞

0
exp

{

− 2t−1
SNRm

− πλQt

(

m2H2 + x2
)

w− 2m
α − 2πλ

(

m2H2 + x2
)

Dm,M,t

}

dt, Im,M < x < ∞

(53)
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where fXm
(x) can be found in Lemma 1. For a positive

random variable X , E [X] =
∫∞

0
P [X > x] dx, define lm,x =√

m2H2 + x2, we obtain

ESINRm
[log2 (1 + SINRm(x))]

=

∫ ∞

0

P [log2 (1 + SINRm(x)) > t] dt

(a)
=

∫ ∞

0

P
[

gm,0 > P−1lαm,xw
−m(2t − 1)Q

]

dt

=

∫ ∞

0

e−
2t−1
SNRm

M
∏

j=−M

LIj

(

P−1lαm,xw
−m(2t − 1)

)

dt, (52)

where (a) comes from employ T = 2t − 1 in (40). Following

the derivation in (50), (52) can be further derived as (53), in

which

Qt=(2t − 1)
2
α

∫ ∞

(2t−1)−
2
α

1

1 + u
α
2
du

=
2(2t − 1)

α− 2
2F1

[

1, 1− 2

α
; 2− 2

α
; 1− 2t

]

, (54)

and Dm,k,t =
∑M

n=1 Qm,n,k,tw
2
α (n−m), Qm,n,k,t is given in

(27). Plug (53) into (51), we can get the expression in (22).

APPENDIX D

PROOF OF NEWTON’S METHOD

To obtain the minimum value of coverage probability and

the corresponding BS density per storey in (17), we employ

the Newton’s method. Assume that λ is the only variable, the

coverage probability is

CM=1(λ) = B0C0 + 2B1C1 (55)

where B0C0 and B1C1 can be found in (18), (19). Take the

first-order derivation of CM=1(λ) and we have

CM=1′(λ) =
−πPH2

1 +Q exp
{

−πλPH2
}

+

∫ Hw− 1
α

0

2πx
(

1− πλKx2
)

exp
{

−πλKx2
}

, (56)

where P = Q
(

2 + w− 2
α

)

+w− 2
α , K = 1+Q+2Q0,1w

2
α , Q

and Q0,1 are defined in (15) and (20). Then take the second-

order derivation of CM=1(λ) and we have

CM=1′′(λ) =
π2P2H4

1 +Q exp
{

−πλPH2
}

+

∫ Hw− 1
α

0

(

2λK2π3x5 − 4Kπ2x3
)

exp
{

−πλKx2
}

. (57)

Our objective is to find the λ∗ when CM=1′(λ∗) = 0.

Choose a threshold ε which is close to zero and an initial

value λ0. In our simulation, we set ε = 10−6 and λ0 = 0.

Compute λ1 according to

λn+1 = λn − CM=1′(λn)

CM=1′′(λn)
, (58)

and continue the iteration until CM=1′(λn+1) < ε. Then we

obtain the target BS density per storey λ∗ = λn+1 and the

minimum coverage probability CM=1(λ∗).
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