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Summary

Nowadays, aerodynamic computational modeling is carried out on a daily basis

in an industrial setting. This is done with the aim of predicting the perfor-

mance and flow characteristics of new components. However, limited resources

in terms of time and hardware force the engineer to employ relatively coarse

computational grids, thus achieving results with variable degree of inaccuracy.

In this article, a novel combination of feature and adjoint-basedmesh adaptation

methods is investigated and applied to typical three-dimensional turbomachin-

ery cases, such as compressor and fan blades. The proposed process starts by

employing feature-based mesh movement to improve the global flow solution

and then adjoint refinement to tune themesh for each quantity of interest. Com-

parison of this process with one utilizing only the adjoint refinement procedure

shows significant benefits in terms of accuracy of the performance quantity.

KEYWORD S

adjoint error, feature-based adaptation, mesh movement, mesh refinement, Riemannianmetric,

turbomachinery

1 INTRODUCTION

Computational fluid dynamics (CFD), has widespread applications in many industrial settings. In fact, many simulations

are carried out on a daily basis with the aim of determining flow behavior around assorted components, from jet engine

compressors, to cooling fans present in computers. However, despite the technological advances allowing CFD to be

employed in the engineering design process (seeReference 1 for examples), significant issues are still present. Firstly,mesh

generation is manual, requiring experienced personnel to spend several hours attempting to improve grid quality, while

allowing sufficient clustering where they estimate more convoluted flow behavior. Moreover, as discussed by Reference

2, the geometry complexity has increased, causing smaller flow features to appear: these too will have to be appropriately

captured by the final solution.

Another issue present in CFD simulations concerns their accuracy. In fact, the estimated flow will contain a degree

of error, that is generally unavoidable. Therefore, increasingly finer meshes are needed to carry out mesh independence

studies to validate the solution. This is a tedious, expensive process, and as discussed by Reference 3 mesh-independent

solutions obtained with alternative starting grids, may have a non-negligible variation in results.

According to References 4,5, the sources of inaccuracies in a CFD solution can be divided into discretization error,

round-off approximations, iterative and statistical sampling, while Reference 6 also includesmodeling inaccuracies, input
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uncertainties and post processing errors. Between these potential causes, the most problematic one is discretization error,

as also confirmed by References 4,5. It is this kind of inaccuracy that is targeted by mesh adaptation: this process con-

sists of the automatic and efficient modification of a grid with the aim of reducing its effect, without having to resort

to several uniform refinement steps.7 Moreover, as discussed by Reference 8, it will aid improve the mesh generation

turn-around time, as very limited flow behavior knowledge is required, since refinement and clustering towards high flow

and geometrical complexity regions will be dealt automatically by the adaptation algorithm.

Mesh adaptation has been developed as a separate research topic from the early 1980s with the first specialized confer-

ence taking place in 1982.7 Despite the significant effort to develop a variety of techniques over the last forty years or so, it

has never foundwidespread use either in academia or industry. One of themain reasons behind this is the limited success

that several approaches have had: many publications deal with two-dimensional (2D) cases, with three-dimensional (3D)

geometries mainly concerning open-flows with a limited amount of flow features appearing (to this end simplifications

such as inviscid or incompressible conditions are not uncommon).

Within the wide variety of mesh adaptation techniques, some of the most popular ones fall into the feature- and

adjoint-based categories. In the former case, the error estimation is carried out computing variations of physical quantities

that allow to determine where complex flow features may appear. Therefore, simple difference of values, gradients and

second-order derivatives have been successfully employed.7 Nevertheless, one of the most important aspects regarding

feature-based adaptation concerns anisotropy. In fact, it is well known thatmost flow complexities present amuch greater

variation across, rather than in other directions. Therefore, being able to refine or cluster only in the normal direction

would allow to improve accuracy minimizing the grid’s node count. Moreover, as stated by Reference 9, by achieving grid

alignment with shocks, the Rankine-Hugoniot relationship is better satisfied, thus improving the solution. According to

Reference 10, the first instances of anisotropic mesh adaptation occurred towards the end of the 1980s in Reference 11. In

this case, 2D grids were regenerated including information concerning the stretching and orientation of elements. A 3D

version of the proposed approach appeared shortly after in References 12,13. However, the most important advancement

in terms of feature-based anisotropic adaptation was described in Reference 14. The authors employed second-order

derivatives (Hessianmatrix) of a scalar quantity able to determine aRiemannianmetric including information concerning

stretching and orientation of grid edges. Shortly after, Reference 15 was able to exploit this error definition in a spring

stiffness-based mesh movement algorithm to cluster and align the grid appropriately to improve flow resolution. This

technique was then employed by References 16-20 in a repeated manner coupled with edge split, swap and collapse.

More recently,mesh regeneration based on theHessian of flowquantities has started to gainmore andmore popularity.

One of the two approaches proposed is that of References 9,21,22. In this case, features are identified by combining flow

parameters and then fully quadrilateral/hexahedral high-quality blocks are placed around them. The remainder of the

domain is then filled with hybrid elements. Despite showing improvement in feature resolution, it can present issues

with elaborate geometries, particularly when multiple flow complexities interact. Therefore, to increase flexibility and

capability of handling more intricate cases, a second approach regenerating the entire grid with tetrahedral elements has

gained particular interest. By employing theHessianmatrix of flow variables, size, stretching, and orientation of each cell

is determined. To this end, Reference 23 were able to compute an error-upper bound independent of the problem at hand.

Shortly after, in References 24-26 they managed to achieve a continuous representation of the error field by employing

an appropriate interpolation operator. Finally, in Reference 27 they showed how to optimize the cell distribution based

on their previous developments.

As mentioned, another group of relatively successful adaptation techniques is based on adjoint quantities. These

started to appear towards the mid-1990s in References 28,29 and are based on the fact that the adjoint vector gives the

functional sensitivity to the flow residuals. Unlike feature-based adaptation, employing the adjoint error estimation has

repeatedly proven to be more reliable. In fact, the former techniques will deal with complex regions of the flow, regard-

less of whether these require further refinement/clustering, and do not necessarily target where the error may originate

from Reference 30. In particular, one of the main reasons in favor of adjoint-adaptation is its capability to determine the

effect that local errors may have on the global quantity of interest, whilst neglecting any other sources of inaccuracies.

The first few adjoint error estimation approaches were limited to relatively simple cases, such as one-dimensional (1D)

flow or the inviscid NACA 0012 aerofoil. Shortly after, References 31-33 devised a multilevel error estimator approach

that is probably the most popular and successful method to date. This requires the determination of linearly and quadrat-

ically interpolated flow and adjoint solutions to an embeddedmesh. While this approach successfully managed to reduce

the error in 1D and inviscid 2D cases, when adapting viscous flows, anisotropy was included by exploiting the Rieman-

nianmetric previously mentioned. The combination of adjoint error and anisotropic metric was achieved by scaling the
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eigenvalues of theHessianmatrix by the adjoint error. The resulting quantity was then applied to a triangularmesh regen-

eration algorithm. Within the same publication, significant advantages with respect to (w.r.t.) feature-based techniques

were shown. Inviscid 3D applications of this approach were first published during the mid-2000s by Reference 34, with

viscous flows being considered in Reference 35. In both cases, the technique showed improvements of the quantities of

interest, although in the second publication, issueswith high-order interpolation of turbulent quantitieswere highlighted.

Effectively, the high-order prolongation to the embedded grid of flow and adjoint quantities was the focus of the studies of

References 34,36. In both cases, it was concluded that more accurate interpolation operators would allow a sharper error

estimation, whilst lower-order procedures would produce a more conservative error bound. Another issue that has been

found to appear in this process is noise in the embedded mesh sensor fields, as may be seen in Reference 37. To minimise

its effect, Reference 38 showed how control-volume weighted repeated smoothing of the flow residuals aided the error

smoothness. Unfortunately, this seemed to be limited to inviscid flows, as in a later publication39 they reported how, for

viscous cases, smoothing immediately distorted the sensor field.

Despite the significant research on the methods initially devised by Reference 31, there are other mesh adaptation

techniques developed around the adjoint solution. One of the most original ones is that of References 40,41, in which it

was argued that up to 90% of the error in a flow solution is due to artificial dissipation. In particular, the analysis was based

on the Jameson-Schmidt-Turkel (JST)42 flux discretization scheme, and the sensitivity of the quantity of interest w.r.t. the

JST coefficient was determined and employed to ascertain an error sensor. Despite successfully managing to improve

the quantities of interest and avoid the need for an embedded grid, it was limited to only one type of flux reconstruction

scheme.

Amore generic approach that does not require an adjoint solution is that of Reference 43. In this case, entropy variables

were employed and it was shown that they do satisfy an auxiliary adjoint relation. These could then aid in reducing

artificial dissipation. Despite showing promising results for subsonic flows, issues appeared with shocks, as entropy is no

longer conserved.

A final method that ought to be considered, is that of References 44-47. In this case, they employed the mesh adjoint

functional sensitivity to the grid coordinates to be able to adapt the mesh.

As shownwithin the literature, there is a significant amount of research indicating that adjoint-basedmesh adaptation

technology is superior w.r.t. feature approaches. However, it has never really been remarked, that they are much more

costly, as they require an additional adjoint simulation to be carried out, thus roughly doubling the turnaround time. In

the particular case of discrete adjoint solvers coded with the aid of automatic differentiation packages, the flow Jacobian

matrix required to solve the adjoint relationsmayhave to be recomputed for each node every iteration,48 further increasing

simulation time. Moreover, this type of grid modification will only be able to adapt a grid to optimize the accuracy of a

single functional at a time, thus for n quantities of interest, n-adjoint adaptation processes ought to be run. As the reader

may have readily noticed, this can be very costly in terms of time and hardware, particularly if varied flow conditions have

to be analysed, as the entire process will need to be repeated for each one. On the other hand, despite being less effective,

feature-based adaptation aims to improve the entire flow field and thus a single process may be employed to improve all

quantities of interest. Therefore, devising a procedure that would utilise feature-based approaches to start with, followed

by adjoint-error estimation can be helpful in achieving a more efficient method. Moreover, the latter are better suited

in capturing flow anisotropy. As previously mentioned, a simultaneous combination of the two technologies has already

been carried out, however, this will not avoid the need to split processes for every functional, and will not take advantage

of the initial reduction of the adjoint-error that feature-based approaches can provide.

In this work, to achieve a robust and efficient technique, the first part of the adaptation will employ Hessian-based

mesh movement, that will be iteratively repeated till the feature-based error converges. On achieving the aligned grid,

adjoint adaptation (refinement) exploiting the error formulation devised by Reference 49 will be applied to minimize the

errors for each functional in separate processes. The resulting adapted mesh accuracy will be compared with an adjoint

refinement applied to the starting mesh (i.e., no feature-based mesh movement). It will be shown that the use of the

Hessian-based mesh movement compares favorably by providing an increased accuracy.

As turbomachinery components are considered in this work, it is also necessary to briefly review the mesh adapta-

tion literature considering these. Despite the developments of feature-based error estimation, only18 and more recently27

attempted to automatically modify grids for compressors. In the first case, the authors employed the process discussed

earlier on, i.e. move, swap, split and collapse of edges based on a Riemannian metric. On the other hand, in Reference

27, again exploiting a Riemannianmetric, part of the domain’s mesh was regenerated, except for the prismatic boundary

layer and the periodic surfaces. In both cases, other than improving flow complexities resolution, no significant benefit

was shown concerning quantities of interest. As for the feature-based methodologies, limited examples of the application
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F IGURE 1 Overall CFD

software system employed59

[Color figure can be viewed at

wileyonlinelibrary.com]

of adjoint-error estimation to turbomachinery cases are available in the literature. For example, Reference 50 considered

a 2D laminar flow through a compressor cascade, with the performance quantities of interest being total pressure loss

and entropy generation. More recently in Reference 51, an attempt was made to determine an adjoint-error sensor on

a turbine stator, but the authors did not show any consequent grid modification. Other publications successfully apply-

ing feature and adjoint mesh adaptation to turbomachinery cases are References 52,53, which also form the basis for

this work. Therefore, it may be concluded, that turbomachinery components have received very limited attention by the

mesh adaptation community and that till now, very limited success has been achieved in improving their flow solution

accuracy.

In the following sections, a brief description of themesh generation process alongwith flow and adjoint solvers will be

provided (Section 2). In subsequent parts, a more in-depth analysis of the feature- and adjoint-based adaptation schemes

employed and how they have been combined is discussed (Sections 3.1-3.3, respectively). Prior presenting the results,

an overview of the compressor and fan cases analysed is included (Section 4). Next, a detailed description of results for

each test-case along with the benefits that each separate method provides are reported (Section 5). Prior discussing the

conclusions, a brief summary of the overall findings is provided (Section 6). Finally, concluding remarks and suggestions

for future developments are provided (Section 7).

2 SOFTWARE

The system employed for this work consists of the Rolls-Royce in-house mesh generator (PADRAM54), flow/adjoint solver

(Hydra55,56) and mesh adaptation software (MeshPost57-59). The overall process is summarized in Figure 1, with a more

detailed description of each component provided in the following sections.

2.1 Mesh generation

The grids utilized for this work were all generated by means of PADRAM (PArametric Design and RApid Meshing for

complex turbomachinery configurations54). The philosophy behind the software’s development has been to produce a

library of templates to represent the typical components that compose a jet engine (e.g. nacelles, fans, compressors and

turbines). These are then meshed employing a structured multi-block data structure allowing the generation of good

quality fully hexahedral grids. It should be clear that, while the software is limited to geometrical templates included

within its source code, it does minimize the user interaction during the tedious and time-consuming grid generation

process.

2.2 Flow solver

Hydra55,56 is an unstructured second-order finite-volume flow solver, employing amedian-dual spatial discretization (thus

belonging to the vertex-centred class). Due to the latter characteristic, it can make use of edge-based data structures to
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efficiently solve the equations. As this uses the equation of state to relate density and pressure, it falls within the

density-based flow solver category. The Reynolds-Averaged-Navier-Stokes (RANS) equations are closed employing the

Spalart-Allmaras (SA) turbulence model60 as the adjoint solver has a consistent and robust discretization of it.

The Navier-Stokes (NS) discretization at node i can be formulated as Reference 56:

Ri =
1

Vi

(
Ei∑
j=1

(FIij + FVij )Δsij − SiVi

)
, (1)

where R are the residuals, FI and FV represent the inviscid and viscous flux contributions, Δsij is the control sur-

face between neighboring nodes i and j, Si represents the source terms and V is the control volume. The summation

is carried out over all the set of edges (Ei) connected to node i. The inviscid flux reconstruction at control volume

boundaries between nodes i and j is carried out by means of a modified centered scheme, that is, JST with matrix

dissipation61,62:

FIij =
1

2
{FI(Qi) + FI(Qj)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Centred formulation

−

Artificial dissipation
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∣ Aij ∣ [Φ(Qi −Qj)
⏟⏞⏞⏟⏞⏞⏟
Second-order
differences

−
1

3
(1 − Φ)(L(Qi) − L(Qj))

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Fourth-order
differences

]}, (2)

whereQ is the nodal vector of conservative variables, Aij is the Jacobianmatrix, L(.) is the discrete Laplacian operator and

Φ is the JST switch42 defined by differences of static pressure. The idea behind this approach is to provide a second-order

accurate reconstruction of fluxes through the centered scheme. Where the flow is relatively smooth (e.g., no shocks),

the dissipative part will remove all the higher than second-order terms. On the other hand, in the opposite case, the

weight of lower-order quantities is increased reducing the overall accuracy to first, thus damping oscillations. The reason

behind choosing such an approach is related to its speed,61 however, to increase its accuracy w.r.t. the basic scheme,

upwinding is included in the dissipative termby considering the reasoning of Reference 63.Higher-order reconstruction of

the dissipative fourth-order terms is provided by theMUSCL scheme (Monotonic Upwind scheme for Scalar Conservation

Laws).64,65

Solution of the discretized relations is carried out by marching in time through an explicit Runge-Kutta formulation66

preconditioned with Block-Jacobi.56

2.3 Adjoint solver

The flow adjoint equations are generally defined as:

𝜕R
𝜕Q

|T𝚿 =
𝜕f

𝜕Q
|T , (3)

where 𝜕R∕𝜕Q is the flow Jacobian, 𝚿 is the adjoint/dual vector and the right-hand-side (R.H.S.) term is the func-

tional/integral quantity (f ) sensitivity to the conservative flow variables. The dual solver present in Hydra falls into the

discrete category, as it corresponds to a consistent backward linearization of the discretised flow solver. This is achieved

by employing automatic/algorithmic differentiation (AD) of the source code in reverse, thus sensibly reducing the devel-

opment burden. The AD package employed to do so is TAPENADE,67 developed by INRIA. The pseudo-time stepping

scheme utilised in this work is the standard Runge-Kutta approach as described by Reference 68.

3 MESH ADAPTATION

3.1 Feature-based

The feature-based approach considered in this work is based on the determination of the Hessian matrix of a scalar

quantity of interest (q):
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H(q) =

⎡⎢⎢⎢⎢⎣

𝜕2q

𝜕x2
𝜕2q

𝜕xy

𝜕2q

𝜕xz
𝜕2q

𝜕yx

𝜕2q

𝜕y2
𝜕2q

𝜕yz
𝜕2q

𝜕zx

𝜕2q

𝜕zy

𝜕2q

𝜕z2

⎤⎥⎥⎥⎥⎦
.

It is often the case that some degree of smoothing is required to remove spurious oscillations from the computed

Hessian field,69-72 this issue being particularly evident close to the wall. In this work, instead of applying any artificial

smoothing, the calculation of derivatives through the use of a Least-Squares (LSQ) formulation73 was attempted. In fact,

when developing this gradient operator, rather than employing only nodes directly connected to each other, three layers

of neighbours were considered (see Figure 2). This meant that, in the case of a fully hexahedral grid, roughly 100 nodes

would be considered to compute the derivatives.

It should be noted that, in general, theHessianmatrix entries are calculated by applying gradient operators twice, once

to the scalar value and then to the first-order derivatives. However, in this case the LSQmatrices are sufficiently large to

directly compute the second-order derivatives in a single iteration:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δx1,j Δy1,j Δz1,j (Δx1,j)2 Δx1,jΔy1,j Δx1,jΔz1,j Δy1,jΔx1,j (Δy1,j)2 Δy1,jΔz1,j Δz1,jΔx1,j Δz1,jΔy1,j (Δz1,j)2

Δx2,j Δy2,j Δz2,j (Δx2,j)2 Δx2,jΔy2,j Δx2,jΔz2,j Δy2,jΔx2,j (Δy2,j)2 Δy2,jΔz2,j Δz2,jΔx2,j Δz2,jΔy2,j (Δz2,j)2

… … … … … … … … … … … …

… … … … … … … … … … … …

… … … … … … … … … … … …

Δxn,j Δyn,j Δzn,j (Δxn,j)2Δxn,jΔyn,jΔxn,jΔzn,jΔyn,jΔxn,j (Δyn,j)2Δyn,jΔzn,jΔzn,jΔxn,j Δzn,jΔyn,j (Δzn,j)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�xij

.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕q

𝜕x
𝜕q

𝜕y
𝜕q

𝜕z
1

2

𝜕2q

𝜕x2
𝜕2q

𝜕x𝜕y
𝜕2q

𝜕x𝜕z
𝜕2q

𝜕y𝜕x
1

2

𝜕2q

𝜕y2

𝜕2q

𝜕y𝜕z
𝜕2q

𝜕z𝜕x
𝜕2q

𝜕z𝜕y
1

2

𝜕2q

𝜕z2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏟⏟
⎡
⎢⎢⎢⎣

∇qj

H(q)j

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δq1,j

Δq2,j

…

…

…

Δqn,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏟⏟
�qij

An important subtlety that ought to be mentioned, is the treatment of rotational periodic boundaries, such as

those present in turbomachinery. To account for this type of condition, the Δx and Δq arrays were increased in

F IGURE 2 Two-dimensional stencil for LSQ derivative

calculation of node j [Color figure can be viewed at

wileyonlinelibrary.com]
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size, with the aim of storing the original and rotated values of these boundaries. By employing a flag to indi-

cate on which side of the periodic surface the node of interest is, it is possible to determine which parameter

to use.

As stated by Reference 74, by including a diagonal matrixW containing the inverse of Euclidean distances between

nodes, issues with high-aspect ratio cells can be diminished. Therefore, the system may be written as:

W ⋅ Δx ⋅

[
∇q

H(q)

]
= W ⋅ Δq.

This is then solved employing aQR factorisation consisting of a decomposition of theΔxmatrix into orthonormal and

upper triangular matrices.75

Once the Hessianmatrix of second derivatives has been evaluated, this is employed to determine the feature-related

error. In a FVM solution, multiplication of second-order derivatives by the characteristic edge length represents the error

present relative to the parameter employed. In other words, it can be seen as the deviation from a linear behavior of the

quantity along that edge.15 By splitting theHessianmatrix into eigenvalues (𝜆) and eigenvectors (v) it is possible to define

a Riemannianmetric (M):

M = v ∣ 𝜆 ∣ vT . (5)

It should be mentioned that to actually obtain such a metric, the matrix ought to be positive-semi-definite reason for

which the absolute values of the eigenvalues are considered. The crucial idea behind this approach is to extract error

directionality, i.e. achieve a fully anisotropic representation. In fact, while the inverse of the eigenvalues indicates how

the edge should shrink/stretch to reduce the error, the eigenvectors produce information concerning directionality of the

edge stretching/shrinking (Figure 3).

The Riemannianmetric represents the error relative to a certain flow parameter, therefore by equidistributing it evenly

over grid edges allows to achieve the optimal grid.76 Considering the edge length inCartesian space as d, this requirement

corresponds to Reference 6:

dTMd = 1 (6)

thence, to achieve the optimal mesh, each edge ought to have unit length in Riemannian space. This means the error

is identical in all directions. However, where this is not the case, a new edge length can be determined by:

d∗ =
√
dMd (7)

and is consequently equidistributed over the mesh. In this work, even distribution of the error is achieved by a linear

spring-stiffness approach.15 This considers each grid edge (between nodes i, j) as a spring with stiffness set to:

𝜅ij =
d∗
ij

||xi − xj|| . (8)

F IGURE 3 Two-dimensional Riemannianmetric in physical space

[Color figure can be viewed at wileyonlinelibrary.com]
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Therefore, the larger the error, the greater the spring stiffness. To achieve error equidistribution, the potential energy

of the system of springs is minimised. For a generic node i, this corresponds to moving to a new position determined by:

xi =

∑Ei

j=1
(𝜅ijxj)

∑Ei

j=1
𝜅ij

, (9)

where the summation is carried out over all the edges connected to node i. This process would not allow a smooth

relocation of the grid’s nodes, possibly generating negative volumes. Therefore, movement is carried out in a series of

increments:

Δxi = xnewi − xoldi =

∑Ei

j=1
𝜅ij(x

old
j

− xold
i
)

∑Ei

j=1
𝜅ij

(10)

the new grid coordinate can then be determined as:

xnewi = xoldi + 𝜔Δxi, (11)

where 𝜔 is a relaxation factor 𝜔 = [0, 1].

3.2 Adjoint-based

The adjoint adaptation technique employed is that developed by Reference 49 given it has repeatedly shown to be a

reliable process.35,77 It is based on a linear and quadratic interpolation (𝜐 andΥ operators, respectively) of flow and adjoint

quantities from a coarse mesh (spacing h), to an embeddedmesh (spacingH), where the sensor calculation is carried out.

It should be noted that neither the fine grid flow nor adjoint converged solutions are used in the interest of minimising

time consumption. Once these quantities have been determined, the error sensor (Err) may be computed as:

Err =
1

2

∑
j

{|[R(𝜐𝚿H)h]
T
j [ΥQH − 𝜐QH]j

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A

| + |[Υ𝚿H − 𝜐𝚿H]
T
j [R(𝜐QH)h]j

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
B

|}, (12)

where terms A and B are different formulations of the error introduced subject to using an interpolated adjoint solution.

The idea behind considering both terms, relates to the so-called duality-gap, i.e. the non-linearities present in the flow

solution that are filtered out by the adjoint solver. A final note regarding this relation, concerns the use of linear and

quadratic prolongation operators: this is necessary to mimic the difference between a high- and a low-order solution on

the embedded mesh.

At this point, a description of linear and quadratic interpolation functionality from coarse to fine grids is required. In

both cases, for embedded mesh nodes also present on the coarse counterpart, the values were simply copied. Concerning

the linear operator, the remainder of the parameters was obtained by a simple averaging process, resulting in a perfectly

monotone solution. Hence, for nodes splitting a coarse mesh edge, flow variables would be determined by averaging those

points forming the original edge. On the other hand, the quadratic operator is more embroiled, requiring the determi-

nation of gradients. To achieve a smoother derivative representation, a similar approach as discussed in Section 3.1 was

employed: three layers of neighbouring nodes formed the stencil in the LSQ matrices. Once the required gradients had

been established, an Hermitian polynomial was used to evaluate the interpolated quantities (see Figure 4).

An important subtlety that ought to be mentioned relates to themonotonicity of flow and adjoint fields resulting from

the quadratic interpolation. In fact, oscillatory behavior can occur in the approximated quantities. This is particularly

true for nodes in the vicinity of cells exhibiting large size jumps or strong geometrical curvature. However, as discussed

by Reference 35, the main issue is related to negative turbulent viscosity appearing. In this work, any unphysical quantity

was removed by including appropriate checks reverting the interpolation to linear if necessary.

Once the error sensor has been evaluated, it is restricted to the coarse mesh by means of a control-volume weighted

interpolation similar to that employed in certain multigrid schemes.56 After the error has been interpolated back to the

starting grid, cell-based refinement is carried out, i.e. if the average error of the nodes forming that volume is higher
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F IGURE 4 Hermitian interpolation along an edge59

[Color figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F IGURE 5 Refinement strategy [Color figure can be viewed at wileyonlinelibrary.com]

than the user-defined threshold, then all edges are split. For a generic mesh comprising of standard elements (tetrahedra,

pyramids, prisms and hexahedra), the templates shown in Figure 5A are used to refine a marked cell.

The flow solver is only able to handle conformal grids, therefore an important clarification should bemade concerning

cells neighbouring those marked to be split. In this case, the refinement algorithmwill follow a different approach: it will

first split each element into its faces and determine whether any extra edges ought to be marked to match the templates

displayed in Figure 5B. Once this has been carried out, each cell’s faces are reassembled so the refinement can take place.

In the eventuality that facemarking combinations do notmatch any of the cell splitting templates, extra edges are refined.

An important subtlety thatmust bementioned concerns the near-wall refinement. In fact, the code employed in this work

allows to propagate the wall refinement by a user-defined number of layers in the normal direction to the geometrical

surface. This means that if an edge tangential to the surface is marked for splitting, the usermay select to propagate this to

the neighbouring layers (see Figure 6). This capability is helpful in maintaining a good quality grid for turbulence model

purposes. After repeated tests carried out during this research, it was found that 10 layers of propagation allow the best

robustness.

3.3 Overall process

Themain novelty of this procedure consists in the sequential use of feature and adjoint-basedmesh adaptation approaches

to improve a grid solution. Repeated feature-basedmeshmovement is exploited at the start tomaximize the grid alignment
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F IGURE 6 Two-dimensional example of wall-normal

refinement59 [Color figure can be viewed at wileyonlinelibrary.com]

with the complex flow features. This technique is relatively inexpensive as the node count and connectivity remains

constant. Moreover, the flow solution from the current grid can be used as the initial one for the following adapted mesh.

The reason for starting with the approach described in Section 3.1 relates to the consequent improvement of adjoint

error estimates, as focal regions of the mesh will be better resolved. In fact, it is generally the case that part of the flow

complexities affect the performance quantity of interest.

The second part of the process consists of a single adjoint-based mesh refinement, carried out in a cell-based manner.

A block diagram of the overall process is reported in Figure 7: it can easily be seen that the process is composed by

two separate techniques run in sequence.

4 TEST-CASES

4.1 NASA Rotor 37 compressor blade78,79

In order to show the grid modification process validity, once the starting coarse mesh had been generated, an accurate

comparison for this was achieved by uniformly refining it twice. Given the ∼ 0.6M node count of the starting mesh, this

means a 36.5M grid was created. In the following sections, after a brief summary of the case setup, the finer case result

at operating point (mass flow of 20.51 kg/s) is compared with experimental data to check its validity, and then used as a

means to describe the physical characteristics of the blade.

The computational domain is displayed in Figure 8 (location of static and moving parts and their velocity follow the

specifications of Reference 80). To achieve the full annulus, periodic repeats of each single blade may be computed as a

post-processing step.

The inlet boundary condition consisted of a subsonic inflow, set according to the data provided by Reference 78. On

the other hand, subsonic radial equilibrium was imposed at the outflow.

The 36.5M solution at mid-span is reported in Figure 9. The main feature consists of the shock forming due to the

blade’s blunt leading-edge (LE), accurately captured by means of the structured mesh. This then propagates both, in the

rotational and counter-rotational directions. In the rotational direction, it hits the adjacent element’s suction side, with

separation occurring due to the adverse pressure gradient. This results in the formation of a large wake, that is then

convected downstream. Counter-rotationally, instead, shock propagation is smeared out till it hits the computational

domain inlet.

The experimental absolute total temperature ratio radial profile (evaluated between inlet/outlet and circumferentially

mass-averaged) at operating point (98% choke, corresponding to 20.51 kg/s) is compared with the fine mesh solution in

Figure 10A. This shows how the CFD parameter trend follows generally quite well the experimental data. There are,

however, some exceptions. In the lower span region (≤10%) the CFD data overpredicts the temperature ratio trend. This

behavior has been noted before, and according to Reference 81, it is due to hub leakage flow upstream of the blade not
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F IGURE 7 Combined feature-based mesh

movement and adjoint-based refinement

schematic59 [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 8 NASA Rotor 37

computational domain [Color figure can be

viewed at wileyonlinelibrary.com]

being included in the computational modelling. Another region where experimental/CFD data discrepancy is frequently

encountered is the tip. This was attributed by Reference 82 to the employment of RANS equations, unable to handle

unsteadiness forming due to the tip-leakage-shock interaction.

An additional comparison between experimental and CFD data is provided in Figure 10B. This shows the

chord-wise relative Mach number profile along the mid-pitch line at 70% span. As it can clearly be seen, the

numerical simulation is in good agreement with the experiment. The location of flow complexities is appropri-

ately captured by Hydra. Slight over- and undershoots are visible where stronger changes in the flow conditions

appear.
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F IGURE 9 36.5M mesh 50% span-wise cut displaying the relativeMach number variation at operating point [Color figure can be

viewed at wileyonlinelibrary.com]

F IGURE 10 NASA Rotor 37 case CFD (36.5M) and experimental data80 comparison [Color figure can be viewed at

wileyonlinelibrary.com]

From the data presented in this section, significant agreement between the experimental data and that produced by

the flow solver has been shown. It can therefore be concluded that the 36.5M grid is an appropriate benchmark to use for

comparison relative to the proposed adaptation algorithm.

4.2 Fan blade

The other test-case considered in this work concerned a typical fan blade with splitter, present in modern jet

engines. The Reynolds number for this particular simulation, estimated employing mid-span quantities, was equal to

2.2× 105.

In this case, the starting structuredmulti-blockmesh had 0.8Mnodes: the resulting comparison solutionwas achieved

on a grid generated by repeated uniform refinement of the initial one (final node count of 50M). Similarly to the pre-

viously discussed compressor, this will be employed to describe the flow characteristics of this rotor. The test-case CFD
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F IGURE 11 Computational setup of fan

blade with splitter (not to scale) [Color figure

can be viewed at wileyonlinelibrary.com]

F IGURE 12 Fan blade relativeMach number

distribution on the 49.6M grid [Color figure can be

viewed at wileyonlinelibrary.com]

setup is shown in Figure 11. It is clearly visible, that the casing, splitter, and downstream part of the hub are static,

while blade and upstream part of the hub are rotating. The flow exiting the domain above the splitter enters the bypass

region, while the one below is directed towards the engine core. Concerning the boundary conditions, the inlet was

set to subsonic, while both exits had the same setup as the compressor of the previous section, namely, subsonic radial

equilibrium.

Choke flow conditions at the bypass were considered for this case, with a strong shock forming on the suction side

abovemid-radius causing a degree of separation (Figure 12A).Moving towards the casing, this feature’s strength increases,

propagating across the passage hitting the neighbouring blade’s pressure side. This results in separation and a wake

forming that widens around 75% span (Figure 12B).
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5 RESULTS

5.1 NASA Rotor 37

Following the detailed discussion in Section 4.1, the integral quantities of interest chosenwere adiabatic efficiency (η) and

absolute total pressure (Pr), both evaluated between inlet-outlet planes and circumferentially mass-averaged. In addition,

two area-averaged parameters were considered: themass-flow (ṁ) integrated over the exit plane and torque (τ), computed

over the blade surface. Their estimates on the coarse mesh (0.6M) and the finer counterpart (36.5M) are reported in

Table 1.

The differences between efficiency,mass-flowand torque values are clearly noticeable,whilePr has a relatively smaller

inaccuracy, due to its reduced magnitude.

5.1.1 Feature-based step

Given the starting mesh, the grid movement adaptation procedure was repeated until the average edgewise error con-

verged. Comparisons between the starting and adapted grids are reported in Figures 13 and 14. The first set of images

Grid Node count 𝛈 (%) ṁ (kg/s) Pr 𝛕 (N ⋅m)

Coarse 590294 85.116 20.374 2.0573 −879.428

Fine 36526821 85.523 20.509 2.0699 −889.628

TABLE 1 Performance quantities

estimate on coarse and fine mesh for NASA

Rotor 37

F IGURE 13 Starting (LHS column) and feature-based mesh moved (RHS column) grid, solution and || 𝜕2M∕𝜕x2|| at mid-span [Color
figure can be viewed at wileyonlinelibrary.com]
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F IGURE 14 Starting (LHS column) and feature-based adapted (RHS column) grid and solution along the periodic boundary [Color

figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Performance

quantities evolution after

feature-based mesh adaptation

NASA Rotor 37

Grid Node count 𝛈 [%] ṁ [kg/s] Pr 𝛕 [N ⋅m]

Coarse 590294 85.116 20.374 2.0573 −879.428

Feature adapted 590294 85.277 20.437 2.0627 −883.649

Fine 36526821 85.523 20.509 2.0699 −889.649

shows how, at mid-span, the mesh movement has appropriately clustered and aligned the grid towards flow complexities

(Figures 13A,B). Themost aggressive nodal relocation has occurred around the strongest parts of the shock. This resulted

in a very neat resolution of it (Figure 13D). It should be noted, that the shock/boundary layer interaction on the blade suc-

tion side is much better estimated, with the lambda shape being clearly visible. The wake has also attracted a significant

amount of attention by the mesh adaptation software.

The firstHessianmatrix eigenvalue
(
𝜕2M∕𝜕x2

)
of the starting and adapted grids is reproduced in Figures 13E,F, respec-

tively. Similarly to the actual flow solution, this shows how the second-order derivatives are better estimated. The shock

has clearly thinned, particularly along the passage. Subtle differences are also visible at the wake.

Concerning the radial evolution of the mesh, the periodic boundaries of the starting and final feature adapted grids

are shown in Figure 14. The passage shock resolution (Figure 14D) is much better. As shown in Figure 14B, there is a

significant clustering of nodes towards the casing downstream of the shock, where the tip-gap vortex crosses the periodic

surface.

With regards to the evolution of performance quantities, these are reported, alongwith startingmesh and target values,

in Table 2. All parameters have clearly improved, moving towards the accurate 36.5M mesh. This is helpful in preparing

the mesh for adjoint adaptation. In fact, all these quantities have been enhanced simultaneously employing a single

process that has not added any nodes.

5.1.2 Adjoint-based step

As discussed in the previous section, the use of feature-based adaptation has helped align grid edges with the salient flow

features. This has produced an improvement in the estimate of all quantities of interest. Figure 15 shows the resulting

grids atmid-span after the feature-basedmeshmovement and the relative adjoint-error refinement for adiabatic efficiency

and torque. There are visible differences and limited similarities in the adaptation. In fact, the torque-based refinement
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F IGURE 15 NASA Rotor 37 feature and adjoint adapted grids (LHS column) and relativeMach number (RHS column) at mid-span for

various performance quantities [Color figure can be viewed at wileyonlinelibrary.com]

has targeted the near-blade surface on both, suction and pressure side. The remainder of the flow field has received very

little attention, with the nodal addition propagating further off the blade surface only at the LE and shock-boundary layer

interaction. On the other hand, for efficiency, the refinement extends from the suction-side into the passage, starting at

the rotor’s LE till just downstream of the shock. Clearly, improving the resolution of its interaction with the boundary

layer and its propagation into the flow-field is crucial to the correct estimation of η. This is visible in their respective

relativeMach number fields. Additionally, the blade pressure-side has not been targeted for adaptation in the efficiency

case. As previously hinted to, in both cases the blade LE has been refined: this to better the stagnation point prediction.

A separate discussion should be made concerning the two refinement patches that appear in the upstream region.

These relate to the functional error consisting of both flow and adjoint solutions along with relative residuals. In fact,

they are due to the intersection of the adjoint “reversed wake” propagating from the blade suction-side to the inlet and

the shock spreading off the blade LE in the upstream direction. To prove this point, the η adjoint field at mid-span has

been included in Figure 16. As it may be seen, there is a streak of high sensitivity starting on the blade suction side at the

trailing edge (TE). This then propagates towards the inlet, traversing the entire rotor. Effectively, it is indicating that any

perturbation in this region of the flow will have a larger impact on the adiabatic efficiency than the regions surrounding

it. From a mathematical point of view, this is due to the adjoint operator reversing the direction of first-order convection

derivates in the NS relations. In simple terms, the adjoint solution is linearly predicting that the flow in this part of the

domain will end-up onto the blade’s suction-side, where most of the physical complexities take place. Therefore, any

inaccuracy in capturing it will result in a higher error where the most significant flow features appear, meaning that the

functional of interest will not be reliably predicted. In the case of torque, the upstream region was not refined, as the

functional had much higher sensitivity to the near-wall portion of the mesh.

Interestingly, neither of the performance quantities required further wake improvement by means of refinement,

indicating that the mesh movement has sufficiently clustered the mesh lines in this region.

The exact node count for all the grids is reported in Table 3. The adjoint refinement was carried out by adding approx-

imately half the starting mesh number of nodes. This with the aim of better controlling the mesh size and to allow a fairer

comparison between the cases.

Finally, the most important part of the study, i.e. the performance quantity prediction. Table 4 displays these values

for the starting and target estimate, along with feature and adjoint-adapted grids and adjoint-only refined meshes. Addi-

tionally, Table 5 is provided, as it gives a better idea of the reduction in error provided by the feature and adjoint combined



VIVARELLI et al. 17

F IGURE 16 NASA Rotor 37 adiabatic efficiency adjoint

momentum terms at mid-span after the feature-based adaptation

[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Resulting adapted grids

node count for NASA Rotor 37
Grid Mesh size

Coarse 590294

Feature adapted 590294

Fine 36526821

Grid η ṁ Pr τ

Adjoint adapted 969397 935962 936361 1054964

Feature and adjoint adapted 927871 935663 942632 924712

TABLE 4 Performance quantities

comparison after feature-, adjoint-, and

feature and adjoint-based adaptation for

NASA Rotor 37

Grid 𝛈 [%] ṁ [kg/s] Pr 𝛕 [N ⋅m]

Coarse 85.116 20.374 2.0573 −879.428

Feature adapted 85.277 20.437 2.0627 −883.649

Adjoint adapted 85.739 20.552 2.0772 −892.739

Feature and adjoint adapted 85.560 20.522 2.0728 −887.486

Fine 85.523 20.509 2.0699 −889.649

TABLE 5 Absolute

difference of performance

quantities between target and

coarser grids for NASA Rotor 37

Grid |�𝛈| [%] ∣ �ṁ ∣ [kg/s] |�Pr| |�𝛕| [N ⋅m]

Coarse 0.407 0.135 0.0126 10.221

Feature adapted 0.246 0.072 0.0072 6.000

Adjoint adapted 0.216 0.043 0.0073 3.090

Feature and adjoint adapted 0.037 0.013 0.0029 2.163

approach. In fact, in all cases, this strategy is the most effective in minimising inaccuracies. The use of adjoint adapta-

tion on its own has provided a benefit, but this seemed to be closer to the feature-based performance than the combined

procedure. In the case of pressure ratio, the error is greater than using feature-based mesh movement alone. For effi-

ciency, it is of the same order of magnitude, while for mass flow it sits roughly halfway between the other two adaptation

approaches. Only in the case of torque is the adjoint-only process closer to the combined technique. This is due to the

higher sensitivity of the error to the blade near-wall mesh.

5.2 Fan blade

The performance quantities of interest considered for the test-case described in Section 4.2 were the mass-averaged

adiabatic efficiency evaluated between inlet and bypass outlet (ηBP) and engine outflow (ηEN) and the area-integrated

torque (τ) over the blade surface. The actual difference between the 50M and starting 0.8M grid estimates are reported in

Table 6.
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Functional 50M - Starting 0.8M

|ΔηBP| [%] 0.59

|ΔηEN | [%] 0.58

|Δτ| [N ⋅m] 93.41

TABLE 6 Absolute difference between target and coarse mesh performance

quantities before adaptation

5.2.1 Feature-based step

The resulting grids achieved by applying the mesh movement are reported in Figures 17 and 18. In the first, at 75% span,

the shock clustering is clearly visible, along with that towards the fan surface on both pressure and suction side. As for the

compressor case, significant movement has occurred towards the wake, with the original mesh lines closer to the outlet

changing direction by roughly 45◦ w.r.t. the original grid (Figures 17A,B). These mesh modifications have significantly

improved the shock propagation from the blade surface into the passage and the wake thickness has slightly changed

(Figures 17C,D). More interestingly, though, the xx—component of the Hessian matrix (Figures 17E,F) is showing how

the original shock is poorly resolved. In fact, not only does it smear out very close to the blade suction side surface,

but it seems to be composed of two separate structures. Once the feature-based node movement has been applied, the

complexity extends further into the flow field and the two lines merge into a single one. Figure 17F also shows that, by

applying the vertex movement, the wake high-derivatives extend further, reaching the outflow.

Looking at the periodic boundary profile in Figure 18, the strongest change is the dense line from hub to tip improving

the shock resolution. Despite this being strongest in the upper half of the span, where it also forms, node clustering

F IGURE 17 Starting (LHS column) and feature-based adapted (RHS column) grid, solution and error comparison at 75% span [Color

figure can be viewed at wileyonlinelibrary.com]
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F IGURE 18 Starting (LHS column) and feature-based adapted (RHS column) grid and solution comparison along the periodic

boundaries [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 7 Absolute difference between target and coarse mesh performance

quantities after feature-based adaptation
Functional 50M - Feature adapted 0.8M

|ΔηBP| [%] 0.43

|ΔηEN | [%] 0.28

|Δτ| [N ⋅m] 30.09

towards it occurs at lower span locations as well. The tip-region downstream of the shock has also attracted a considerable

amount of clustering: this is for the tip-gap flow interacting with the local flow features and propagating downstream.

Finally, nodes have also been pushed towards the splitter, although this has not visibly changed the flow field around it.

As in the case of NASA Rotor 37, the performance quantities of interest have improved, with the difference between

target and current estimate reduced w.r.t. that of the starting grid (see Table 7). Concerning torque, the nodal clustering

towards the blade surface has clearly had the effect of significantly reducing the error, that is now over three times smaller.

The error in adiabatic efficiency evaluated over the engine outflowhas beenhalved,while that of the ηBP has seen a smaller

improvement. This is due to the more complex flow field present at higher span, with the shock being much stronger in

this region.

5.2.2 Adjoint-based step

Following the feature-adaptation, the grid was separately refined for the efficiency values and torque. The resulting grids

showed a degree of similarity, with the near-casing and the blade wall being targeted by the adaptation algorithm. How-

ever, differences were also visible, and to this end, Figure 19 has been included. This shows the near-wall refinement at

75% span, for the adiabatic efficiency integrated over the bypass (Figure 19A) and engine outflow (Figure 19B). It may be

seen that a larger amount of nodes has been added when the ηBP-based refinement is applied. Moreover, the ηEN adapta-

tion was the only one to target the hub and increase the near-wall refinement at lower radius locations. This can be easily

explained by considering the surface of integration of the two quantities: while the engine outlet is radially located in the
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(A) (B)

F IGURE 19 Adjoint

refinement examples for the fan

case [Color figure can be viewed

at wileyonlinelibrary.com]

lower third, the bypass exit covers the rest of the blade height. Interestingly, none of the quantities highlighted the flow

features as being sources of high error, indicating that the feature-based approach has aided in reducing their inaccuracy

contribution.

Unlike the compressor case, no refinement was present upstream of the blade (see Figure 15). While the adjoint

“reversed wake” of high sensitivity propagating from the blade suction-side was visible in the relative solution, no flow

feature was crossing it upstream of the LE, meaning that the error contribution would be much smaller.

The resulting mesh size for each functional is reported in Table 8. This includes the separate adjoint-refinement pro-

cess not utilising the feature-based mesh movement. Approximately half of the starting mesh nodes were added as in the

compressor case, to control the mesh size and allow a fairer comparison.

The errors relative to the fine mesh solution are shown in Table 9. It is obvious that the combination of fea-

ture and adjoint processes has generated non-negligible benefits. In fact, the use of feature-based methods on their

own has given a reduction in error that is comparable to the standard adjoint refinement process. In the case of

torque, the former has produced a much more significant error reduction, while for the efficiency integrated over

the bypass the difference is only 0.03%. This is a clear indication that these quantities are significantly influenced

by flow features and appropriate capturing of them is necessary to estimate them correctly. Multiple adjoint refine-

ment steps would have been necessary to target the shock and wake, but this would have resulted in a much

finer mesh.

Grid Mesh size

Coarse 805121

Feature adapted 805121

Fine 49677951

Grid ηBP ηEN τ

Adjoint adapted 1274727 1272352 1275148

Feature and adjoint adapted 1265887 1290487 1290049

TABLE 8 Resulting adapted grids node count for

the fan blade case

Grid |�𝛈BP| [%] |�𝛈EN | [%] |�𝛕| [N ⋅m]

Coarse 0.59 0.58 93.41

Feature adapted 0.43 0.28 30.09

Adjoint adapted 0.40 0.12 78.21

Feature and adjoint adapted 0.24 0.06 19.95

TABLE 9 Absolute difference of

performance quantities between target and

coarser grids for the fan blade case
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(A) (B)

F IGURE 20 Error % relative to starting mesh error [Color figure can be viewed at wileyonlinelibrary.com]

6 OVERALL PERFORMANCE COMPARISON

To summarize and clearly compare the performance of the combined approach with that consisting of adjoint refinement

only, Figure 20 has been included. The error percentage is calculated w.r.t. that of the starting mesh (equal to 100%),

while the abscissa values indicate the mesh degrees of freedom. The dotted lines represent the sequential feature and

adjoint adaptation approach, while the continuous counterpart are the adjoint refinement results. A note should bemade

concerning the feature-based mesh movement: as this does not increase the number of grid nodes, the error reduction is

a vertical straight line.

As previously discussed, all quantities are significantly improved by applying the proposed adaptation methodology

w.r.t. the refinement only technique. For the case of NASA Rotor 37 (Figure 20A) there is an average error improvement

with the combined approach of 84%,while using only adjoint refinement resulted on average in an accuracy enhancement

of 56%. That is, for NASA Rotor 37 the former technique on average provides a further 28% error reduction on meshes

with approximately the same node count.

Concerning the fan case (Figure 20B), the average improvement of the sequential feature and adjoint approach is

again 85%, while the adjoint refinement on its own, on average provides an improvement of 53%, slightly less than in the

compressor setup.

7 CONCLUSIONS AND FUTURE WORK

This work has shown how feature-based methods can be successfully integrated into a combined adjoint-adaptation pro-

cess in a sequential manner. This allows to simultaneously improve multiple quantities of interest, while maintaining the

number of nodes constant. Moreover, the flow solution from the previous mesh may be employed as a starting one for

the next adapted grid.

Consequent adjoint-based refinement showed further improvement of the quantities of interest on a very coarsemesh

w.r.t. the grid-independent solution. In all cases considered and for all performance quantities, the combined approach

provided the largest reduction in error, yet with approximately the same node count.

The methodology presented in this work was successfully applied to relatively complex industrial cases presenting

multiple 3D features interacting with each other. This represents an advancement to the standard 2D and 3D test-cases

proposed within published literature.

Future developments of the approach consist of the inclusion of feature-based edge split and collapse applied during

themeshmovement, to see whether this can further help reduce the performance quantities error with a limited increase

in number of degrees of freedom. Moreover, it would be of helpful to apply adjoint-based coarsening, with the aim of

reducing the computational demands in terms of hardware and run-time.



22 VIVARELLI et al.

Finally, itwould be interesting to test the sequential feature and adjoint-based technique in an adjoint geometrical opti-

misation framework to be able to ascertain what kind of improvements, in terms of performance and time consumption,

it is able to provide w.r.t. the adjoint refinement only.
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