
This is a repository copy of Semantics-aware obfuscation scheme prediction for binary.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/166686/

Version: Accepted Version

Article:

Zhao, Y, Tang, Z, Ye, G et al. (4 more authors) (2020) Semantics-aware obfuscation 
scheme prediction for binary. Computers & Security, 99. 102072. p. 102072. ISSN 0167-
4048 

https://doi.org/10.1016/j.cose.2020.102072

© 2020, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Semantics-aware Obfuscation Scheme Prediction

for Binary

Yujie Zhao1, Zhanyong Tang1, Guixin Ye1, Dongxu Peng1, Dingyi Fang1, Xiaojiang Chen1, Zheng Wang2

Abstract—By restoring the program into an easier understand-
able form, deobfuscation is an important technique for detecting
and analyzing malicious software. To enable deobfuscation, one
must know if the target program is obfuscated and what types
of obfuscation schemes may be used. However, obtaining such
information is challenging without having access to the original
program source code.

This paper presents a new way to estimate the obfuscation
scheme of a compiled binary. It achieves this by using semantic
information of the disassembled binary to predict if the program
has been obfuscated and if so, what type of obfuscation scheme
may be used. At the core of our approach is a set of deep
neural networks that can effectively characterize and leverage
the contextual information available in the assembly code. Our
models are first trained offline, and the learned models can then
be applied to new previously unseen obfuscated binaries. We
evaluate our approach by applying it to a large dataset of over
277,000 obfuscated samples with different individual obfuscation
schemes and their combinations. Experimental results show that
our approach is highly effective in identifying the obfuscation
scheme, with a prediction accuracy of at least 83% (up to 98%).

Index Terms—deobfuscation, reverse engineering, deep neural
networks, disassembled binary analysis, semantic expression.

I. INTRODUCTION

Code obfuscation has flourished in illegal areas, such as

virus [42], repackaging [19], code cloning [45], [36], and

privacy theft [15], etc. It changes the behavior characteristics

of the program through code transformation to avoid detection

by virus scanners or hinder reverse engineering by security

analysts. Numerous studies have shown that the current state-

of-the-art malicious code detection cannot cross the gap of

code obfuscation [65], [36]. Therefore, deobfuscation issue

has aroused widespread concern in academia, intending to

recover the original code as much as possible by identifying

and removing obfuscation codes [61].

Currently, most of the deobfuscation techniques focus on the

topic, like how to automate the process of trying to simplify

obfuscated code to restore the original code. All of them have a

strong assumption that the obfuscation algorithm is known, so

they can only work on a specific kind of obfuscation [6], [41],

[52], [59], [44], [16]. For example, layout deobfuscation [6],

opaque predicate deobfuscation [41], control flow flatten deob-

fuscation [52] and virtualization deobfuscation [59], [44], [16].

While important and useful, such approaches are of limited

utility against obfuscations that are different from the specific

ones they target.
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In reality, we usually face with completely unknown mal-

ware in the form of executable code. This raises two closely

related questions. The first question, from a deobfuscation

perspective, is: Whether the target program is obfuscated?

For example, if the existing deobfuscation techniques are

applied to analyze the target program that does not contain

obfuscated code, then they are not only useless but are worse

than useless. Because it breaks the internal logic of the original

program, causing the analyst to spend a lot of time and

energy doing useless work. The second question, from a

reverse engineering perspective, is: What kinds of obfuscation

algorithm are employed on the target program? It is worth

mentioning that new obfuscation algorithms [12], [29], [54],

[13], [41], [56] and tools [48], [46], [50], [49], [25], [14] have

emerged in an endless stream in recent years. Obviously, it is

very ambitious for security analysts to understand the charac-

teristics of each code obfuscation and quickly analyze which

obfuscation algorithms the target program adopts. However,

if the obfuscation algorithm employ on the target program is

identified through automated means, it will greatly reduce the

difficulty of reverse analysis and the requirements for security

analysts. Thus, regarding techniques for identifying obfuscated

code and what kinds of obfuscation employed can lead to

better deobfuscation schemes and concomitant improvements

in reverse engineering.

Compared with the automated process of simplifying the

obfuscated code to restore the original code, addressing the

raised two questions usually requires much more time and

effort. That is because it requires a wealth of knowledge and

experience from security experts, including not only all kinds

of code obfuscation, but also reverse analysis. But even for

experts, it is a subjective, tedious, and sometimes error-prone

task due to the complexity of the problem. Moreover, different

experts have different levels of technology and experience,

which means that the quality of the selected obfuscation

features and the effectiveness of the resulting detection system

varies with the person who defines them. In particular, it

should be emphasized that multiple obfuscation schemes are

usually a combination of several types of obfuscation, which

have higher requirements for experts. Therefore, it is essential

to liberate experts from the tedious obfuscation identification

work through technical means to improve efficiency and

accuracy of obfuscation scheme prediction.

In this paper, we propose a scheme based on deep neural

networks of obfuscation prediction for binary, which builds a

classification model using the contextual semantic information

of the disassembled binary in the whole document. The

inspiration for this approach comes from the classification



problem in NLP. Unlike past approaches, we take advan-

tage of neural network models to improve the accuracy and

efficiency of obfuscation detection. Further, when selecting

feature representation for neural network models, we exploit

the context semantic features of the disassembled binary.

That’s because code obfuscation [13], [53] is essentially a

technique that transforms a program P into another program

P’ through a specific code transformation method, while P

and P’ maintaining at least semantic equivalence in observable

behavior.

There are some challenges in our work. First of all, what

kind of features of the target program are suitable for applying

deep neural networks to obfuscation detection? Taking into

account three characteristics of obfuscated programs, such

as custom identifiers, strong structure, and long dependency,

we adopt the contextual semantic representation of the entire

target program to capture as many obfuscated features as pos-

sible. Specifically, the approach models contextual semantics

of the disassembled binary in three steps. In the first step, it

takes instructions as words and uses word2vec in terms of

skip-gram to produce the instruction representations. Then,

it treats basic blocks as sentences and uses convolutional

neural networks(CNN) to generate basic block representations

from instruction representations. Afterward, long short term

memory networks(LSTM) is employed to adaptively encode

the semantics of basic blocks and their inherent relations

in target program representations. These representations are

naturally used as features to classify the code obfuscation label

of each target program.

Secondly, out-of-vocabulary(OOV) [62], [5] is a well-known

problem in NLP. The OOV word means that it has never

appeared during training. Inevitably, code obfuscation can

introduce a lot of OOV words. For example, EncodeLiter-

als [12] is one of the obfuscation transformations, which

replaces function names or variable names in the original

code with meaningless strings to increase the difficulty of

reverse analysis. How to effectively avoid the OOV issue

while ensuring the accuracy of this kind of obfuscation scheme

detection is another challenge. We deal with the OOV problem

in a pre-processing manner.

Finally, there is a lack of datasets for training and testing

our obfuscation detection model. High-quality labeled datasets

are more conducive to the knowledge of deep neural networks.

However, in the field of code analysis, publicly labeled datasets

for binary are scarce, let alone datasets with obfuscation labels,

since it needs lots of expert experience. Therefore, how to

obtain high-quality code obfuscation labeled data is one of

the significant challenges and the basis of all our work. We

spend three months using the OLLVM [25] and Tigress [14]

to construct datasets of obfuscated codes. The datasets include

eight types of single obfuscation and six types of multiple

obfuscations, with 277,131 labeled data in total.

We develop a tool of semantic-aware obfuscation scheme

prediction for binaries with the name of OBFEYE and evaluate

its accuracy and efficiency. The experimental results show

that the average accuracy of single obfuscation detection is

89.40%, and the average accuracy of multiple obfuscations is

82.79% when implementing testing cases on our own dataset.

When taking the Obfuscation Benchmarks from TUM [51]

as a testing dataset, the accuracy of a single obfuscation is

91.81%, and the accuracy of multiple obfuscations is as high

as 97.84%. In a word, OBFEYE is a highly accurate code

obfuscation detection tool with a modest cost, especially for

multiple obfuscations and single obfuscation algorithms like

control flow flatten, add opaque predicates, virtualization.

Contributions: This paper makes the following contribu-

tions:

• Inspired by NLP, We initiate the study of using deep

neural networks for obfuscation scheme prediction on

binary. We treat instructions as words, basic blocks as

sentences, and target programs as documents, and build a

deep neural network model based on contextual semantic

information of the disassembled binary for obfuscation

detection. This research successfully demonstrates that it

is promising to approach binary analysis from the angle

of language processing by adapting methodologies, ideas,

and techniques in NLP.

• We build a high-quality labeled dataset with specific

obfuscated information. There are 277,131 labeled data

in total in the dataset, including eight kinds of single

obfuscation and six kinds of multiple obfuscations. It

may be valuable to other experts in the field of code

obfuscation.

• We implement a prototype of OBFEYE and evaluate its

accuracy and efficiency. The experimental results show

that it is a highly accurate code obfuscation detection tool

with a modest cost, especially for multiple obfuscations

and most single obfuscation.

II. BACKGROUND

In this section, we first summarize the characteristics of

code obfuscation in Section II-A. Next, we describe the

application of deep learning in the field of code analysis in

Section II-B. Finally, we propose three guidelines for the code

obfuscation detection model. According to the guidelines, a

semantic-aware obfuscation detection model is presented in

Section II-C.

A. Code Obfuscation

Obfuscation is a technique that transforms the original code

into obscure code while preserving the functionality of the

program such that it is harder to analyze and tamper with.

Collberg et al. [12] proposed a general taxonomy of obfuscat-

ing transformations. According to effectiveness and efficiency,

obfuscating transformations are classified with four categories,

including layout obfuscation, data obfuscation, control obfus-

cation, and preventive obfuscation. So far, the research on

code obfuscation algorithms has been very mature, and various

algorithms have emerged endlessly [12], [29], [54], [13], [41],

[56]. Table I shows eight typical code obfuscation algorithms,

most of the existing algorithms are derived from them.

Through in-depth research on these obfuscation algorithms,

we summarize the following characteristics of the obfuscated

codes.
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TABLE I
OBFUSCATION TRANSFORMS. OLLVM AND TIGRESS ARE TWO OPEN SOURCE OBFUSCATION TOOLS. THE SECOND COLUMN LISTS EIGHT TYPICAL

CODE OBFUSCATION TRANSFORMS.

Tool Transform Description

Instructions Substitution(sub) Replace binary operators like addition, subtraction or boolean operators.

Bogus Control Flow(bcf) Add opaque predicates making a conditional jump to original basic block.OLLVM [25]

Control Flow Flattening(fla-o) Break down the program’s control flow [29].

Flatten(fla-t) Break down the program’s control flow [54].

AddOpaque(opa) Add opaque predicates to split up control-flow.

EncodeArithmetic(ari) Replace integer arithmetic with more complex expressions.

Tigess[11]

EncodeLiterals(lit) Replace literal integers and strings with less obvious expressions.

Virtualize(vir) Replace code with virtualized instructions and execute them by interpreter.

Custom identifier. Obfuscated code usually contains a lot

of user-defined identifiers without semantic information, such

as function names, variable names, class names, etc. When

building a word embedding model in NLP, it is necessary

to pre-build a vocabulary that can cover most words in the

dataset. However, this modeling method cannot be directly

transferred to code embedding since the pre-built code vocabu-

lary often cannot satisfy the needs of coverage. No matter how

large the code vocabulary is, new codes that always appear

outside this vocabulary. So, it makes the OOV problem much

more severe when implementing code embedding.

Strong structure. Obfuscated code is highly structured with

lots of loops and nesting. For example, the program after

control flow flattens [29], [54] will expose the typical structural

characteristic of switch − case statements. Adding opaque

predicate transformations [13], [41] will cause many if−else

statements in the program. These structural features are vital

clues to identify code obfuscation algorithms. How to retain

as much structural information as possible is a significant

challenge for identifying obfuscation.

Long dependence. In a programming language, the depen-

dency interval between contexts may be very long. For ex-

ample, variables defined at the beginning of the program may

be used at the end of the program. This phenomenon is more

common in obfuscated codes, with larger dependency intervals

between contexts. For instance, code virtualization [59], [63]

defines lots of virtual instructions, a set of bytecode handlers

that first decode the virtual instruction and then translate it

into native machine code, and a dispatcher that determines

which instruction is ready for execution. A complete set of

virtual instructions requires a lot of code implementation,

which directly leads to a wider coverage of the context of an

instruction in the virtualized code. How to capture as much

contextual information between codes as possible requires

careful consideration

Figure 1 are examples of obfuscated code snippets with se-

mantic information. As shown in Figure 1 (a), control flow flat-

ten usually transforms if−else statements into switch−case

statements. In Figure 1 (b), virtualization enables program exe-

cution to switch continuously between the native environment

and the virtual machine environment through push and pop

operations. Therefore, contextual semantic information is an

essential factor in achieving confusion detection.

… …

…

…

…

…

…

…

Fig. 1. Examples of obfuscated code snippets with semantic information.

B. Deep learning in binary code

Deep learning provides an end-to-end learning paradigm.

Deep learning provides an end-to-end learning paradigm. The

entire learning process delivers the problem to a deep neural

network model for learning the mapping from the original

data to the expected output. In recent years, deep neural

networks have received widespread attention in many fields,

such as speech recognition, image processing, and natural

language processing. Some NLP models can be transplanted

to programming language analysis because there are many

similarities between these two kinds of language. Firstly, both

of them are composed of tokens. Secondly, they can be parsed

into the form of grammar trees. Most importantly, they both
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have high repetitiveness [21].

Some empirical studies have demonstrated the feasibility

of neural networks such as Recurrent Neural Network(RNN),

CNN, LSTM in the field of code analysis and proved that

deep learning technology could bridge the semantic gap be-

tween the programming language and natural language [64].

For example, in recent years, many neural network models

have been used in programming language processing, such

as binary code clone detection [65], [60] and vulnerability

Detection [57], [33].

However, these existing programming language processing

models cannot easily transplant on code obfuscation detection.

After all, there are big differences in their business logic.

Code clone detection focuses on judging whether two code

fragments are syntactically similar or two pieces of cross-

platform compiled code originate from the same source code

but has little processing power for things like changing,

adding, or deleting statements [65]. However, code obfuscation

usually introduces a large number of statements. For exam-

ple, adding opaque predicates transformation introduces false

branches [41], and virtualization introduces statements for dis-

patcher and handler [28], [20]. Vulnerability detection is more

inclined to pin down the locations of its vulnerability [57],

[33]. In other words, the code fragments of vulnerability are

generally short and concealed to avoid detection as much

as possible. In contrast, most of code obfuscation algorithms

require longer code fragments to disguise the original code.

In general, this means that the existing code analysis neural

network model is not suitable for code obfuscation detection.

We have to select those neural network models that better

characterize code obfuscation to implement detection.

C. Semantic Neural Network Model

To better represent the features of code obfuscation, we have

proposed some guiding principles suggesting the construction

of neural network models for code obfuscation detection.

Guiding Principle 1: Whether a piece of code is obfuscated

may depend on the context, so a neural network that can

handle the context may be suitable for obfuscation detection.

Through observation, We find that most obfuscation transfor-

mations require multiple instructions to implement instead of

one instruction.

Guiding Principle 2: The larger the context window, the

more semantic information obtained, and the more useful

information provided to the neural networks model. In particu-

lar, most code obfuscation transformations include conditional

statements, such as control flow flatten and the opaque predi-

cates insertion. There is a long interval between the conditional

statements and the execution statements.

Guiding Principle 3: In the span of context, keeping the

order of instructions provides the possibility for the neural

networks to track their dependencies. We observe that no

matter how the code obfuscation transforms in form, it is

based on a big premise, that is, the programming language

is a logical deduction language with a strict order.

Based on the above guiding principles, let us analyze which

kind of neural networks is suitable for code obfuscation
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Fig. 2. A semantic neural network model for obfuscation detection. The
neural network takes in assembly files and produces the probability of the
target program being obfuscated. First, it takes instruction as a word and uses
word2vec in terms of skip-gram to produce the instruction representations.
Then, it treats basic blocks as sentences and uses CNN to generate basic block
representations from instruction representations. Next, LSTM is employed to
adaptively encode the semantics of basic blocks and their inherent relations
in program representations. Finally, these representations are naturally used
as features to classify the assembling files with the obfuscated label.

detection. CNN [30] is a type of feedforward neural network

with a deep structure that includes convolutional calculations.

It has a strong ability to extract local features of shallow

text with high efficiency when categorizing short text fields.

However, it has limited capabilities in long-distance modeling

and is insensitive to word order, since it mainly relies on the

filter window to extract features. LSTM [22] contains three

gates: forget gate, input gate, and output gate. Because of

the existence of the gates, LSTM can well learn and grasp

the front-to-back dependencies in the sequence, so it is more

suitable for dealing with NLP problems of long sequences.

But it is time-consuming because of the deep network and a

large amount of calculation.

Through the combination of CNN and LSTM, we not only

use CNN to obtain the local characteristics but also use LSTM

to identify the instruction sequence, to fully obtain the context

semantic information of the whole target program. Figure 2

highlights the semantic neural network model for obfuscation

detection. It takes in the assembly files and generates the

probability of the target program being obfuscated. In this

model, each instruction is regarded as a word, including

opcodes and operators. The instruction is converted into

instruction embedding through word2vec in terms of skip-

gram. The basic blocks are treated as sentences, which employ

CNN to generate basic block representation from instruction

representations. Afterward, LSTM is employed to adaptively

encode the semantic of basic blocks and their inherent relations

in program representations. Finally, the representations are

naturally used as features to classify the code obfuscation label

of each assembling file.

III. OVERVIEW OF OUR APPROACH

OBFEYE is a semantic-aware obfuscation scheme predic-

tion tool that has essentially put our idea into practice. The

approach is on the basis of semantic context information of

the disassembled binary to predict if the program has been

obfuscated, and if so, what type of obfuscation scheme may be

4
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Fig. 3. Overview of OBFEYE. The learning phase takes in assembly files and outputs a trained semantic neural network with fine-tuned model parameters.
In the detection phase, the trained semantic-based neural network model is used to detect whether the target programs being obfuscated and what kinds of
obfuscation algorithms are employed.

used. At a high-level OBFEYE contains two phases: a learning

phase and a detecting phase.

The learning phase:

The learning phase takes in assembly files with the obfus-

cated labels and produces a trained semantic neural network

with fine-tuned parameters. It goes through the following steps

as highlighted in Figure 3(a).

• Step 1. Pre-processing. In this step, there are two op-

erations on the assembly file. One is using eight rules

to normalize assembly instructions to address the OOV

issue. The other is dividing the assembly file into basic

blocks. The details can be found in Section IV-A1 and

Section IV-A2.

• Step 2. Instruction embedding. A whole instruc-

tion(including operators and operands) is considered as a

word in NLP and uses skip-gram to produce instruction

embedding. The details are described in Section IV-B1.

• Step 3. Basic Block Embedding. Basic blocks are taken

as sentences in NLP and CNN is employing on generating

sentence representations from instruction representations.

This is described in Section IV-B2.

• Step 4. Program Embedding. In Setcion IV-B3, LSTM

is employed to adaptively encode the semantics of basic

blocks and their inherent relations in program represen-

tations.

• Step 5. Obfuscation Classification. In the end, the rep-

resentations are naturally used as features to classify

each assembling file with the obfuscated labels in Sec-

tion IV-B3.

The detecting phase:

The detection phase takes in a given one or multiple target

programs in the form of assembly code. They are transformed

into their semantic representations, which are encoded into

vectors and used as input to the trained semantic neural

network. The model predicts whether the program has been

obfuscated, and if so, what type of obfuscation scheme may

be used. The learning phase goes through the following steps,

as highlighted in Figure 3(b). Step I - Step IV is similar to

Step 1 - Step 4 in the learning phase. Step V uses the learned

semantic neural network to classify the vectors corresponding

to the target programs.

Learning and detecting data set:

Because of the lack of binary code datasets with the

obfuscated labels, we have to build our own. The semantic

model for obfuscation in OBFEYE is learning and detecting

using obfuscation labeled datasets, which takes three months

to build. The details can be found in Section IV-C. In order to

prevent the impact of the quality of the self-constructed data

set on OBFEYE, we find another Obfuscation Benchmarks,

which are built by TUM [51] also as the detecting set. The

experimental results are shown in Section ??.

IV. IMPLEMENTATION DETAILS

In this section, we start with depicting the pre-processing on

both training programs and target programs in Section IV-A,

then introduce the semantic neural network model for code

obfuscation detection in Section IV-B, finally we introduce

the construction of datasets with the obfuscated labels in

Section IV-C.

A. Pre-processing

1) Preprocessing of program: The obfuscation program

contains a large number of obfuscated identifiers, so when

building the semantic neural network model, a vocabulary with

an extensive words is needed. Even so, it is still impossible to

cover all the tokens in the program, and there are still many

5



## BB#0:
push rbp

Lcfi0:
.cfi_def_cfa_offset 16

Lcfi1:
.cfi_offset rbp, -16
mov rbp, rsp

Lcfi2:
.cfi_def_cfa_register rbp
mov dword ptr [rbp – 4], 0
mov dword ptr [rbp – 8], 1
mov eax, dword ptr [rbp – 4]
cmp eax, dword ptr [rbp – 8]
jle LBB0_2

<bb>
push rbp

<lcfi>
<lcfi>

mov rbp, rsp
<lcfi>

mov dword ptr [rbp – 4], 0
mov dword ptr [rbp – 8], 1
mov eax, dword ptr [rbp – 4]
cmp eax, dword ptr [rbp – 8]
jle <lbb>

Fig. 4. Preprocessing example. The code snippet on the left is the original
assembly code, and the right is the result after preprocessing.

tokens outside the vocabulary. Therefore, the OOV issue is a

big challenge.

To address the OOV issue, we propose the following rules

on the preprocessing of the program with assembly code:

(1) The number constant values are replaced with 0.

(2) The basic block identifiers are replace with <bb> .

(3) The lcfi identifiers are replace with <lcfi>.

(4) The jump instruction identifiers are replace with <lbb>.

(5) The function names are replace with <func>.

(6) String constants are replace with <str>.

(7) Other symbol constants are replace with <symb>.

(8) All comments are deleted.

Take the code snippets in Figure 4 as an example, the code

snippet on the left shows the original assembly code, and the

right one is the result after preprocessing.

2) Slicing Basic Block: A basic block in the traditional

sense is a piece of code that executes sequentially. When

the program runs this code, if no control flow error occurs,

the program can only enter the basic block from the first

sentence and exit the basic block from the last sentence. That

is, under normal circumstances, no control-flow branch should

occur in the basic block except for the last sentence, and no

control-flow entry should occur in the basic block except for

the first sentence. In assembly code, it is usually to take the

jump statements as the cutting points to divide basic blocks.

Code obfuscation transformations such as control flow flatten

and bogus control flow change the control flow structure in

the function. It means that the original code in a function

splits into multiple basic blocks by adding jump instructions

to increase the complexity of code analysis.

Figure 5 is two different kinds of basic block slicing

schemes. (a) takes jump instructions as cutting points to divide

the target program into basic blocks. This kind of slicing

scheme is not suitable for building a semantic neural network

model. On the one hand, each basic block contains too few

instructions, which results in less context semantic information

available to the neural network. On the other hand, The

dependencies between each basic block are lost. (b) treats a

function as a basic block and keeps its internal instruction in

sequence. This way can fully preserve the correlations between

instructions in the function. Specifically, each function has

a specific function, and its internal instructions also serve

this common goal. Therefore, these instructions have a close

contextual relationship. Thus, in our semantic neural network

model for obfuscation detection, we take a function as a basic

block.

In the specific implementation, we obtained the assembly

code by gcc compiler on Linux, where #BB# has been used

to mark the beginning of each function in the generated ∗.s
file. Therefore, we cut the basic block by identifying #BB#
label and the ret instruction.

B. Semantic Model of OBFEYE

The approach models contextual semantics of assembly

code as the following steps: First, it takes instruction as a

word and uses word2vec in terms of skip-gram to produce

instruction representations. Second, it treats basic blocks as

sentences and uses CNN to generate basic block representa-

tions from instruction representations. Third, LSTM is em-

ployed to adaptively encode the semantics of basic blocks and

their inherent relationships in program representations. These

representations are naturally used as features to classify the

assembling file with the obfuscated labels.

1) Instruction embedding generation: An instruction con-

sists of an opcode and an operator. For example, mov eax,

dword ptr [rbp 4] is an instruction, where mov is the opcode

and eax, dword ptr [rbp 4] are operators. In NLP, a word is

converted into a word embedding vector. Similarly, we treat

an instruction as a word, so the instruction mov eax, dword ptr

[rbp 4] will be converted to an instruction embedding vector.

There is a big “semantic gap” between a programming

language and natural language. Usually, a word embedding

generated by the deep learning model can fill this ”semantic

gap”. In particular, a word embedding is to capture the

contextual semantic meaning of this word. Thus, words with

similar contexts are closer to each other in high-quality word

embeddings. Recently, a series of neural network models [39],

[40] have been proposed to learn high-quality word embed-

dings.

Among these models, Mikolov’s skip-gram model [39], [40]

is popular due to its efficiency and low memory usage. The

training objective of the Skip-gram model is to find word

representations that are useful for predicting the surrounding

words in a sentence or a document with the help of a sliding

window. Figure 6 is an example of a sliding window working

on instructions in the skip-gram model. The size of the window

is 2, covering the first two and last two instructions of the

current instruction.

Let us denote a sequence of instructions in a program as

{i1, i2, ..., it, ..., iT }. The objective of the Skip-gram model

is to maximize the average log probability [40] as shown in

Formula 1.

1

T

T∑

t=1

∑

−C≤j≤C,j 6=0

log p(it+j |it) (1)

Where it is the current instruction, C is the context of it
covered by the sliding window. The larger the sizes of sliding

window, the more training samples are generated, which leads

to a higher accuracy, at the expense of the training time.
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L10:
mov  eax, dword ptr 
[esp+28]
cmp  eax, 1
je      L3
cmp  eax, 2
je      L4
test   eax, eax
je      L5
jmp   L8

L5:
cmp  dword ptr [esp+24], 0
jne    L6
mov  dword ptr [esp+28], 1
jmp   L8

L3:
     mov  eax, 1
     jmp   L9

L6:
     mov  ... [esp+28], 2
     jmp   L8

L8:
     jmp   L10

L9:
     leave

L4:
     mov  eax, 10
     jmp   L9

LFB4:
     …// initialize
     mov   dword ptr [esp+24], eax
     mov   dword ptr [esp+28], 0

LFB4:
…// initialize
mov  dword ptr [esp+24], eax
mov  dword ptr  [esp+28], 0

L10:
mov  eax, dword ptr  [esp+28]
cmp  eax, 1
je      L3
cmp  eax, 2
je      L4
test   eax, eax
je      L5
jmp   L8

L5:
cmp  dword ptr  [esp+24], 0
jne    L6
mov  dword ptr  [esp+28], 1
jmp   L8

L6:
mov  dword ptr  [esp+28], 2
jmp   L8

L3:
mov  eax, 1
jmp   L9

L4:
mov  eax, 10
jmp   L9

L8:
jmp   L10

L9:
leave

(a) Control flow flatten in CFG (b) Control flow flatten in sequence

Fig. 5. Basic block slicing granularity. (a) takes the jmp as the cutting point to divide a program into Basic Blocks. (b) treats a function as a Basic Block
and keeps its internal instruction in sequence. In contrast, scheme (b) provides more contextual semantic information for our model.

window size is 2

It-2

It-1

I

It+1

It+2

<lcfi>

mov dword ptr [rbp – 4], 0

mov dword ptr [rbp – 8], 1

mov eax, dword ptr [rbp – 4]

cmp eax, dword ptr [rbp – 8]

jle <lbb>

Fig. 6. A sliding window on instructions in the skip-gram model.

p (ik ∈ Ct|it) =
exp

(
It

T
Ik

)

∑
ij∈Ct

exp
(
It

T
Ij

) (2)

Skip-gram uses softmax function to predict the probability

of ik appearing in the sliding window of it. The softmax

function is defined in Formula 2, where It, Ik, Ij are the

embedding of instructions it, ik, ij , respectively.

According to the index mapping, all the instruction are

stacked in a word embedding matrix I ∈ R
d×|V | , where d

is the dimension of word vector and |V | is vocabulary size.

In this way, all instructions can be mapped onto the matrix I,

and each instruction corresponds to a certain column in the

matrix. For example, the j th column in the word embedding

matrix I corresponds to the j th instruction in the dictionary,

so it is marked as Ij .

2) Basic Block embedding generation: We use CNN to

compute continuous representations of basic block with se-

mantic composition. The core idea of CNN is to capture local

features. For text, local features are sliding windows composed

of several words, similar to N-gram. The advantage of a con-

volutional neural network is that it can automatically combine

and filter N-gram features to obtain semantic information at

different levels of abstraction.

Step 1: Input layer. Let us denote a sentence consisting

of n instructions as {i1, i2, i3...in}. The input layer is a

matrix of n × d, where n is the number of instructions in

a basic block, and d is the dimension of the word embedding

vector corresponding to each instruction. In other words, each

line of the input layer is a d-dimensional word embedding

vector corresponding to an instruction. In addition, in order to

make the vector length consistent, the original basic block is

padding. We use Ij ∈ R
d to represent the d-dimensional word

embedding of the j th instruction in the basic block.

Step 2: Convolution operation. The correlation between

adjacent instructions in the basic block is high, so we only

use one convolution kernel W. The width of the convolution

kernel W is d and the height is h. The convolution operation

formula is as follows:

Oj = W × Ij , (j = 1, 2, ..., n− h+ 1) (3)

Add the bias b and activate it with the activation function f

to get the feature: Bj = f(Oj + b). The output of this layer

is B = [B1,B2, ...,Bn−h+1].

Step 3: Polling and FullConnection. To capture global

semantics of a basic block, we feed the outputs of linear layers

to a 1-max pooling layer, resulting in an output vector with

fixed-length. We further average the outputs of multiple filters

to get basic block representation.

3) Program embedding generation: In this paper, we are

inspired by NLP. When processing text data, due to the length

of the document, traditional RNN or N-gram algorithms cannot

capture the dependencies between words that are far apart
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relationship. LSTM [22] solves the problem of the word’s

long-range dependence by designing the input gate, forget

gate, and output gate. The input gate determines the amount

of change in the information in the memory cell by the input

vector of the LSTM unit at the current time. The forget

gate determines the influence of historical information at the

previous moment on the information in the memory cell at

the current moment. The output gate controls the amount of

information output in the memory cell.

The inputs of LSTM are m basic blocks, {B1,B2,...,Bm},

represented as a sequence of instruction embeddings,(
I
1
1, I

1
2, ..., I

1
n

)
,
(
I
2
1, I

2
2, ..., I

2
n

)
, and (Im1 , Im2 , ..., Imn ) respec-

tively. An LSTM cell analyzes an input vector coming from

either the input embeddings or the precedent step and updates

its hidden state at each time step. Each cell contains four

components which are real-valued vectors. They are an input

gate i, an output gate o, a memory state c, and a forget gate

f .

For example, an LSTM cell at the first layer in LSTM

updates its hidden state at the time step t via Equations 4

– 9.

i
1
t = sigmoid(WiI

1
t +Uix

1
t−1 + vi) (4)

f
1
t = sigmoid(WfI

1
t +Ufx

1
t−1 + vf ) (5)

c̃
1
t = tanh(WcI

1
t +Ucx

1
t−1 + vc) (6)

c
1
t = i

1
t ⊙ c̃

1
t+f

1
t ⊙ c̃

1
t (7)

o
1
t = sigmoid(WoI

1
t +Uox

1
t−1 + vo) (8)

x
1
t = o

1
t ⊙ tanh(c1t ) (9)

4) Obfuscation Classification: The composed program rep-

resentations can be naturally regarded as features of programs

for obfuscation classification. In the classifier we add a linear

layer and a softmax layer. The former converts program vec-

tors to real-vectors and the latter converts the real-vector into

a probability value. Specifically, we use Softmax function

in softmax layer to implement multi-classification. In simple

terms, the Softmax function maps some output neurons to

real numbers between (0-1), so that the sum of the probabilities

of multiple classifications is exactly 1. The Softmax function

is defined as follows:

Pi =
eVi

∑C

i−1
eVi

(10)

Where Vi is the output of the previous unit of the classifier.

i represents the category index, and the total number of

categories is C. Pi represents the ratio of the index of the

current element to the sum of the indices of all elements.

Through the Softmax function, the output value of multiple

classifications can be converted into relative probability.

In model training, we use cross entropy as a loss function.

Cross-entropy describes the distance between the actual output

probability and the expected output probability. The smaller

the value of the cross-entropy, the closer the two probability

distributions. The loss function is defied as the following:

H (p, q) = −
∑C

i=1
p (di) log (q (di)) (11)

Where, d is the representation of the document, C is

the total number of categories, p is the expected probability

distribution, and q is the actual probability distribution which

is calculated using the data labeled in the data sets.

C. Annotation Dataset Construction

1) Construct Obfuscation Samples: The data source is the

key to complete program understanding tasks when using deep

learning. Most importantly, the quality of the data source deter-

mines the accuracy of the neural network model. Standardized

and high-quality data is more conducive to the learning of deep

neural networks. In image recognition and natural language

processing, there are many open datasets for researchers to

conduct research. However, in the field of program analysis,

public, available, and high-quality datasets are very scarce.

Many researchers have to construct their own data sets to

complete the corresponding program analysis tasks. It leads

to low data quality in the corpus and brings a lot of noise

to the neural network model. In addition, the use of various

data sets in the same task is very inconvenient for comparing

and evaluating different methods. Therefore, how to obtain

a unified and standardized high-quality obfuscated program

corpus is a challenge.

To construct a dataset with obfuscated labels, we propose

a code obfuscated sample generator. It takes in a source file

written in C language and produces an obfuscated assembly

file with a label of obfuscated type. First, it checks whether

the source file contains obfuscation points. Obfuscation points

are defined here as those codes that can apply for obfuscation

transformations, such as character strings, arithmetic opera-

tors, jump statements, assignment statements, functions, etc.

Second, it chooses the corresponding obfuscation algorithm

for different obfuscation points. For example, if there is an

arithmetic operation statement as a = b+c in the original file,

the code obfuscated sample generator selects the arithmetic

obfuscation to implement transformation on this file. Third,

if the code transformation is successful, the obfuscated code

will be compiled into assembly code by gcc. Fourth, the

corresponding obfuscation algorithm is used to name the

obfuscated assembly file. That is, the file name is considered

as an obfuscated label.

To establish the ground truth about the obfuscated assembly

codes, we use two open-source code obfuscation tools, OL-

LVM [18] and Tigress [11]. OLLVM is a project initiated by

the information security group of the University of Applied

Sciences and Arts Western Switzerland of Yverdon-les-Bains.

OLLVM aims to provide an open-source fork of the LLVM

compilation suite able to provide increased software security

through code obfuscation. Tigress is a project developed by
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the Department of Computer Science at the University of Ari-

zona [35], [18], [25]. Tigress is a diversifying virtualizer/ob-

fuscator and supports to resist both static and dynamic reverse

engineering and de-virtualization attacks. Both OLLVM and

Tigress support the obfuscation for C language. There are two

reasons why we chose open source obfuscation tools instead

of commercial obfuscators [48], [46], [50], [49]. On one hand,

compared to commercial obfuscators, it is easier to get their

internal obfuscation principles. On the other hand, it is very

flexible to configure obfuscation strategies as needed.

When building the code obfuscation sample generator, we

implement an algorithm for detecting obfuscation points.

Then, we use the command line provided by OLLVM and

Tigress to obfuscate the obfuscation points. It is worth men-

tioning that obfuscated files are still in C language. So, to

obtain obfuscated assembly samples, we use the gcc compiler

to produce *.s” file. The details about the obfuscated datasets

in Section V-A.

2) Verify the Effectiveness of Obfuscation Samples: It is

a very tedious and subjective matter to verify whether the

sample is obfuscated successfully manually. Therefore, we use

three kinds of metrics to verify the effectiveness of obfuscation

transformations from the perspective of complexity. The first

kind is the number of instructions, which counts the number

of all assembly instructions in the file after obfuscation. The

second kind consists of basic statistics about the call graph and

control flow graph (CFG), including the number of edges in

both graphs and the number of basic blocks. The third metric

is the cyclomatic number [38]. It is defined as e − n + 2,

where e and n are the numbers of edges and vertices in the

CFG. These metrics have been proved to be able to evaluate

the complexity of the obfuscated code and have been widely

used to evaluate obfuscation techniques in related work. [55],

[8], [13].

For each assembly file after obfuscation transformation,

we calculate their three metrics to quantify their complexity.

Compare with the complexity of the original assembly code,

the samples whose complexity has not changed are considered

to be failed. Only samples that are successfully obfuscated can

stay in our datasets.

Although, from the perspective of obfuscation evaluation,

complexity is not an adequate metric. Because there is already

a proof that there is no direct correlation between complexity

and security [4], but this metric is still sufficient in our

scenario.

V. EXPERIMENTAL SETUP

In this section we describe our experimental samples, eval-

uation metrics and implementation platforms.

A. Data Preparation

In the experiment, we use two data sources for verifying

the performance of OBFEYE. One is the source code coming

from gcc−7.4.0 and GNUtoolkit. The choice of experimental

samples should follow the principle of universality, which

means that the experimental samples should exist in the real

world. gcc is the most widely used compiler, and GNUtoolkit

is widely used in the GNU operating system. Both of them

contain a lot of source code in C language. So, their source

codes are considered as original samples, then implemented by

the method described in Section IV-C to produce obfuscated

samples.

To maintain the experimental results’ objectivity and avoid

situations where the experimental results are biased due to

our own constructed datasets, we find another data source. So,

the other data source is Obfuscation Benchmarks provided by

TUM [51]. Obfuscation Benchmarks is built (but not limited)

to compare the strength of different obfuscation transforma-

tions against both human-assisted and automated attacks. It

has been used in the field of code obfuscation for the training

and testing of machine learning models [2], [3].

Speaking of obfuscation transformations, there are eight

kinds of single obfuscation and six kinds of multiple obfus-

cation in our experiments. It should be emphasized that, in

most cases, multiple obfuscation is composed of two types of

obfuscation transformations. In this paper, we do not discuss

the situation where there are more than two obfuscation

transformations. Dataset1-3 are single obfuscation datasets as

shown in Table II. Dataset4-6 are multiple obfuscation datasets

as shown in Table III.

The details of each dataset are described as the following:

Dataset1: A single obfuscation dataset. Its source codes come

from gcc-7.4.0. Eight kinds of obfuscation transformations

are performed on all source codes, respectively. They are

options of -bcf, -fla, -sub in OLLVM and options of -Flatten,

-AddOpaque, -Virtualize, -EncodeArithmetic, -EncodeLiterals

in Tigress. The details of these obfuscation transformations

are described in Table I. Finally, there are a total of 100,287

samples in Dataset1.

Dataset2: A single obfuscation dataset. Its source codes

come from GNU Toolkit. The obfuscated samples are produced

in the same way as Dataset1. This dataset contains a total of

10,259 samples.

Dataset3: A single obfuscation dataset. Its source codes

come from Obfuscation Benchmarks. The benchmarks supply

plenty of ∗.c files and obfuscation scripts to generate obfus-

cation samples. There are 50,370 samples in total.

Dataset4: A multiple obfuscations dataset. Its source codes

come from gcc-7.4.0. We use -bcf, -fla, -sub option in OLLVM

to superimpose each other to generate corresponding data.

For example, we use the command like -mllvm; -fla; -sub to

perform control flow flatten and instruction replacement trans-

formation on the original code “a.c”, and save the generated

code to a new file named “a-fla sub.s”. There are a total of

73,536 samples in Dataset4, including six types of multiple

obfuscation.

Dataset5: A multiple obfuscations dataset. Its source codes

come from GNU Toolkit. The obfuscated samples are produced

in the same way as Dataset4. This dataset contains a total of

7,420 samples.

Dataset6: A multiple obfuscations dataset. Its source code

comes from Obfuscation Benchmarks. We use the supplied

scripts to produce the multiple obfuscation samples. There are

35,259 samples in total.

9



TABLE II
SINGLE OBFUSCATION DATESETS. Dataset1’S SAMPLES COMING FROM gcc− 7.4.0, Dataset2’S SAMPLES COMING FROM GNUtoolset, Dataset3’S

SAMPLES COMING FROM ObfuscationBenchmarks. #PROS IS THE NUMBER OF PROGRAMS, #BBS IS THE NUMBER OF BASIC BLOCKS, #INS IS THE

NUMBER OF INSTRUCTIONS.

Dataset1

Dataset1:OLLVM Dataset2:Tigress
code fla sub bcf Sum code opa fla vir ari lit Sum

#Pros 12717 8301 6652 9524 37194 10909 10698 10404 10208 10407 10467 63093
#BBs 256006 123385 221311 217980 818682 126395 1258219 105891 93371 99974 129672 1813522
#Ins 5135561 7600786 5089106 12163194 29988647 2754745 19779676 2340494 7145576 9516787 2354060 43891338

Dataset2

Dataset2:OLLVM Dataset2:Tigress

#Pros 1088 1008 794 1057 3947 1087 952 1082 1025 1082 1084 6312
#BBs 101804 13262 98754 74497 288317 71603 200436 88112 33280 84821 128465 606717
#Ins 1779845 4313281 2150187 5440434 13683747 1235141 4161749 3314910 4462367 4981274 11382623 29538064

Dataset3

Dataset3:OLLVM Dataset3:Tigress

#Pros 5037 5037 5037 5037 20148 5037 5037 5037 5037 5037 5037 30222
#BBs 51444 17625 51444 40930 161443 51444 148266 61380 55086 56343 76491 449010
#Ins 867549 1856775 1272639 2629662 6626625 867549 2318976 1222089 3144100 1361724 2811249 11725687

TABLE III
MULTIPLE OBFUSCATION DATESETS. Dataset4’S SAMPLES COMING FROM gcc− 7.4.0, Dataset5’S SAMPLES COMING FROM GNUtoolset,

Dataset6’S SAMPLES COMING FROM ObfuscationBenchmarks. #PROS IS THE NUMBER OF PROGRAMS, #BBS IS THE NUMBER OF BASIC BLOCKS,
#INS IS THE NUMBER OF INSTRUCTIONS.

Dataset4

code fla sub sub fla fla bcf bcf fla sub bcf bcf sub Sum

#Pros 12717 9522 9524 10340 10356 10521 10556 73536
#BBs 256006 141616 141610 146379 146507 219626 219765 1271509
#Ins 5135561 8594533 8593280 19407393 19527354 16685215 16901642 94844978

Dataset5

#Pros 1088 1026 1026 1069 1074 1068 1069 7420
#BBs 101804 13289 13289 13417 13456 74796 74787 304838
#Ins 1779845 4737920 4736953 9999077 10047732 7998178 8041944 47341649

Dataset6

#Pros 5037 5037 5037 5037 5037 5037 5037 35259
#BBs 51444 17625 17625 17625 17625 40970 40839 203753
#Ins 867549 2260256 2261931 4608707 4578436 4159234 4142780 22878893

B. Evaluation metrics

We use the widely used metrics of Accuracy(ACC) [37],

[26] and True Positive Rate(TPR) [43] to evaluate the code

obfuscation detection system, where both of them are standard

metrics to measure the overall classification performance in

NLP. Here is a brief introduction:

ACC =
(TP + TN)

(TP + FP + TN + FN)

TPR =
TP

(TP + FN)

where TP is the number of samples with obfuscation

detected correctly, FP is the number of samples with false

obfuscation detected, FN is the number of samples with true

obfuscation undetected, and TN is the number of samples with

no obfuscation undetected.

C. Implementation and Evaluation Platforms

Our prototype system is implemented using Python v.3.7.

Specifically, the Word2Vec model is coded using gensim

v.3.8.3, and the classifier model is built upon the Keras v.2.0.0

framework with TensorFlow v.1.13.1 as its backend. Keras

provides a large number of high-level neural network APIs

and can run on top of TensorFlow.

The experiments are performed on a computer running the

Windows 7 operating system with two 64-bit 3.4 GHz Intel(R)

Core(TM) i7-3770 CPU and 32 GB RAM without GPUs. The

training and testing are expected to be significantly accelerated

if GPUs are used.

VI. EXPERIMENTAL RESULTS

In this section, we first evaluate the effect of preprocessing

on instruction embedding and discuss hyperparameter selec-

tion. We then present the ACC and TPR of our approach

on single obfuscation and multiple obfuscations, showing that

our approach is highly effective in identifying the obfuscation

scheme. Finally, we compare our approach against other de-

tection models, demonstrating that our approach significantly

outperforms all other detection models.

10



(a) The growth of the vocabulary size. The vocabulary size in

terms of the percentage of the corpus analyzed.

(b) The proportion of used corpus. The percentage of unseen

instructions that do not exist in the vocabulary.

Fig. 7. Evaluation on Out-Of-Vocabulary Instructions.

A. Evaluation on Out-Of-Vocabulary Instructions

As pre-processing described in Section IV-A1 is applied to

addressing the OOV issue, we evaluate its impact by studying

the following two issues: 1) how the vocabulary size grows

with or without pre-processing. 2) The relationship between

the number of unseen words and the size of corpus with or

without pre-processing.

The experiment is conducted using Dataset2:OLLVM as

a corpus. The size of the samples extends from 1KB to

18MB. All samples are in the form of assembly files. When

implementing instruction embedding, not only the opcode but

also the operand are all taken into account as a word. In

general, there are a total of 3,947 samples and 13,683,747

instructions for training the model.

Figure 7(a) shows the growth of the vocabulary size with

and without pre-processing. The vertical axis represents the

size of the vocabulary, and the horizontal axis represents the

percentage of the corpus. The red and green lines represent the

growth of the vocabulary size without or with pre-processing,

respectively. From the figure we can see that if there is no pre-

processing, The size of the pre-processed vocabulary is almost

unchanged and much smaller than the unprocessed one.

As to the unseen words issue, we take the vocabulary

TABLE IV
STATISTICS ON THE NUMBER OF BASIC BLOCKS IN A PROGRAM. #BB IS

THE NUMBER OF BASIC BLOCKS IN EACH PROGRAM.

#BB
Programs

25% 30% 50% 60% 75% 90%

origin 2 2 3 4 6 12

fla 1 1 2 2 3 5

bcf 2 2 3 4 6 13

sub 3 3 4 5 8 16

multi 1 1 2 2 4 7

all 1 1 2 3 4 9

TABLE V
STATISTICS ON THE NUMBER OF INSTRUCTIONS IN A BASIC BLOCK. #INS

IS THE NUMBER OF INSTRUCTIONS IN EACH BASIC BLOCK.

#Ins
Programs

25% 30% 50% 60% 75% 90%

origin 9 9 13 15 17 2

fla 9 9 15 17 18 76

bcf 10 14 18 43 67 101

sub 9 9 15 17 19 29

multi 9 15 17 23 93 139

all 10 16 26 38 64 146

generated from Dataset2:OLLVM as the training dataset and

Dataset2:Tigress as the testing dataset. Then, we try to check

how many instructions in Dataset2:Tigress don’t appear in

the trained vocabulary. Specifically, each time we take in

1k instructions from Dataset2:Tigress, and then calculate the

proportion of words unseen in the vocabulary to all the words

taken in.

Figure 7(b) shows the relationship between the number of

unseen words and the size of corpus. The vertical axis indicates

the proportion of unseen instructions in testing corpus, and the

horizontal axis indicates the percentage of the corpus read. The

red and green lines represent the propotion of unseen instruc-

tions in the corpus without or with preprocessing, respectively.

From the figure we can see that after pre-processing, the

rate of unseen instructions drops to 0.7%, compare to the

12% without pre-processing. This shows that the instruction

embedding model with pre-processing has a good coverage of

instructions.

B. Hyperparameter Selection

In this section, we investigate the impact of different hyper-

parameters on OBFEYE. In particular, we discuss the number

of basic blocks in a program and the number of instructions

in a basic block.

1) Numbers of Basic Blocks: In order to determine the

hyperparameter of the number of basic blocks in the semantic

neural network model, we perform a statistical analysis of

Dataset1 with a total of 100,287 assembly code files and

73,880,035 instructions. As shown in Table IV, 86% of the

programs contain less than or equal to 8 basic blocks. There-

fore, we set the number of basic blocks of a program to 8.
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2) Numbers of Instructions: In this experiment, we still

perform statistical analysis on Dataset1 with a total of 100,287

assembly code files. According to statistics, all documents

contain 2,632,204 basic blocks in total. Then we count the

number of instructions contained in each basic block. The

statistics result is shown in Table V, nearly 91.39% of the

basic blocks contain less than or equal to 128 instructions.

Therefore, we set the number of instructions in a basic block

to 128.

It should be emphasized that when the number of in-

structions is less than 128, we use the character “0” to fill

in. Otherwise, only 128 instructions are kept, and redundant

instructions are deleted. Similarly, basic blocks are treated in

the same way.

C. Accuracy of OBFEYE

In this section, we evaluate the accuracy of OBFEYE. The

experimental results of single obfuscation are recorded in

Table VI and the multiple obfuscations’ in Table VII.

1) Model Training: In the learning phase, we first merge

Dataset1(shown in Table II) and Dataset4(shown in Table III),

then use 80% of them for training and the other 20% for

validation. On the one hand, the samples in both Dataset1 and

Dataset4 come from gcc− 7.4.0. On the other hand, Dataset1

is a single obfuscation dataset, and Dataset4 is a multiple

obfuscation dataset. In general, there are 139,000 samples in

the training dataset, covering two types of obfuscation tools,

eight kinds of single obfuscation, and six kinds of multiple

obfuscations.

We use the training datasets to train OBFEYE individually

for 100 epochs. After each epoch, we measure the ACC and

TPR on the corresponding validation datasets, and save the

model achieving the best ACC as the base model.

2) Accuracy of Single Obfuscation: In the detecting phase,

we have two testing datasets for single obfuscation detection,

and they are Dataset2 and Dataset3(both of them are shown in

Table II). We evaluate the accuracy of the base model using

the corresponding testing datasets.

From the experimental results in Table VI, when testing

on our own constructed Dataset2, the average accuracy of

OBFEYE for single obfuscation detection reached 89.4%.

As to TPR, each obfuscation method behaves slightly differ-

ently due to their different semantic features. Through further

analysis, we find that options of -bcf, -fla in OLLVM and

options of -fla, -opa, -vir in Tigress perform excellent. All the

TPRs of them are above 95%, even as high as 99.62%. The

reason is that these types of code obfuscation transformations

usually require more instructions and basic blocks to achieve.

They all meet the two typical characteristics of obfuscation

algorithms of strong structure and long dependence. That is in

line with the design of OBFEYE, which tries to capture the

semantic information of such long sentences or even super-

long sentences.

These transformations can usually be done with a few

instructions. For example, as shown in the Figrue 8, the

addition transformation replaces the original code “a = b+c;”
with “r = rand(); a = b + r; a = a + c; a = a − r;”.

Fig. 8. Example of −sub−addition. (a) is the original code of “a = b+c;”,
(b) is the transformed code of “r = rand(); a = b + r; a = a + c; a =
a− r;”.

extern double pow(double,double);
extern void abort(void);

double foo (double x)
{
return pow (x, 6);

}

double bar (double x)
{
return pow (x, -4);

}

int main()
{
if (foo (2.0) != 64.0)

abort ();

if (bar (2.0) != 0.0625)
abort ();

return 0;
}

#include<stdio.h>
int main(int argc, char* argv[]){

int temp,i,j,a[10];

for(i=1;i<argc;i++){
a[i-1] = argv[i][0];

}

for(i=argc-3;i>=0;i--){
for(j=0;j<=i;j++){

if(a[j]>a[j+1]){
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;

}
}

}

printf("After sorting: ");
for(i=0;i<argc-1;i++)

printf(" %d",a[i]);

return 0;
}

(a) from Dataset2 (b) from Dataset3

Fig. 9. Example of obfuscation points comparison. (a) is an original
code in Dataset2(coming from GNUtoolkit). (b) is an original code in
Dataset3(coming from ObfusctionBenchmark). There are only 2 obfus-
cation points in (a), but 5 in (b).

The number of instructions increases from 5 to 11. However,

this weak context change is ignored when OBFEYE does

feature embedding. The reason is that CNN uses Max Pooling

operation when implementing the basic block embedding.

Maximum pooling means to extract multiple eigenvalues from

a specific filter and only retain the one with the largest value. In

other words, it only retains the strongest feature and discards

other weak features.

To avoid bias, we also test OBFEYE on Dataset3 which

is a Obfuscation Benchmarks provided by TUM. The aver-

age accuracy of OBFEYE for single obfuscation detection

reached 91.81%. From Table VI, we can see that the testing

results on this dataset are better than Dataset2, since there

are many obfuscation algorithms with TPR as high as 1.
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TABLE VI
ACCURACY FOR SINGLE OBFUSCATION DETECTION. DATASET 2 IS SINGLE OBFUSCATION DATA SET BUILT BY US. DATASET 3 IS SINGLE Obfuscation

Benchmarks FROM TUM.

Dataset ACC
TPR

code fla-o sub bcf opa fla-t vir ari lit

2

OLLVM 0.8935 0.9420 0.9960 0.7604 0.9962 - - - - -

Tigress 0.9038 0.9273 - - - 0.9737 0.9519 0.9434 0.8456 0.7915

O+T 0.8846 0.8271 0.9960 0.7591 0.9962 0.9737 0.9519 0.9570 0.8401 0.8044

Mean 0.8940 0.8988 0.9960 0.7596 0.9962 0.9737 0.9519 0.9502 0.8429 0.7980

3

OLLVM 0.9966 0.9886 1 0.9988 0.9992 - - - - -

Tigress 0.8762 0.7546 - - - 1 1 1 1 0.8030

O+T 0.8815 0.6037 1 0.9733 0.9990 1 1 1 1 0.8352

Mean 0.9181 0.7823 1 0.9861 0.9991 1 1 1 1 0.8191

TABLE VII
ACCURACY FOR MULTIPLE OBFUSCATION DETECTION. DATASET5 IS A

MULTIPLE OBFUSCATION DATASET BUILT BY US. DATASET6 IS MULTIPLE

ObfuscationBenchmarks FROM TUM.

Dataset ACC
TPR

sub&bcf sub&fla bcf&fla

5 0.8279 0.9766 0.9156 0.9519

6 0.9784 0.9972 0.9991 0.9984

However, this result seems so beautiful that we have to find

the real reason. We study the data sources of Dataset2 and

Dataset3, respectively. The original code of Dataset3 comes

from ObfuscationBenchmark. There are a total of 100

original programs in this benchmark, which are mainly classify

into sorting algorithms, hashing algorithms, and arithmetic

operation algorithms. These algorithms have a common fea-

ture, that is, they all contain a large number of obfuscation

points, as shown in Figure 9(b). The original code of Dataset2

comes from GNUtoolkit, and there are a total of 2483

original programs in GNUtoolkit. But 80% of its original

programs have only two or fewer obfuscation points as shown

in Figure 9(a). The more obfuscation points mean that there are

richer semantic information exists in the obfuscated programs,

especially the obfuscation characteristics. Therefore, the TPR

of the obfuscation detection on Dataset3 is higher.

In additional, the average TPR of −lit is only 81.91%,

which is almost the same reason as the −sub. In reality, −sub

and −lit are weak code obfuscation transforms which usually

used in conjunction with other code obfuscation algorithms.

Therefore, we believe that even if OBFEYE has a weak ability

to recognize such kind of obfuscation algorithm, it does not

affect its use.

In general, Dataset2 and Dataset3 represent two different

application scenarios of code obfuscation, namely universality

and typicality. At the same time, They also cover a variety of

obfuscation algorithms such as strong obfuscation and weak

obfuscation. The experimental results show that OBFEYE has

good performance on both of them.

3) Accuracy of Multiple Obfuscation: In reality, most ob-

fuscated application scenarios will use multiple obfuscations.

So, to verify the accuracy of OBFEYE in this scenario, we

also perform a set of experiments on Dataset5 and Dataset6

TABLE VIII
TRAINING TIME OF THE SEMANTIC-AWARE CONTEXT EMBEDDING MODEL

IN OBFEYE WITH RESPECT TO DIFFERENT SIZE OF DATASETS.

Dataset Training time(s)

1

OLLVM 294

Tigress 485

O+T 705

1+4 All 765

where the programs are obfuscated with combinations of two

obfuscation transformations with OLLVM. The experimental

results are shown in the Table VII. The average accuracy is

82.79%, and the TPR of each type of multiple obfuscation

detection also exceeded 90% when the testing on Dataset5.

They are even higher to 97.84% and 99.82% when the testing

on Dataset6. The reason for the high recognition rate of

multiple obfuscations is that the implementation of multiple

obfuscations requires more instructions and can provide more

contextual semantic for the semantic neural network.

D. Efficiency of OBFEYE

Training Time: We evaluate the time used for training the

semantic-aware context embedding model in the OBFEYE,

and we do four groups of training experiments. Table VIII is

the training time of OBFEYE with respect to different sizes

of datasets. It is found that the training time is linear to the

sample size. Take Dataset1 as an example, when the data scales

are 37194, 63063, and 100257, respectively, the training time

spent is 294s, 485s, and 705s, respectively. In other words,

it takes about 7ms to process a program during the training

phase.

Testing Time: Although we do four groups of training

experiments, we finally employ the fourth training model for

the testing experiment. As shown in Table IX, we take multiple

obfuscations on Dataset5 as an example. In every millisecond,

there are 0.25 (7420/30000) programs, 10.16 (304838/30000)

basic blocks, and 1578.06 (47341649/30000) instructions are

deal with.

The timing measurements reported in the table highlight that

the majority of execution time spent on training the OBFEYE

model. Testing is high-speed, taking only a few seconds per
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TABLE IX
TESTING TIME FOR BOTH SINGLE AND MULTIPLE OBFUSCATIONS.

Obfuscation Dataset Testing time(s)

Single

2

OLLVM 12

Tigress 19

O+T 27

3

OLLVM 58

Tigress 89

O+T 146

Multiple
5 All 30

6 All 153
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Fig. 10. The TPR results compared with other methods on our constructed
datasets.

input. The execution time of our obfuscation detection is

extremely low, taking only a couple of minutes for the entire

set of datasets.

E. Comparison with other models

Since there is currently no deobfuscation detection for

binary code, in this section, we only select several neural

network models and a machine learning model commonly used

in the field of binary code analysis for comparison. We are

interested in LSTM [22], GRU(Gated Recurrent Unit) [9] and

SVM(Support Vector Machine) [23]. In the LSTM and GRU

models, we use word2vec to implement instruction embed-

ding, which is taken as a classification feature. In the SVM
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(b) Multiple obfuscation.

Fig. 11. The TPR results compared with other methods on
ObfuscationBenchmarks.

model, we use TF-IDF(term Frequency - Inverse Document

Frequency) as a feature to perform classification learning.

In the same way, we still select 80% of Dataset1(shown in

Table II) and Dataset4(shown in Table III) as the training

datasets for LSTM, GRU, SVM to learn, and the other 20%

for validation.

In the testing phase, we select Dataset2 and Dataset5 as

the detecting data set, which includes single obfuscation and

multiple obfuscations. The experimental results show that

OBFEYE has the highest obfuscation detection accuracy, with

92.81%, followed by LSTM with 82.43%. And SVM is the

worst with 45.32%, as expected.

For further investigation, we put the TPR of each model

on single obfuscation and multiple obfuscations in Figure 10.

From Figure 10(a), we can see that in addition to the two

code obfuscation algorithms of −sub and −lit, OBFEYE’s

TPR is significantly better than other models. However, as the

figure shown, all models are performing poorly for this type of

weak code obfuscation. That is because their features are not

obvious, resulting in little adequate information available to

the detection model. To some extent, this also proves that the

quality of feature selection directly determines the detection

result.

From Figure 10(b), it can be seen that the semantic neural

network model in OBFEYE is more powerful than other

models on multiple obfuscations. The reason is that it takes
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into account the advantages of CNN and LSTM, and obtains

much more semantic features of obfuscation algorithm. It also

proves that the neural network model based on full program

semantics is suitable for binary code obfuscation detection.

Because this approach provides more semantic information for

the neural network model. Therefore, OBFEYE is a feasible

code obfuscation detection scheme.

To avoid bias, we still test OBFEYE, LSTM, GRU, and

SVM on ObfuscationBenchmarks provided by TUM. Fig-

ure 11 is the experimental results. It can be seen from the

figure that the TPR of OBFEYE is still the best among the

four models regardless of single obfuscation or multiple ob-

fuscations. Compared with testing on Dataset2 and Dataset5,

the TPRs of all models on the ObfuscationBenchmarks

datasets have improved. The reason is the same as we analyze

in Section VI-C. That is because there are many more obfusca-

tion points in the source codes of ObfuscationBenchmarks.

These obfuscation points require more assembly instructions

to implement, which provide more contextual semantic infor-

mation for the classification model.

In addition, from the figure, it is not difficult to find that

all the TPRs of each model for the samples without adding

obfuscated code decreased significantly. That is because the

source codes of ObfuscationBenchmarks contain a large

number of if statements and for statements, which can

easily be mistaken for obfuscated code fragments by various

classification models, resulting in high TPRs.

In a word, all the experimental results show that OBFEYE

is highly effective in identifying the obfuscation scheme,

with a prediction accuracy of at least 83% (up to 98%).

Besides, the experiments successfully demonstrate that it is

promising to approach binary analysis from the angle of

language processing by adapting methodologies, ideas, and

techniques in NLP.

VII. LIMITATIONS

Code obfuscation has proved to be a stumbling block for

various virus detections and similarity detections. The work of

this paper not only promotes the development of deobfuscation

itself but also facilitates the development of the following area,

such as virus detection [42], [7], clone code detection [45],

binary code similarity detection [65], third-party libraries

detection [31], etc.

Besides, there are some limitations to our work. The present

design of OBFEYE is limited to dealing with obfuscation

detection on assembly language generated by reverse analysis

tools such as IDA. That is because the training samples with

assembly language of the Intel style used in the neural network

learning process are constructed by the compiler gcc. In future

work, we will increase the compatibility of OBFEYE to meet

the needs of obfuscation detection on different kinds of coding

languages.

The current design of OBFEYE is not suitable for detecting

data flow obfuscation, since it only analyzes the semantic

information of the target program, without considering the data

dependencies. In the future, we intend to also take the data

flow as a classification feature of a neural network model.

At present, the data set we constructed only includes two

obfuscation tools of OLLVM and Tigress, with a total of eight

single obfuscations and six multiple obfuscations. However, in

reality, there are many kinds of obfuscation tools that have not

been considered, and we will add them in subsequent work.

Of course, with the continuous development of deep learning,

we can also try to use other technologies to solve training and

testing on small-scale data sets.

VIII. RELATED WORK

Deep learning and language modeling: In recent years,

deep learning has flourished in different research fields, espe-

cially in the tasks of image recognition and natural language

processing. Relying on the similarity between program code

and natural language, deep models in natural language pro-

cessing have been gradually applied to program understanding

and code analysis. For example, DREBIN [1] performs a

comprehensive static analysis, embedding many features from

an applications code and manifest in a joint vector space

to detect Android Malware. White et al. [58] proposed a

deep learning-based detection method for source code clone

detection using RNN. Zuo et al. [65] proposed a deep

learning-based detection for code similarity detection by using

LSTM. EKLAVYA [10] trains an RNN model to recover

function type signatures from disassembled binary code. As

far as we know, OBFEYE is the first to apply deep learning

models to code obfuscation detection, and it is also the first to

build a code obfuscation detection model on binary code with

taking advantage of contextual semantic information.

Obfuscation detector with Machine learning: Currently, a

large number of code obfuscation detections focus on scripting

languages, such as Javascript [34], [24], [47] and Power-

shell [32], [17]. They leveraged machine learning and data

mining to detect JavaScript or Powershell code obfuscation.

NOFUS[27] takes a context feature from the abstract syntax

tree of the script and uses a Bayesian-based detector to detect

confusion. JSObfusDetector [24] takes the number of string

variables and the number of dynamic functions in JavaScript

scripts as features, and uses a One-class SVM algorithm to

identify malicious JavaScript obfuscated scripts. But there

is almost no obfuscation detection for binary code. That is

because, compared with source code and scripting languages,

binary code lacks semantic information such as symbol infor-

mation, variable type information, software structure descrip-

tions, function libraries, etc. Therefore, the existing token-

based detection methods are difficult to transplant to binary

detection. OBFEYE takes advantage of the character that deep

learning uses supervised learning for feature extraction and

embedding. It uses massive training data to replace people’s

observation of the code so that the algorithm can summarize

the nature and rules of the obfuscated code, and then improve

the accuracy and efficiency of the detection model.

IX. CONCLUSION

In this paper, we introduced a semantic-aware obfuscation

detection approach that achieves a detection rate of 89.4%

for single obfuscation and 82.79% for multiple obfuscations
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over an experimental dataset of 277,131 assembly documents.

Further, we also test OBFEYE on Obfuscation Benchmarks

provided by Technische Universität München(TUM, Ger-

many). The accuracy rate of the single obfuscation test is

91.81%, and the accuracy of multiple obfuscations is as high

as 97.84%. Additionally, we have shown that our approach

requires modest computation to perform feature extraction and

that it can achieve good accuracy over our corpus on a single

CPU within modest timeframes. In particular, we constructed

datasets containing 277,131 obfuscation file with assembly

codes, eight single obfuscation algorithms, and six multiple

obfuscation algorithms, which is valuable for other researchers

who are dedicated to studying code obfuscation.
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