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Abstract15

Grasslands are an important component of the global carbon (C) cycle,16

with a strong potential for C sequestration. However, an improved capac-17

ity to quantify grassland C stocks and monitor their variation in space and18

time, particularly in response to management, is needed in order to conserve19

and enhance grassland C reservoirs. To meet this challenge we outline and20

test here an approach to combine C cycle modelling with observational data.21

We implemented an intermediate complexity model, DALEC-Grass, within22

a probabilistic model-data fusion (MDF) framework, CARDAMOM, at two23

managed grassland sites (Easter Bush and Crichton) in the UK. We used 324

years (Easter Bush, 2002-2004) of management data and observations of leaf25

area index (LAI) and Net Ecosystem Exchange (NEE) from eddy covariance26

to calibrate the distributions of model parameters. Using these refined distri-27

butions, we then assimilated the remaining 7 years (Easter Bush, 2005-201028

and Crichton, 2015) of LAI observations and evaluated the simulated NEE,29

above and below-ground biomass and other C fluxes against independent30

data from the two grasslands. Our results show that fusing model predictions31

with LAI observations allowed the CARDAMOM MDF system to diagnose32

the effects of grazing and cutting realistically. The overlap of MDF-predicted33
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and measured NEE (both sites) and ecosystem respiration (Easter Bush) was34

92% and 83% respectively while the correlation coefficient (r) was 0.79 for35

both variables. This study lays the foundation for using MDF with satellite36

data on LAI to produce the spatially and temporally-resolved estimates of37

C cycling needed in shaping and monitoring the implementation of relevant38

policies and farm-management decisions.39

Keywords: UK grasslands, primary production, carbon sequestration,40

model-data fusion41
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Ecosystem carbon accounting abbreviations42

Gross Primary Production : GPP43

Autotrophic Respiration : AR44

Heterotrophic Respiration : HR45

Ecosystem Respiration : ER = AR + HR46

Net Primary Production : NPP = GPP - AR47

Net Ecosystem Exchange : NEE = ER - GPP48

Net Ecosystem Production : NEP = GPP - ER49

1. Introduction50

Grasslands cover a third of the earth’s surface and are a major compo-51

nent of the terrestrial biosphere’s carbon (C) cycle and a major contributor to52

global annual fluxes and C stores (Hungate et al., 2017; Friedlingstein et al.,53

2019; Sollenberger et al., 2019). Temperate grasslands, because of edapho-54

climatic conditions and their botanical composition, can transfer and accu-55

mulate C in their soils more efficiently than grasslands in warmer and drier56

regions (Gibson, 2010). Based on this premise, and considering the rise in57

atmospheric CO2 concentration, European grasslands have the potential for58

increased CO2 sequestration (Chang et al., 2017). Estimates of grassland C59

balance and its variation in space and time are essential for shaping evidence-60

informed climate policies and monitoring progress on Nationally Determined61

Contributions (NDCs) following the Paris agreement (De Oliveira Silva et al.,62

2018). Livestock grazing and grass harvesting affect grassland C stocks, typ-63

ically removing >50% of vegetation C on an annual basis (Erb et al., 2018).64

In addition to sustaining livestock farming by providing biomass energy to65

livestock directly from grazing or as fodder, vegetation also provides inputs66

to the soil C pool in the form of litter and exudates, as well as indirectly from67

excrement produced by grazers (Soussana and Lemaire, 2014; Chen et al.,68

2015; Conant et al., 2017; Abdalla et al., 2018). Because of its dynamic69

nature, the C balance of vegetation in managed grasslands (i.e. assimila-70

tion, allocation, removal and loss) is complex and challenging to monitor71

and assess.72

Detailed, continuous measurements of the C dynamics of grasslands are73

limited to a few sites globally. Computational approaches are therefore used74

to extrapolate observed relationships across landscapes. Such computational75

methods include (1) statistical models that relate climate data and selected76
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national statistics to grassland productivity and removals (e.g. Smit et al.,77

2008; Herrero et al., 2013; Qi et al., 2017, 2018); (2) process-based grassland78

models that simulate C uptake and turnover (e.g. Vuichard et al., 2007;79

Chang et al., 2013; Snow et al., 2014; Chang et al., 2015; Kipling et al., 2016;80

Rolinski et al., 2018; Puche et al., 2019; Sándor et al., 2020; van Oijen et al.,81

2020); and (3) processed earth observation (EO) data that map and track82

key ecological variables, such as leaf area index (e.g. Franke et al., 2012;83

Dusseux et al., 2014; Asam et al., 2015; Xu and Guo, 2015; Ali et al., 2016;84

Gómez Giménez et al., 2017; Punalekar et al., 2018). Each method has its85

strengths and weaknesses. Statistical approaches are strongly grounded on86

measured data but have low sensitivity to the spatial and temporal variation87

of system drivers (e.g. climate, management) and have limited explanatory88

depth (Smit et al., 2008). Process models describe most of the underlying89

biogeochemical processes, which gives them greater explanatory depth than90

purely statistical approaches and the capacity to explore the consequences91

of different management and soil-climate conditions. But process models92

require observational data for parameter calibration and output error evalu-93

ation (Ma et al., 2015; Ehrhardt et al., 2017). Model-based studies tend to94

present deterministic results, ignoring the role of uncertainties around model95

inputs, parameters and structure, and observed data (Smith et al., 2012;96

Kipling et al., 2016). Earth observations increasingly provide snapshots at97

high temporal and spatial resolution on certain drivers and proxies of C dy-98

namics (e.g. vegetation structure, soil moisture). But these products do99

not consider the full C budget, particularly below ground, nor diagnose how100

grassland ecosystems C storage evolves (Ali et al., 2016).101

Model-data fusion (MDF) is a hybrid approach that combines aspects of102

the three aforementioned computational approaches (Raupach et al., 2005).103

MDF uses probabilistic methods to calibrate model parameters and/or to104

quantify model predictive uncertainty (Gottschalk et al., 2007; Patenaude105

et al., 2008; Ben Touhami and Bellocchi, 2015; Oenema et al., 2015; van106

Oijen, 2017). From an ecosystem modelling perspective, MDF can be under-107

stood as a framework in which model parameter distributions are calibrated108

according to a set of observations (observed data assimilation) and model109

output uncertainty is quantified. The behaviour of simulated fluxes and110

pools is constrained according to certain rules. For instance, ancillary data111

from national statistics, land surveys and scientific literature can be inte-112

grated in a MDF framework. The strong linkage to observations means that113

MDF is suitable for quantifying the existing situation and for explaining the114
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mechanisms that underlie the functioning of a grassland. Model-data fusion115

can accommodate models of varying complexity (e.g number of parameters,116

modules, calculation nodes) but increasing complexity increases the compu-117

tational cost and can reduce the robustness of the MDF process. The MDF118

approach has been used in studies focusing on various aspects of terrestrial119

ecosystem C dynamics (e.g. productivity, biomass, fire emissions) in the past120

(Wang et al., 2009; Fox et al., 2009; Keenan et al., 2012; Kuppel et al., 2014;121

Xiao et al., 2014; Kuppel et al., 2014; Bloom and Williams, 2015; Peylin122

et al., 2016; Smallman et al., 2017; Scholze et al., 2017; Peaucelle et al.,123

2019). Model-data fusion is actively benefiting from the increasing quality124

and range of EO data and can be used to monitor terrestrial ecosystem C125

balance at various spatial and temporal scales (Guo et al., 2014; Bloom et al.,126

2016; Ramapriyan and Murphy, 2017; Chen and Wang, 2018).127

Here, for the first time to our knowledge, we apply MDF to analyse128

ecosystem C cycling in managed grasslands. Previous probabilistic model-129

based studies have focused on plant functional type identification and have130

not considered the role of management on C cycling (Kuppel et al., 2014;131

Peylin et al., 2016; Peaucelle et al., 2019). In this study, we present a devel-132

opment of the Data Assimilation Linked Ecosystem Carbon model (DALEC)133

that is tailored for use in MDF for grasslands (DALEC-Grass). DALEC is a134

C-budget model that is integrated into the Carbon Data Model Framework135

(CARDAMOM) (Bloom and Williams, 2015; Bloom et al., 2016; Smallman136

et al., 2017). DALEC and the CARDAMOM MDF framework have been used137

before in MDF studies on forests and croplands (Revill et al., 2016; Small-138

man et al., 2017). The aim of the present study is to demonstrate MDF139

with DALEC-Grass and test its ability to quantify C dynamics in grasslands140

under variable grazing and cutting regimes. As a first step, we calibrate the141

distribution of DALEC-Grass parameters using 3 years of measured data on142

leaf area index (LAI) and net ecosystem exchange (NEE) from a grassland143

in eastern Scotland (UK). LAI data are routinely estimated from EO sys-144

tems at fine spatial (<ha) and temporal resolutions (≈ days). Therefore,145

time series of satellite LAI data have the potential to inform and constrain146

grassland models effectively at sub-field scales and during critical growth147

changes and management interventions. As a second step, we tested this148

assumption by evaluating our model’s predictive skill when a limited number149

of field-measured LAI data are assimilated through the CARDAMOM MDF150

framework. We assess the model’s performance by comparing its outputs151

to independent eddy flux data on NEE of CO2, above and below-ground152
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biomass and soil respiration from chambers. Six additional years of data153

from the core study site and one year of data from another UK site are used154

for the validation process. The materials and methods section describes the155

DALEC-Grass model, the CARDAMOM framework, the characteristics of156

the grassland sites that are modelled and the methodology that is followed.157

Finally, we discuss the potential for DALEC-Grass and CARDAMOM to158

produce landscape analyses of grassland C cycling under varied management159

systems using earth observation.160

2. Materials and methods161

2.1. DALEC-Grass162

DALEC-Grass is a development of the DALEC model in which a number163

of processes related to grass growing, cutting and grazing have been intro-164

duced (Smallman et al., 2017). The model is written in fortran and its code165

is available online at https://github.com/GCEL/DALEC-Grass. DALEC-166

Grass is a parsimonious terrestrial ecosystem C cycling model of intermedi-167

ate complexity which tracks the dynamics of three plant C pools and two168

dead organic matter pools. DALEC-Grass does not resolve explicitly mix-169

tures of grasses and biodiversity, and water and nitrogen (N) cycling are170

not described. The model is driven by temperature, short-wave radiation,171

vapour pressure deficit and CO2 concentration (Table 1). Carbon enters the172

ecosystem via gross primary production (GPP) which is partitioned into au-173

totrophic respiration or allocated to various plant pools (Fig. 1). The model174

simulates the turnover of plant C pools to litter and soil organic matter175

based on both mortality and grazing/cutting. The mineralisation (i.e. het-176

erotrophic respiration) and decomposition of litter and soil organic C pools177

are temperature dependent first order processes.178

DALEC-Grass has 25 parameters impacting photosynthesis, litter pro-179

duction and decomposition, fractional allocation of C, and climate sensitiv-180

ity of phenology and decomposition. A further 8 parameters relate to initial181

conditions of C pools and to management impacts of grazing and cutting182

(see Table 5 in supplementary material). The calculations in DALEC-Grass183

are performed on a daily basis by default. A component of DALEC-Grass is184

the Aggregated Canopy Model (ACMv1); a photosynthesis model that emu-185

lates a detailed mechanistic model, and that uses daily meteorological data186

to estimate GPP (Williams et al., 1997). The duration and intensity of the187

grass growing period is calculated following the growing season index (GSI)188
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approach (Jolly et al., 2005). The GSI method uses information on vapour189

pressure deficit (VPD), daylength and daily minimum temperature to adjust190

the plant’s physiological progress (Smallman et al., 2017).191

The net primary productivity (NPP) C, which remains after accounting192

for C losses via autotrophic respiration, is allocated to root, stem and leaf193

tissues. In DALEC-Grass, the above- to below-ground C allocation balance is194

dynamic and is calculated on a daily basis using the architecture-dependent195

strategy presented in Reyes et al. (2017). According to this approach, the C196

that is transferred to the fine root C pool is linked to above-ground biomass197

and increases after the plant has grown a sufficient quantity of leaves. This198

linkage is achieved by the following equation :199

Froott = 1− exp(−1 ∗ P4 ∗ LAIt) (1)

where Froott is the fraction of NPP C that goes to the root C pool on day t,200

LAIt is the LAI of the sward on day t and P4 is a model parameter. The201

remaining NPP C is allocated to above-ground biomass. Its partitioning to202

the stem and leaves C pools is based on the idea that increasing stem mass is203

needed to support increasing leaf mass but the stem to leaf ratio is dynamic204

and not constant. The C allocation to leaves and stems is calculated using205

parameter P29 within the following equations :206

Fleaft = NPPt ∗ (1− (P29 ∗ (LAIt/LAImax))) (2)

Fstemt
= NPPt ∗ (P29 ∗ (LAIt/LAImax)) (3)

where Fleaft is the fraction of NPP allocated to the leaf C pool on day t,207

Fstemt
is the fraction of NPP allocated to the stem C pool on day t, LAIt is208

the LAI of the sward on day t and LAImax (set to 6 m2 m−2) is a maximum209

LAI for managed grasslands.210

Animal grazing and grass cutting is imposed as a time series forcing.211

The number of livestock units (LSU) per ha per day determines the animal212

grazing intensity. The amount of C that one LSU removes from the grassland213

via grazing is estimated by multiplying the LSU value by a "dry matter214

demand per weight of 1 LSU" parameter (P31); with the standard weight215

of one LSU being equal to 650kg. The resulting dry matter (DM) value216

(in kgDMha−1) is converted to gCm−2 and removed from the C pool of the217

foliage. DALEC-Grass has a set of internal mechanisms through which it218
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can accept/perform or reject/skip a grazing instance. These mechanisms219

reflect the logical assumption that there is a minimum amount of above-220

ground biomass that has to remain after grazing for grass to be able to grow221

the following days; i.e. grazing is not simulated when the simulated above-222

ground biomass is below a threshold. This minimum biomass threshold is223

a model parameter (P27) and a similar parameter and concept is applied224

for cutting (P28); i.e. cutting cannot take place when the simulated above-225

ground biomass is below a threshold. These mechanisms exist to ensure226

there are no unrealistic combinations of livestock density and simulated grass227

biomass.228

DALEC-Grass uses a simple scheme to convert the amount of C in grass229

into (1) C in animal-respired CO2; (2) C in methane (CH4) produced via di-230

gestion; and (3) C in animal excrement. Of the total amount of C (gCm−2d−1)231

that is grazed : (1) 54% is lost to the atmosphere as CO2; (2) 4% is lost to232

the atmosphere as CH4; (3) 32% returns to the soil as C in excrement; and233

(4) the remaining 10% stays in the animal’s body. In reality the conversion234

factors of grazed C are dynamic, they depend on animal type, weight and age235

and vary even between animals that have the same aforementioned character-236

istics (Vertès et al., 2018; Snow et al., 2014). The grazed C conversion factors237

used in DALEC-Grass are generic in order to reflect different estimates for238

beef/dairy cattle and sheep and were extracted from the relevant literature239

(Bell et al., 2016; Lee et al., 2017; Worrall and Clay, 2012; Parsons et al.,240

2009). In terms of modelling soil C dynamics, DALEC-Grass uses a simple241

soil C scheme, in which plant residue and excrement-contained C go into a242

single litter pool. Litter C undergoes temperature-dependent decomposition243

with part of the C lost as heterotrophic respiration while the remainder is244

moved into a single slowly-decomposing soil C pool that represents the soil’s245

organic matter.246
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Figure 1: Diagram of the DALEC-Grass model. Daily GPP is calculated by the ACM model. DALEC has 5 pools: leaves,
stem, roots, litter and soil organic matter.
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Table 1: DALEC meteorological and management inputs

Variable units

Minimum daily temperature oC
Maximum daily temperature oC
Short-wave radiation MJm−2day
Atmospheric CO2 concentration ppm
21-day average minimum temperature C
21-day average photoperiod sec
21-day average vapour pressure deficit Pa
Animal density livestock units per ha

2.2. Carbon Data Model Framework247

DALEC-Grass is integrated into the Carbon Data Model Framework
(CARDAMOM) (Bloom et al., 2016). CARDAMOM is a MDF framework
that uses Bayesian inference to approximate the joint distribution of model
parameters. This approximation is done using a function of the likelihood of
each sampled parameter vector. The Bayes’ theorem forms the basis Bayesian
inference:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(4)

where θ represents the parameters, D the observed data, P (θ|D) the posterior248

distribution of parameters, P (D|θ) the likelihood of θ given D, P (θ) the249

prior distribution of parameters and P (D) the marginal distribution of D250

(normalisation constant). The effectiveness of Bayesian inference stems from251

the fact that the posterior distribution of parameters is proportional to the252

likelihood:253

P (θ|D) ∝ P (D|θ)P (θ) (5)

Markov Chain Monte Carlo (MCMC) is a group of algorithms that are254

used to sample from probability distributions (Chib and Greenberg, 1995).255

For a discussion on MCMC theory we refer to van Ravenzwaaij et al. 2018256

and for a description of different MCMC algorithms we refer to Houska257

et al. 2015. In our implementation of CARDAMOM, the Metropolis-Hastings258

(MH) MCMC algorithm is used. Metropolis-Hastings creates a Markov chain259
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by deciding whether each sampled θ is accepted or rejected after comparing260

its likelihood to that of the last accepted θ. This comparison is done using261

the acceptance ratio (A) :262

A =
f(θ′)

f(θ)
(6)

where θ′ is the sampled θ under examination and f is a function proportional263

to P (θ|D). For this study, MH used a metric that describes the model’s pre-264

dictive skill against observed variables as a surrogate likelihood. This metric265

is named accuracy and is described in Myrgiotis et al. (2016). Accuracy266

quantifies the number of simulated data points that fall within the respec-267

tive measured range (i.e. standard deviation assuming normal distribution268

for D) while it also considers possible time lags between measured and sim-269

ulated time series. Accuracy can take any value between 0 (no simulated270

points within the observed range) and 1 (all simulated points within the ob-271

served range). The consideration of time lags when calculating the metric272

allows CARDAMOM to capture some of the impacts that possible temporal273

uncertainties in model inputs can have on model outputs (Myrgiotis et al.,274

2018). Similarly, delayed responses of the grassland’s physiology and/or bio-275

geochemistry to driving variables, which could appear due to model for-276

mulation uncertainty and/or parametric uncertainty, can also be captured.277

Moreover, the model’s internal mechanisms can lead to instances when e.g.278

a day’s grazing, even though it is specified in the inputs, is not modelled279

because there is not sufficient simulated grass biomass on that day. This280

can lead to time lags in LAI fluctuation and affect the level of fit between281

modelled and measured data.282

For each assimilated variable (LAI and NEE) we provide an estimate of283

uncertainty around the measured data points. For LAI the uncertainty is set284

equal to ±15% of the mean measured value (Van Wijk and Williams, 2005).285

Attributing uncertainty levels around measured NEE data is more compli-286

cated because most measured datasets depend on a single flux tower and do287

not provide uncertainty estimates. In this study the uncertainty around the288

measured NEE data is set equal to ±1 gCm−2 (Hill et al., 2012; Revill et al.,289

2016). The overall setup of the implementation of MH in CARDAMOM is290

the following :291

• 10 chains are run in parallel292
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• Each chain has 100 million steps293

• The initial 10% of all accepted steps is used as burn-in294

• At each step of the Markov chain the MH algorithm:295

1. obtains a sampled parameter vector296

2. calculates the objective function (i.e. accuracy metric)297

3. calculates A and :298

– If A > 1 then θ
′ is accepted299

– If A > a uniform random number [0.3 - 1] then θ
′ is accepted300

– If A < a uniform random number [0.3 - 1] then θ
′ is rejected301

A list of ecological and dynamic constraints (EDCs) is used in CAR-302

DAMOM to refine the parameter space that the MH sampling explores303

(Bloom et al., 2016). EDCs are checks of the mathematical, ecological and304

biogeochemical sanity of the sampled model parameter combinations and305

model outputs (pools, fluxes). These checks are performed in CARDAMOM306

before and/or after each run of DALEC-Grass, which is performed to esti-307

mate the likelihood of each sampled parameter vector in MH. Altogether,308

EDCs reflect existing knowledge on grassland ecosystem functioning. Table309

2 outlines the EDCs that were used with CARDAMOM in this study. Eco-310

logical and dynamic constrains are a key feature of the CARDAMOM MDF311

framework. Retrieving posterior parameter distributions that are mathemat-312

ically and theoretically sound depends on the use of appropriate EDCs. In313

this regard, the present study is a test of CARDAMOM’s grassland-specific314

EDCs.315

The assessment of if and when a MCMC algorithm has converged to the316

stationary distribution of parameters is an essential part of its implementa-317

tion. The difficulty of convergence assessment increases with the number of318

parameters and no single convergence diagnostic is generally accepted as be-319

ing suitable for every application (Brooks and Gelman, 1998). When multiple320

chains are explored, such as in CARDAMOM, convergence diagnostics based321

on the comparison of inter and intra-chain variances are appropriate. The322

Gelman-Rubin (GR, see supplementary material) is one of the most widely323

used convergence diagnostics of this type and was used to assess chain con-324

vergence in this study (Gelman and Rubin, 1992). The equations used for325

calculating the potential scale reduction factor (PSRF) of the GR method326
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and the results of chain convergence assessment are presented in the supple-327

mentary material.328

2.3. Field measured data329

Measured data from two managed grassland sites, of contrasting soil and330

climatic conditions, in eastern (Easter Bush) and southern (Crichton) Scot-331

land are used in this study.332

2.3.1. Easter Bush333

Easter Bush is located in South East Scotland, 10 km south of Edin-334

burgh (03◦02’W, 55◦52’N, 190 m above sea level). The mean annual rainfall335

between 2002 and 2010 was 947 ±234 mm and the mean annual temperature336

was 9.0 ±0.4 ◦C. The field has been under permanent grassland management337

for more than 20 years with a species composition of >99% perennial rye-338

grass (Lolium perenne) and < 0.5% clover (Trifolium repens). The soil type339

is an imperfectly drained Eutric Cambisol (FAO classification) with a pH of340

5.1 (in H2O), a clay fraction of 20-26% (Clayey Loam to Sandy Loam) and341

a soil organic carbon content of 4% (0-10 cm depth). The grassland was342

grazed continuously by heifers in calf, ewes and lambs at different stocking343

densities. The grass was cut for silage in June and August 2002 and in May344

2003. Ammonium nitrate fertiliser was applied to the field 3-4 times per345

year, usually between March and July at an average of 56 kg N ha−1 per346

application. An additional fifth mineral N application was applied as urea in347

2008 and organic manure was applied in September 2004 and March 2005 as348

cattle slurry. Vegetation for above ground biomass and LAI measurements349

were collected from 4 to 6 quadrats (0.0625 m2) per sampling occasion. The350

leaf area was analysed using a Li3100 Area meter (LI-COR inc. Lincoln,351

Nebraska, USA). Fresh weight of biomass samples were recorded before sam-352

ples were dried at 80oC for 24 hours and dry weight was measured. NEE353

was measured by an eddy covariance system consisting of a fast response354

3D ultrasonic anemometer (Metek USA-1, Metek GmbH, Elsmhorn, Ger-355

many) and a fast closed path CO2-H2O analyser (LI-COR 7000 infra-red gas356

analyzer, LI-COR, Lincoln, NE, USA). Quality control of the eddy covari-357

ance data followed the procsedure proposed by Foken and Wichura (1996).358

Missing NEE data were gap-filled using the online tool developed by Reich-359

stein et al. (2005). Soil respiration rates were measured weekly (297 times360

between 2003 and 2010) at 4 locations using a closed dynamic chamber (vol-361

ume 1334 cm3, cover area 78.5 cm2, PP-Systems, Hitchin, UK), which was362
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Table 2: Ecological and Dynamic Constraints

Index Description

1 Fluxes cannot be negative
2 Pools cannot be negative
3 GSI-related minimum parameters cannot be larger than maximum parameters
4 Turnover rate of soil organic matter cannot be larger than that of litter
5 Initial SOM pool cannot be smaller than the sum of all other pools
6 Annual GPP cannot be more than 2000 g C m−2 (Xia et al., 2017; Gilmanov et al., 2007)
7 Annual GPP cannot be less than 500 g C m−2 (Xia et al., 2017; Gilmanov et al., 2007)
8 Daily GPP cannot be more than 20 g C m−2 (Xia et al., 2017; Gilmanov et al., 2007)
9 Annual ecosystem respiration cannot be more than 2000 g C m−2 (Xia et al., 2017; Gilmanov et al., 2007)
10 Annual ecosystem respiration cannot be less than 500 g C m−2 (Xia et al., 2017; Gilmanov et al., 2007)
11 Daily ecosystem respiration cannot be more than 15 g C m−2 (Xia et al., 2017; Gilmanov et al., 2007)
12 LAI cannot exceed 6 m2 m−2

13 Minimum daily estimated root to shoot ratio cannot be less than 1 (Mokany et al., 2006)
14 Daily cut grass biomass cannot be more than 300 g C m−2 or less than 50 g C m−2 (Qi et al., 2017)
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placed onto soil and vegetation. The CO2 increase within the chamber was363

monitored over 30-180 s by a portable sensitive infrared gas analyser (EGM364

2, PP-Systems). It should be noted that the area covered for the soil respira-365

tion measurements also included vegetation and, therefore, measurements are366

effectively equivalent to ecosystem respiration (the sum of autotrophic and367

heterotrophic respiration). The data were converted from µmol CO2 m−1 s−1
368

to g CO2-C m−2 d−1 using the daily minimum and maximum temperatures369

and a Q10 equal to 2 (Meyer et al., 2018; Barba et al., 2018).370

2.3.2. Crichton371

The field experiment was located at Crichton Royal Farm, Dumfries (55◦372

2’3"N, 35◦ 35’1" W) in South-West Scotland, on a long-term permanent373

grassland site (6.53 ha) used for intensive dairy production (Bell et al., 2016).374

The landscape was open grassland dominated (proportion of total harvested375

biomass > 99%) by perennial ryegrass (Lolium perenne) with white clover376

(Trifolium repens), creeping buttercup (Ranunculus repens) and chickweed377

(Stellaria media) being minor sward constituents. The Crichton site is repre-378

sentative of a wet climate zone, with a 30 year (1971-2000) long-term average379

rainfall of 1140 mm, and mean annual temperature of 9.3 oC. The soil was a380

Eutric Cambisol (FAO classification) and had a free-draining sandy to sandy-381

loam light texture. The soil organic C concentration (0-10 cm) was 5.25%382

(4.3-6.2%), and the pH varied between 5-6.3 at this site. The long term383

management of the site involved a rotation between cutting (with three cuts384

per year) and summer grazing. Between March and July 2015, 226 kg N385

ha−1 were applied as slurry (4 applications) and synthetic fertiliser (2 ap-386

plications). A sampling grid (20m * 20m) was marked out in the field at387

the beginning of the measurement campaign in June 2015. Leaf area index388

(LAI), aboveground biomass and respiration at soil surface (Rs) were made389

on four occasions, and root biomass on two occasions during June and July390

2015. LAI was measured using a LAI-2200C Plant Canopy Analyzer (Licor391

Biosciences, Lincoln NE) at each point of the sampling grid. Aboveground392

biomass was measured using a rising plate meter calibrated against destruc-393

tive biomass sampling. Root biomass was destructively sampled by taking394

replicate 2 cm diameter soil cores and dividing into 0-10 and 10-20 cm depths395

from positions adjacent to the collars used for Rs measurements. Soil res-396

piration (Rs) was measured,at midday, on four dates, using a potable PP397

Systems Infra-red EGM4 Gas Analyser linked to a SRC-1 soil respiration398

chamber. The chamber (10 cm of diameter and 15 cm height) was equipped399
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with a fan, and was inserted into bare soil with a basal cutting ring to a400

depth of 2 cm during measurements. The air from the chamber was send to401

the analyser at flow rate of 0.2 l min−1. After the chamber equilibrated the402

CO2 concentration was measured every 5 seconds and the flux was calculated403

from the concentration increase over approximately 60 seconds time using a404

linear regression. Net ecosystem exchange of CO2 was measured using an405

eddy covariance tower (EC) sited within the field (11 m height), with a Gill406

R3 sonic anemometer (Gill Instruments, Lymington UK) and a Licor LI700407

CO2 analyser (Licor Biosciences, Lincoln NE). Velocity measurements were408

rotated to minimize the mean vertical velocity. A site specific cospectral409

model was developed, based on sensible heat fluxes. Similarly, sensor specific410

models of sensor frequency response attenuation were developed and com-411

bined with the cospectral models to determine, and then apply, frequency412

response corrections. The resulting fluxes were screened for plausibility in-413

strument diagnostics and for individual deviations from the group mean by414

more than two standard deviations.415

2.4. Methodology416

The volume of field-measured data and the range of measured variables at417

Easter Bush and Crichton allows us to test DALEC-Grass and CARDAMOM418

in detail. In designing the methodology of the study we considered two main419

aspects: (1) the efficient use of the available field-measured data and (2)420

the ability to relate our computational experiments with the envisioned ap-421

plication of DALEC-Grass in MDF studies. For these reasons, the use of422

LAI observations has a particular importance. LAI is a physiology-related423

variable, for which data can be collected rather easily and frequently at the424

different spatial scales that DALEC-Grass can be applied i.e. farm, land-425

scape, region. This contrasts with what is the case for the other measured426

variables examined in this study with the possible exception of aboveground427

biomass for which satellite data are increasingly available. Because of the428

lack of accurate satellite-based LAI data for Easter Bush during the simu-429

lated period, field-measured LAI data were used in this study.430

Initially, all DALEC-Grass parameters have a uniform distribution i.e.431

only a realistic minimum and maximum value is known for each of them.432

In order to refine these uniform distributions we drive DALEC-Grass with 3433

years of climate and management data for the Easter Bush site while assim-434

ilating in-situ NEE and LAI observations (step 1). Through this parameter435
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calibration step we expect parameter distributions to become more represen-436

tative of managed (cut and grazed) grasslands. It should be clarified that the437

term calibration is used to refer to the refinement of the prior distribution of438

parameters and not the parameters themselves. During calibration, the cal-439

culated accuracy metric is the mean of the accuracy for LAI and the accuracy440

for NEE. In order to test the MDF framework we, then, run DALEC-Grass441

(step 2) for 6 additional years at Easter Bush, this time assimilating only442

the available LAI observations. We assess the model’s performance at Easter443

Bush by comparing model outputs with independent in-situ data on NEE444

(flux tower based) and ecosystem respiration (ER, chamber based). More-445

over, we run DALEC-Grass with one year of climate and management data446

from Crichton while assimilating the available field-measured LAI data (step447

3). The model’s performance at Crichton is assessed by comparing model out-448

puts with independent in-situ data on NEE, above and below-ground biomass449

and soil respiration. The four steps of our computational experiment are :450

1. Calibration of DALEC-Grass parameters: Implementation of CAR-451

DAMOM at Easter Bush by assimilating 3 years (2002-2004) of LAI452

and NEE observations.453

2. MDF at Easter Bush: Using the calibrated distributions (step 1), im-454

plementation of CARDAMOM at Easter Bush for 6 years (2005-2010)455

by assimilating the corresponding LAI observations.456

3. MDF at Crichton: Using the calibrated distributions (step 1), imple-457

mentation of CARDAMOM at Crichton for 2015 by assimilating LAI458

observations.459

4. Quantitative assessment of MDF at steps 1,2 and 3 against the assim-460

ilated data and against independent data.461

In order to assess model accuracy and precision we calculate, for each462

variable examined, the percentage of observed data points (i.e. mean of463

observations) that fell within the 95% confidence intervals (CI) produced464

by the model runs. We refer to this metric as overlap and present it as a465

percentage that can take a value between 0 and 100. We also calculate (1)466

the Root Mean Squared Error (RMSE) to quantify the difference between467

measured and modelled data; (2) the bias in model predictions; and (3) the468

Pearson correlation coefficient (r) to quantify how well the trends in measured469
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data are captured by the model (for equations see Myrgiotis et al. (2016)).470

It should be noted that –where mentioned– estimates of the uncertainty of471

measurements come from using the RMSE equation after replacing base of472

the exponent with the sum of 2 standard deviations of each measured data473

point.474

3. Results475

3.1. Easter Bush476

Three years (2002-2004) of measured LAI and NEE data were assimilated477

by CARDAMOM to calibrate the distributions of DALEC-Grass parameters.478

For the calibration period, 25 % of LAI observations and 90 % of NEE479

observations fell within the 95 % confidence interval of the CARDAMOM480

analysis while r was 0.25 and 0.56 respectively (Table 3). The calibrated481

parameter distributions were used to run DALEC-Grass for the subsequent 6482

years of measurements (2005-2011); this time assimilating available measured483

LAI data only.484

For the 2005 to 2011 MDF period, 85% of the measured weekly-mean485

NEE and 82% of the daily LAI data points lied within the 95% CIs. The486

variation in NEE (r = 0.70) and LAI (r = 0.74) was well captured. DALEC-487

Grass tended to overestimate both NEE (bias=0.38 gCm−2) and LAI (bias =488

0.47 m2m−2). We used a 15% relative uncertainty around the measured LAI489

data during the MDF process with CARDAMOM. We found that the RMSE490

of the measured against modelled LAI data was 10% lower than the mean491

uncertainty of the measured LAI data. We repeated this process for NEE,492

and found that the estimated RMSE was equal to the uncertainty attributed493

to the measured data during the MDF process (i.e. 1 gCm−2) .494

DALEC-Grass was able to capture the patterns and magnitudes in mea-495

sured ER (Fig. 4). The comparison of modelled and measured ER estimates496

produced a r of 0.79, which reflects the model’s skill in representing ER pat-497

terns. In terms of the relative size of ER, 83% of the mean measured ER498

data were within the modelled 95% CI. The estimated RMSE (1.5 gCm−2 )499

was smaller than the average uncertainty of the measured data (1.65 gCm−2)500

(Table 3). The inter-annual patterns in MDF-estimated NEE, ER and GPP501

mirror the measured data as presented in Jones et al. 2017 (Fig. 5).502

The mean simulated harvest (283 gCm−2a−1) was just 3% higher than503

the measured harvest (270 gCm−2a−1) in 2002 and 30% lower than the 2003504

measured harvest (170 gCm−2a−1) (Jones et al., 2017). However, both in505
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Figure 2: Modelled and measured daily Leaf Area Index (LAI) at the Easter Bush site.
Grey-shaded area (2002-2004) shows the parameter calibration period. The unshaded area
(2005-2011) represents the LAI data assimilation period. The mean modelled LAI and the
CARDAMOM-estimated 95% confidence intervals presented in green. The measured LAI
and its 15% relative uncertainty presented in red.

Figure 3: Weekly mean Net Ecosystem Exchange (NEE) at the Easter Bush site. From
left to right: (1) Time series of measured (red) and modelled (green) weekly mean NEE.
The green-shaded area represents the 95% confidence intervals and the red-shaded area
represents the uncertainty around the measured NEE (1gCm−2d−1). The parameter cal-
ibration period (2002-2004) is shown as grey-shaded area. (2) Scatter plot of measured
and corresponding modelled weekly mean NEE.
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Figure 4: Weekly mean Ecosystem Respiration (ER) at the Easter Bush site. From left to
right: (1) Time series of measured (red) and modelled (green) weekly mean ER. The green-
shaded area represents the 95% confidence intervals and the red error bars the uncertainty
around the measured ER. (2) Scatter plot of measured and corresponding modelled weekly
mean ER.

Table 3: Model performance metrics for Easter Bush

Variable Time period r Bias Overlap RMSE

LAI
2002-2004 0.34 1.33 25 % 1.6
2005-2010 0.74 0.47 82 % 1.0

NEE
2002-2004 0.56 0.95 90 % 2.11
2005-2010 0.70 0.38 85 % 1.00

ER 2002-2010 0.79 -0.07 83 % 1.5

Weekly mean data used for Net Ecosystem Exchange (NEE) and
ecosystem Respiration (ER). Overlap shows the percentage of ob-
served data that lie within the model-based 95% CIs. Bias and RMSE
in gCm−2 for ER and NEE and in m2m−2 for LAI.
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Figure 5: Comparison of MDF-based and measurements-based (after Jones et al. 2017)
annual Net Ecosystem Production (NEP), Gross Primary Productivity (GPP) and Ecosys-
tem Respiration (ER). Bars show the mean gCm−2yr−1 between 2002 and 2010 and error
bars show the inter-annual standard deviation.

2002 and 2003 the measured annual harvest was within the CARDAMOM506

estimated 95% CIs. The simulated Easter Bush grassland behaved as a507

typical UK permanent grassland producing an average of 262 gCm−2 (5.6508

tDMha−1) of grass biomass per year. This level of biomass availability and509

removal is within the expected range (353 ±96 gCm−2a−1) as estimated in510

a recent study by Qi et al., 2017. Finally, DALEC-Grass estimated a mean511

annual input to soils of 710 gCm−2a−1 in the form of root and leaf litter.512

3.2. Crichton513

The calibrated parameter distributions retrieved for Easter Bush (2002-514

2004) were used as priors for the CARDAMOM analysis at the Crichton site.515

Four field-measured LAI data points were available for assimilation (Fig. 6).516

The assimilation of measured LAI data also affected the fit between measured517

and modelled aboveground biomass and grass harvest. All four measured518

LAI data points were within the modelled 95% CIs. However, the model519

did not capture the first of four aboveground biomass measurements. It520

should be noted that neither the quantity of grass harvested nor the amount521

of aboveground biomass (at any point in time) were provided to the model522

during the LAI data assimilation in CARDAMOM. Despite this discrepancy,523

the two simulated harvests removed 276 gCm−2 (5.8 tDMha−1) from the524
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Figure 6: Modelled (green) and measured (red) LAI, aboveground biomass, grass har-
vest, root biomass and heterotrophic respiration at the Crichton site. The red error bars
represent the uncertainty around the measured data.The CARDAMOM-estimated 95%
confidence intervals are presented in green shading

grassland, and each measured harvest yield was within the corresponding525

CARDAMOM’s 95 % CI (Fig. 6).526

DALEC-Grass was successful in reproducing the measured patterns and527

magnitudes of NEE. The estimated correlation coefficient was 0.88, the mean528

bias was 0.25 gCm−2, the RMSE was 0.96 gCm−2 and all the of the measured529

data were within the 95% CIs (Fig. 7). Notwithstanding the large variability530

among the collected samples of root biomass, the mean simulated amount531

of C contained in grass roots was within the respective measured ranges532

(Fig. 6). DALEC-Grass currently does not separate autotrophic respiration533

C into above and belowground fluxes. In order to allow for a comparison534

between measured and simulated respiration data we assumed that between535

40% and 60% of total surface respiration can be attributed to heterotrophic536

sources (Li et al., 2018). While not directly measured we, henceforth, refer to537

heterotrophic respiration data as measured data. The comparison between538

measured and modelled heterotrophic respiration showed that all four mea-539

sured data points lied within the 95% CI (Fig. 6). Finally, DALEC-Grass540

estimated that 780 gCm−2y−1 were added to Crichton’s soil in 2015 in the541

form of root and leaf litter.542

3.3. MDF-retrieved distributions543

Model parameter distributions were calibrated using 3 years of LAI and544

NEE data from Easter Bush (calibration period). This calibration process545

led to reductions in the length of the uniform prior distributions that var-546

ied according to parameter. The average prior length reduction was 47%547

with achieved reductions being between 3% and 99%. Details on the appli-548

cation of CARDAMOM for parameter distribution calibration include pos-549
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Figure 7: Weekly average Net Ecosystem Exchange (NEE) at Crichton. From left to right:
(1) Time series of measured (red) and modelled (green) weekly mean NEE. The green-
shaded area represents the 95% confidence intervals and the red error bars represent the
uncertainty around the measured NEE (1gCm−2d−1). (2) Scatter plot of measured and
corresponding modelled weekly mean NEE.

Table 4: Model performance metrics for Crichton

Variable r Bias Overlap RMSE

NEE (weekly mean) 0.88 0.25 100 % 0.96

Weekly mean data used for Net Ecosystem Exchange (NEE).
Overlap shows the percentage of observed data that lie within
the model-based 95% CIs. Bias and RMSE in gCm−2.

Figure 8: Probability densities of the posterior distributions for three selected DALEC-
Grass parameters based on MDF results at Easter Bush (in red) and Crichton (in blue).
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terior means, maximum-a-posteriori-probability and prior length reduction,550

and are presented in Table 5 in supplementary material along with informa-551

tion on MCMC chain convergence assessment (Fig. 9).552

4. Discussion553

The results of this study show how MDF can quantify C dynamics in554

grasslands under variable grazing and cutting regimes. A limited number of555

in-situ LAI observations were assimilated through the CARDAMOM MDF556

framework in order to test the predictive skill of DALEC-Grass against 7557

years of data at two Scottish grasslands. At the grazed Easter Bush grass-558

land 21 in-situ LAI observations were assimilated to produce time series of559

C fluxes (NEE and ER) that closely matched corresponding measurements560

(eddy covariance and chamber-based fluxes, respectively). At the harvested561

Crichton site 4 in-situ LAI observations were assimilated and CARDAMOM562

produced robust estimates of above and below-ground biomass C pools and563

NEE C fluxes. The use of CARDAMOM also allowed us to handle obser-564

vational and model parametric uncertainty and provide a level of predictive565

uncertainty for the examined variables.566

4.1. Model performance567

Our MDF approach provides a probabilistic solution to the parameter568

identification problem. Among the factors that affect the robustness of model569

analyses are how measurement uncertainty and model parameter identifica-570

tion are assessed. In this study, measured data uncertainty has been consid-571

ered at the parameter retrieval stage, through the use of the accuracy metric572

as the cost function, and at the model evaluation stage, through the use of573

the CIs in quantifying and expressing model prediction skill. As a conse-574

quence, the results of simulations are distributions of parameter values and575

provide a quantitative analysis of the parameter-induced uncertainty around576

the model’s results. The average uncertainty around predicted C fluxes577

(NEE, ER) was less-than-or-equal to that attributed to NEE (1 gCm−2d−1
578

based on literature) and estimated from ER measurements (1.65 gCm−2d−1)579

(Hill et al., 2012; Revill et al., 2016).580

CARDAMOM’s key novelty is the use of ecological and dynamical con-581

straints (EDCs) as conditions imposed on the parameter retrieval process.582

The aim of including EDCs is to ensure that the MDF process respects a583

set of mathematical, ecological and biogeochemical rules. In practice, the584
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success of the MDF process can be judged by the level of fit between the585

outputs of DALEC-Grass and the assimilated measured data. However, in586

this study, we wanted to have a stricter assessment of DALEC-Grass and587

CARDAMOM. We used 3 years of measured data on LAI and NEE (Easter588

Bush) to calibrate the parameter distributions and, thereafter, used the re-589

fined prior distributions and LAI data assimilation for the remaining 6 years590

of data in Easter Bush and the one year of data in Crichton. The evaluation591

of MDF performance against NEE (Easter Bush and Crichton), ER (Easter592

Bush), biomass (Crichton) and heterotrophic respiration (Crichton) showed593

that DALEC-Grass was able to describe the examined C dynamics in man-594

aged grasslands with good accuracy. The mean overlap for NEE, ER and LAI595

during the MDF implementation was equal to 88% and RMSE was less than,596

or equal to, the respective measurement uncertainty (for NEE and ER). We597

argue that calculating the overlap along with the RMSE is an effective way598

to express the level of agreement between modelled and measured data for599

which uncertainty is quantified.600

4.2. Retrieved parameter distributions601

The MDF application at Easter Bush and Crichton adjusted the distribu-602

tions of model parameters to fit the observed LAI at each site. CARDAMOM603

was able to retrieve parameter distributions that led to model outputs that fit604

with the available observations while being conceptually and mathematically605

sound, as proven by the stability of the CIs for all the variables examined in606

the two grasslands. The parameter distributions obtained for each grassland607

did not differ for most parameters. However, for three parameters CAR-608

DAMOM produced informatively different distributions at the two grasslands609

(Fig. 8). For the "litter decomposition rate" parameter, the addition of an-610

imal excrement C to the soil’s litter C pool led CARDAMOM to retrieve611

a higher decomposition rate (i.e. more litter C goes into the SOC pool) in612

Easter Bush compared to Crichton, where there was no grazing during the613

measurement period. A higher leaf C per area (LMCA) was retrieved for614

Crichton compared to Easter Bush. This result suggests that the vegetation615

of cut Crichton grassland is more C dense than that of the grazed Easter Bush616

grassland, something that relevant studies confirm (Liu et al., 2017; Zheng617

et al., 2015; Laliberté et al., 2012). We argue that the ability to infer the618

relative difference in vegetation C density between grasslands is an important619

outcome produced by the combination of the model’s management related620

processes and the CARDAMOM EDCs. Moreover, DALEC-Grass depends621
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on a simple soil C scheme and CARDAMOM is given a wide prior range for622

initial SOC pool size parameter. Despite this, CARDAMOM suggests that,623

considering productivity levels, allocation patterns and EDCs, Easter Bush624

had a lower soil C content than Crichton. These results are confirmed by625

field-measured data, which show that SOC in Easter Bush is around 30%626

less than SOC in Crichton (COSMOS-UK, 2019).627

Based on the DALEC-Grass simulations and the corresponding measured628

data Easter Bush and Crichton were net sinks of C during the simulated629

periods. Both grasslands had a simulated annual aboveground biomass pro-630

ductivity that is within the observed limits (i.e. 238-429 gCm−2yr−1). The631

parsimonious mechanisms used in DALEC-Grass to describe grazing and632

cutting were effective and the retrieved parameter distributions for the rel-633

evant parameters are in agreement with relevant observations (Genever and634

Buckingham, 2016). For Easter Bush, CARDAMOM inferred from the data635

and modelling that grazing occurs when the total aboveground biomass is636

> 38-47 gCm−2 (0.8-1.0 tDMha−1). The distribution of the minimum pre-637

cutting aboveground biomass for Easter Bush showed that ≈120 gCm−2 (2.8638

tDMha−1) is the most likely value for this parameter. The minimum pre-639

cutting and pre-grazing aboveground biomass parameters (P27 and P28)640

also define how much biomass will be left standing immediately after each641

cutting and their posterior distributions suggest a minimum harvest of 86642

gCm−2 (1.8 tDMha−1). This is a realistic, albeit low, minimum harvest yield643

for the UK where grasslands can be cut up to three times per year Qi et al.,644

2017. Finally, DALEC-Grass results showed that the annual amount of C645

added to the soil as root and leaf litter is ≈ 10% more in Crichton compared646

to that estimated for Easter Bush. This difference is a result of the adapta-647

tion of C allocation patterns in response to the presence of grazing animals648

which also leads to a lower leaf C content in the grazed ecosystem (Easter649

Bush) (Hao and He, 2019; Chen et al., 2015; Mcsherry and Ritchie, 2013).650

4.3. Limitations651

Our analysis highlights areas for potential improvement in both the model652

and the MDF framework. DALEC-Grass is frugal with its number of param-653

eters and therefore the processes it incorporates. The results of this study654

showed that there is still a margin for improvement, which can be inferred655

from the different evaluation metrics. Moreover, the model requires informa-656

tion on grassland management as forcing. This requirement currently limits657

the applicability of DALEC-Grass to the areas with detailed management658
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data. The ACMv1 model (i.e. the module used to estimate GPP) used in659

DALEC-Grass does not consider the impact of plant water availability, and660

thus drought stress, on GPP. This likely has a limited effect on simulations661

in Scotland but DALEC-Grass can be updated if needed using a recently662

developed version of ACM that explicitly considers water cycling on estima-663

tion of GPP (Smallman and Williams, 2019). Furthermore, DALEC-Grass664

does not, at this stage, have a detailed description of the role of N for grass665

growth and C allocation. Because Easter Bush and Crichton are amply fer-666

tilised grasslands the results of this study are premised on non N-limited667

conditions. However, the lack of N cycling representation also means that668

soil C to N ratio and its role in litter and organic matter decomposition is not669

considered. The conversion of grazed biomass to C returned to the soil, in the670

form of excrement, depends on generic conversion factors but the assumption671

that all the daily-produced animal excrement is deposited on the soil is not672

realistic. Nevertheless, all livestock-related constants can be converted to673

parameters with appropriate respective priors, which can, in turn, be refined674

by CARDAMOM. Finally, in this study, we used field data from two sites in675

Scotland. These grasslands are representative of grasslands in the UK, and676

northwest Europe, but testing DALEC-Grass at grasslands across the world677

is needed for broader application.678

4.4. Future development679

Notwithstanding the aforementioned limitations, DALEC-Grass has a680

range of potential applications that vary from gap-filling time-series of C681

fluxes from micrometeorological towers to farm-level grassland C budgeting682

and validation of large-scale terrestrial ecosystem models. With appropriate683

development and testing the model can handle spatially resolved satellite-684

based data on LAI, which will allow the quantification of grassland pro-685

ductivity and C dynamics at landscape, regional and even national scales.686

To this end, DALEC-Grass will have to be developed in a way that allows687

the inference of management at grass-covered pixels of satellite images of the688

land’s surface. Such a spatially-resolved version of DALEC-Grass, when used689

in CARDAMOM, will allow us to better understand how key factors such as690

livestock density and cutting intensity affect ecosystem productivity and C691

sequestration.692
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5. Conclusions693

We demonstrated how a model of C dynamics linked by a model-data694

fusion framework to observations of LAI generated constrained analyses of695

grassland ecosystem functioning under management. The results of this696

study suggest that landscape grassland C cycling can be constrained using697

LAI data at relevant resolutions and accuracy. An initial parameter calibra-698

tion using eddy flux data constrained key C cycle parameters, leading to a699

better understanding of grassland productivity and C sequestration capacity.700

Once this calibration was completed, assimilation of LAI data over time al-701

lowed the model to make robust estimates of the effects of grass grazing and702

cutting on net CO2 exchanges. The data assimilation approach meant that703

the effects of parametric and observation uncertainties could be considered704

and quantified. We showed that the forecast uncertainty in our predictions705

was comparable to that of independent observations. We provide evidence706

that DALEC-Grass is a conceptually sound, structurally robust and compu-707

tationally lightweight model. In the era of EO satellites, and the associated708

availability of swathes of data, the attributes of the model show its potential709

to provide in-depth monitoring of managed grasslands across temporal and710

spatial scales. Our aim is to realise this potential by further appropriate711

development and testing at landscape scales.712
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Table 5: DALEC-Grass parameters. Description, units and calibration results.

Code Description Unit Priormin Priormax Posteriormean PosteriorSD MAP Prior length
reduction (%)

P1 Decomposition rate fraction d−1 1.00e-05 0.3 0.06 0.03 0.08 97
P2 Fraction of GPP that is respired - 0.4 0.51 0.4427 0.0298 0.4158 3
P3 GSI sensitivity for leaf growth - 0.75 9 3.968 0.767 4.637 61
P4 NPP belowground allocation - 0.01 1 0.330 0.068 0.352 60
P5 Maximum GSI for leaf turnover - 1.00e-07 3 0.214 0.230 0.173 50
P6 Turnover rate of roots fraction d−1 1.00e-06 0.1 3.45e-03 1.98e-03 5.38e-03 91
P7 Turnover rate of litter fraction d−1 1.00e-06 0.1 4.39e-03 2.66e-03 3.07e-03 90
P8 Turnover rate of soil organic matter fraction d−1 1.00e-10 0.01 3.84e-05 2.75e-05 2.44e-06 99
P9 Temperature Q10 factor - 0.008 0.15 0.0416 0.0162 0.0418 57
P10 Photosynthetic N use efficiency (PNUE) g C per g N 7 25 15 3 18 31

per leaf m2

per day
P11 Maximum GSI for labile/stem turnover - 0.0001 2 0.634 0.137 0.603 68
P12 Minimum GSI temperature threshold K 225 330 251 16 264 27
P13 Maximum GSI temperature threshold K 225 330 304 20 303 17
P14 Minimum GSI photoperiod threshold seconds 3600 30000 12283 5191 6892 23
P15 Leaf Mass C per Area (LMCA) g C per m2 of leaf 20 60 46 6 46 56
P16 Initial C in stem/labile pool g C m−2 1 300 151 75 52 4
P17 Initial C in foliar pool g C m−2 1 300 132 68 43 13
P18 Initial C in roots pool g C m−2 1 5000 893 800 284 40
P19 Initial C in litter pool g C m−2 1 5000 793 561 486 52
P20 Maximum GSI photoperiod threshold seconds 3600 64800 31917 6262 28880 42
P21 Minimum GSI VPD threshold Pa 1 5500 1209 929 186 27
P22 Maximum GSI VPD threshold Pa 1 5500 3376 1156 1457 16
P23 Critical GPP for LAI increase g C m−2 d−1 1.00e-05 1 0.30 0.13 0.26 53
P24 GSI sensitivity for leaf senescence - 0.96 1 0.99 0.00 1.00 52
P25 GSI growing stage indicator - 0.3 3 1.27 0.13 1.13 82
P26 Initial GSI value - 0.5 3 1.61 0.23 1.83 61
P27 Minimum vegetation DM for grazing kg DM ha−1 500 2000 995 197 1114 30
P28 Minimum vegetation DM for cutting kg DM ha−1 1000 6000 3232 611 2896 52
P29 Leaf to stem allocation parameter - 0.05 0.9 0.61 0.11 0.66 45
P30 Initial C in SOM pool g C m−2 5000 15000 9912 2513 9240 31
P31 DM demand (as % of animal weight) - 0.01 0.03 0.02 0.01 0.03 2
P32 Post grazing labile/stem loss - 0.001 0.75 0.16 0.06 0.19 67
P33 Post cutting labile/stem loss - 0.001 0.75 0.18 0.15 0.08 34

GSI: Growing Season Index, VPD: Vapour Pressure Deficit, SOM: Soil Organic Matter,
DM: Dry Matter, GPP: Gross Primary Productivity, NPP: Net Primary Productivity
MAP: Maximum a posteriori probability estimate
Prior length reduction: 100*(1-(posteriormax-posteriormin)/(priormax-priormin))
Estimates for the prior range for parameter P30 come from (Bradley et al., 2006)
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Chain convergence assessment1174

The Gelman-Rubin potential scale reduction factor (PSRF) was calculated1175

using the following equations :1176

B =
N

M − 1
Σ

M
m=1

(θm − θ)2 (7)

W =
1

M
Σ

M
m=1

σ
2

m (8)

V =
N − 1

N
W +

M + 1

MN
B (9)

PSRF =

√

V

W
(10)

where θ is a model parameter, σ2 is the variance, M is the number of chains1177

and N is the length of each chain. A PSRF ≈ 1 shows that chain convergence1178

was achieved. The use of EDCs in CARDAMOM means that N was not the1179

same for all chains. For this reason we used the last 10000 values retrieved by1180

the MH algorithm for each chain to calculate the PSRF. The PSRF for each1181

parameter as estimated from results from the calibration period (2002-2004)1182

are presented in Figure 9.1183
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Figure 9: Estimated potential scale reduction factor (PSRF) for each model parameter
after parameter calibration. The names (and other information) of each model parameter
number are presented in Table 5

.
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Figure 9: Estimated potential scale reduction factor (PSRF) for each model parameter
after parameter calibration. The names (and other information) of each model parameter
number are presented in Table 5

.
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