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Abstract—The squeeziness of a sequence of program statements
captures the loss of information (loss of entropy) caused by its
execution. This information loss leads to problems such as failed
error propagation. Intuitively, longer more complex statement
sequences (more formally, longer paths of dependencies) bring
greater squeeze. Using the cost of search-based test data gen-
eration as a measure of lost information, we investigate this
intuition. Unexpectedly, we find virtually no correlation between
dependence path length and information loss. Thus our study
represents an (unexpected) negative result.

Moreover, looking through the literature, this finding is in
agreement with recent work of Masri and Podgurski. As such,
our work replicates a negative result. More precisely, it pro-
vides a conceptual, generalization and extension replication. The
replication falls into the category of a conceptual replication in
that different methods are used to address a common problem,
and into the category of generalization and extension in that
we sample a different population of subjects and more rigor-
ously consider the resulting data. Specifically, while Masri and
Podgurski only informally observed the lack of a connection, we
rigorously assess it using a range of statistical models.

I. INTRODUCTION

When a program “squeezes out” information, random and

search-based test data generation work less effectively. For

example, when a program reduces a large input domain down

to a small number of state values, it becomes less likely

that random search will find inputs that lead to a particularly

rare program state. Moreover, when there is very little state

information, the fitness landscape for a predicate may be

reduced to a small number of plateaus, resulting in a lack

of guidance for the search in search-based testing [1], [2].

The squeeziness of a sequence of program statements is

the loss of information (loss of entropy) caused by its execu-

tion [3], [4]. Information loss occurs when these statements

reduce the amount of information present in the current

execution state. For instance, the statement x = x % 2 (where

x is an 8-bit unsigned integer) reduces x’s 256 values down to

just two. A killing assignment, which overwrites the value of

a variable, is the most extreme example of information loss,

removing all information that a variable previously held.

The information loss that leads to a reduction in entropy

is caused by the particular computations of the program. In

this paper, we study the intuition that more complex com-

putations, specifically those associated with longer sequences

of statements, lead to greater loss. In conversations regarding

this work, other researchers have ubiquitously agreed with this

intuitive appeal. Yet, recent evidence in the literature suggests

otherwise: Masri and Podgurski [5] studied entropy loss and

dependence path length, but found no relation. This paper

aims to shed light into this apparent paradox by presenting

a conceptual, generalization and extension replication [6] of

the work of Masri and Podgurski [5].

We formalize computation complexity using control and

data dependencies and thus more formally we investigate the

relationship between dependence path length and information

loss. For example, a data dependence path of length two con-

nects the definition sum = 0 to sum = sum + A[i], and finally

to average = sum / count. Our study focuses on correlating

dependence path length with test data generation expense,

which is measured as the average number of test data (fitness)

evaluations needed to find test data to execute the statement at

the end of a given dependence path. We measure this expense

using three different algorithms (one random and two search-

based). Because it captures the effort required by the test

data generation algorithm, it captures “difficulty,” and thereby

forms the metric that we use in our experiments to assess

testability.

Note that we are not proposing an absolute difficulty scale.

In fact, we expect each different algorithm to use different

numbers of fitness evaluations. However, for a particular algo-

rithm, the number of evaluations provides a relative measure of

the effort required and hence is sufficient for our experiments.

Our estimation of “testability” in this way is reminiscent of

studies such as the early work of Voas and Miller [7].

Considering the testability and dependence paths for 416

predicates taken from 28 C functions found in four programs,

this paper investigates the correlation between path length and

testability. The core of the paper addresses this question using

over 1500 statistical models including both linear and non-

linear models. For example, if long paths of data dependencies,

rather than control dependencies, bring greater domain squash-

ing and thereby increase test generation cost, then we have

support for data dependence being the cause of squeeziness,

and consequently, tool designers should pay greater attention

to data dependence issues.

II. BACKGROUND

Search-based software testing formulates the problem of

test input generation as an optimization problem that can be

attempted by a meta-heuristic search technique, such as a

Genetic Algorithm. Meta-heuristic algorithms rely on a fitness

function to guide the search towards a global optimum (which,



1 void fn_under_test(float x, float y, float z) {

2 float a = x + 1;

3 if (a == 0) {

4 float b = y / 2;

5 float c = z * 2;

6 if (b == c) {

7 if (a == c) {

8 /* target */

9 ...

Fig. 1. Example C function

for this problem, is the desired test inputs). In this paper, we

are interested in estimating the computational effort, or the cost

of generating test data, which for search-based approaches is

equivalent to the number of fitness function evaluations needed

to find particular inputs.

Because we are interested in the difficulty of generating

inputs for specific predicates, we apply the “traditional” fitness

function that focuses on generating test data that executes spe-

cific “targets” (e.g., a branch) in the source code, as opposed to

approaches that seek to execute as many branches as possible

with the same inputs (as with the whole test suite approach

used by EvoSuite [8], and multi/many-objective approaches,

e.g., MOSA [9]). To cover specific targets in a program, for

instance a particular branch from a decision statement, the

fitness function comprises two measures: an approach level

and a branch distance [10]. The fitness function is minimized

by the search, such that when both of these measures are zero,

the desired test inputs have been found. The approach level

records how many of a target’s control predecessors were not

executed by a particular input. The fewer control dependent

nodes executed, the “further away” an input is from executing

the target in terms of the program’s control flow. Consider

the example shown in Figure 1 and assume the target is

Statement 8. If an input reaches Statement 3, but takes the false

branch, the approach level is 2; if an input reaches Statement 6,

but takes the false branch the approach level is 1, and finally

0 if the input reaches Statement 7 and takes the false branch.

Whenever an input misses the current target branch, the

branch distance measures how “close” the input was to

staying on a path leading to the target. The branch distance is

computed using the condition of the last (Control Flow Graph)

node in an input’s execution trace that holds a transitive control

dependence on the target, and where execution diverged from

the target. Resuming the example from Figure 1, if an input

takes the false branch at Statement 3, the branch distance is

calculated using |a− 0|, i.e., using the values the program

computes to evaluate the predicate at runtime. The exact

branch distance formula used depends on the predicate [10]. In

this way, control dependencies factor into the approach level

part of the fitness formula, while data dependencies influence

branch distance calculations. For example, the branch distance

computed at Statement 7 involves the values of the variables

a and c, which are defined at Statements 2 and 5 respectively.

The search algorithm typically starts off by assigning ran-

dom values to program inputs and then, using a meta-heuristic

algorithm guided by the fitness function, updates these values.

The number of fitness evaluations is a measure of how many

modifications to the program inputs were required before

the search found values that reach the desired target. The

number of fitness evaluations required by a search therefore

approximates the “difficulty” of finding program inputs that

cover a given target. In this paper, we study two meta-heuristic

search techniques, the Alternating Variable Method (AVM) and

the Genetic Algorithm (GA), both of which are implemented

in the publicly available IGUANA search-based test data

generator for C functions [11], [12]. AVM was originally due

to Korel [13]. It takes as input a test vector and makes local

improvements, starting with small changes to each input and

successively making increasingly larger changes so long as

fitness continues to improve. The GA built into IGUANA

models that of Wegener et al. [14]. It uses a population

of 300 individuals (input vectors) split into six competing

subpopulations, each with a different mutation rate. It uses

discrete recombination as a crossover method, tournament

selection, and an elitist reinsertion method, where the top 10%

of the individuals from the last generation are automatically

re-inserted into the next.

Additionally, we apply Random search as a baseline tech-

nique in this paper, which simply generates random values for

each variable of a test input vector. Each algorithm iterates

until it finds inputs that execute the target, or resources are

exhausted (due to a timeout or the search reaching the fitness

evaluation limit).

III. REFERENCE EXPERIMENT

This section briefly describes the reference experiment

conducted by Masri and Podgurski [5]. Because we conduct

a conceptual replication we are not attempting to reproduce

the setup and structure of the reference experiment; thus we

focus this description on the relevant points of similarity and

difference required to provide context for our experiments and

the subsequent discussion and comparison of its results in

Section VI.

To begin with, we consider completely different subject

programs (of comparable size) written in a different language

(C versus Java). Consideration of a completely new data set

serves to increase the external validity of the results. We also

consider the static control and data dependencies provided

by CodeSurfer [15], in contrast to the reference experiment,

which makes use of dynamic control and data dependencies.

Here again, similar findings will serve to increase external

validity.

In addition, both studies consider paths of only data de-

pendencies, only control dependencies, and both dependence

kinds. Finally, both experiments include tools that apply to

scalar variables only. However, because the reference experi-

ment studies Java, it is able to exploit an object’s hashCode

method, which we are not able to mirror in C.

In addition to being a conceptual replication, we also pro-

vide a generalization and extension replication. For example,

we incorporate test generation while Masri and Podgurski

focus solely on the relation between dynamic data depen-

dence and information flow. We also provide more elaborate



empirical study primarily by applying a range of statistical

models to our data. Masri and Podgurski are less formal

in their study. For example, they provide primarily visual

evidence such as “examination of the charts does not reveal

any consistent pattern in the relationship between length and

average strength” where we rely on statistical evidence.

Where the two studies share the most in common is in

their primary research question. Both studies include some

preliminary research questions dealing with the suitability of

the data gathered. Masri and Podgurski introduce their pri-

mary research question, “is the length of an information flow

indicative of its strength?”, by saying that “it seems plausible

that the strength of information flows tends to attenuate as

their length increases.” Attenuated flow is equivalent to greater

loss and thus this research question mirrors our main research

question, can testability (our measure of information loss) be

modeled using dependence path length?

IV. EXPERIMENTAL DESIGN

Path Analysis. We use Grammatech’s CodeSurfer [15] to build

the System Dependence Graph (SDG) for each program. This

graph includes a Procedure Dependence Graph (PDG) for each

of the program’s functions [16]. To match the testability data,

the path data is collected at the function level; and therefore

the starting point of a path is either the PDG’s entry vertex,

its body vertex, or one of its formal-in vertices. The ending

point of a path is the vertex representing the component under

test (the target of the search for test data). Paths are composed

of control and data dependence edges. A control dependence

edge captures the controlling influence of a predicate. A data

dependence edge captures the flow of values from a definition

to each use reached by the definition.

Three different kinds of paths are considered: Control Only,

CO, paths composed of only control dependence edges, Data

Only, DO, paths of only data dependence edges, and finally,

Both, BO, paths of intermixed control and data dependence

edges. Thus each target has three sets of paths corresponding

to the use of CO, DO, and BO. The lengths of these paths are

summarized by computing the minimum path length, min, the

maximum simple path length, max, and the mean path length,

mean.

The problem of computing the maximum path length in

a graph is NP -hard, and approximating the maximum in a

directed graph [17] and computing the mean path length [18]

are also difficult. However, for directed acyclic graphs (DAGs),

both maximum and mean can be computed with a polynomial-

time algorithm that avoids enumerating all paths, and many of

the PDGs under study are DAGs. Furthermore, in many of the

remaining cases, the PDGs can be decomposed into DAGs of

strongly connected components that are small enough to com-

pute the maximum and mean path length by enumerating all

of the paths, or by removing edges one-by-one and proceeding

recursively. For the few remaining cases we use importance

sampling [19] to estimate the mean path length, where the

sampled paths are generated by a naive random walk. We

then take the length of the longest path generated as an

estimate of the maximum path length. If such cases were more

prevalent it would be worthwhile to improve the estimated

mean using more sophisticated sampling, for example, Roberts

and Kroese’s length-distribution method [20].

Of the 416 predicates we used in our study, which we

introduce fully below, only 33 required estimation of path

length. Furthermore, for 31 of these the search fails to reach

the given target. As such, the data used to build the statistical

models require only two path-length estimates.

Statistical Analysis. To capture testability, the statistical analy-

sis uses test data search cost measured as the number of fitness

evaluations, Evals, as the response variable. It also uses the

three path length measures (min, mean, and max) along with

File, the name of the source-code file, as explanatory variables.

Including File enables each model to have a different intercept

for each file, enabling them to account for artifacts of a given

file’s coding style not related to the correlation of testability

to dependence path length.

Using these variables, we build linear regression models

using the lm function implemented in R [21] to identify

correlations between the response and explanatory variables.

We used Stepwise Elimination [22], which removes the ex-

planatory variable with the highest p-value provided that

this value of greater than 0.05 and then rebuilds the model

until only significant variables remain. Note that some non-

significant variables (p > 0.05) are retained to preserve a

hierarchical well-formulated model [23]. This occurs in the

analysis, for example, when only some of a categoric variable’s

levels are significant.

We are aware that the statistics community now advocates

a move away from the historic fixation on the use of a

0.05 significance threshold [24]. Unfortunately, they are yet

to propose a replacement for its use in stepwise elimination.

Based on the “World Beyond p < 0.05” proposals [24],

the resulting elimination models include a greater number of

explanatory variables than they might under more stringent

criteria. We take this into account when describing the models

and their implications.

Subjects. The source code studied was taken from the real-

world systems gimp, R, grelt, and spice, which previously

featured in studies of squeeziness [3] and search-based test-

ing [25]. These programs contain many functions, from which

we chose the 28 shown in Table I. In choosing these functions,

we looked for functions directly called by a user or a program

from outside of the project. Each function features boolean,

integer, or floating point formal parameters, domains in which

random and search-based approaches are easily applied [25].

Furthermore, our goal is to study predicates with a range of

testability, it was necessary to select programs for which our

chosen random and search-based techniques were likely to

work and have a range of performance.

In addition to the program, file, and function, Table I

provides descriptive statistics for the 28 functions studied.

These include the number of Lines-of-Code (LoC) for each

function as measured by the Unix utility wc and source lines



TABLE I
SOURCE CODE STUDIED

Size Predicates

Program/File Function LoC SLoC Paths Matched

gimp

gimpdraw.c gradient calc bilinear factor 45 32 4 4
gimpdraw.c gradient calc conical asym factor 62 47 6 5
gimpdraw.c gradient calc conical sym factor 67 51 7 6
gimpdraw.c gradient calc linear factor 51 37 6 5
gimpdraw.c gradient calc radial factor 40 28 4 4
gimpdraw.c gradient calc spiral factor 59 43 5 4
gimpdraw.c gradient calc square factor 54 42 5 5

grelt

i0.c cephes bessel I0 13 11 2 2
i0.c i0e 13 11 2 2
k0.c cephes bessel K0 20 16 2 2
k0.c k0e 19 15 2 2
unity.c cephes exp 22 17 7 3
unity.c cephes log 13 10 2 1
unity.c cosm1 13 10 2 1

R

gamma.c gammafn 177 131 31 19
gamma cody.c gamma cody 232 92 15 15
pnchisq.c pnchisq 28 24 20 12
pnchisq.c pnchisq raw 182 145 31 19
pnorm.c pnorm5 26 19 21 7
pnorm.c pnorm both 190 140 30 14
ptukey.c ptukey 201 93 33 19
ptukey.c wprob 162 86 10 10
rhyper.c afc 30 28 2 2
rhyper.c rhyper 259 214 56 43
toms708.c bratio 334 243 73 41
toms708.c psi 195 91 14 14

spice

spice.c clip to circle 244 158 24 21

Total 2751 1934 416 282

of code (SLoC) as measured by sloc count c [26]. The final

two columns show the number of predicates in each function

and the number after matching, as we describe in the next sub-

section. In the analysis, each predicate gives rise to three data

points: one for each search method, GA, AVM, and Random.

Data Collection. IGUANA is designed to generate test data to

cover individual branches. We can therefore use the number of

fitness evaluations needed to execute a branch as a measure of

the effort expended by a search algorithm in generating inputs

for the branch’s predicates. The more effort required, the more

difficult the search problem, and the less testable it is.

Each conditional statement is associated with two branches:

one that requires the conditional evaluating to true, and the

other to false. Thus, for each predicate, IGUANA provides

two fitness evaluation counts. Both capture the challenge in

reaching the conditional statement. What remains is to capture

the challenge represented by condition itself. Consider the

condition a == b. Finding values that make a and b the same

better captures the challenge in this predicate than finding

values to make the two differ. Generalizing this observation,

in our analysis we use the larger of the two fitness evaluation

counts. In this way, by taking into account both the true and

false outcomes of each conditional, our experiments account

for both reaching a conditional and the computation of the

conditional.

Consider again the code shown in Figure 1, taking more

simply the execution of the predicate at Statement 7 as the

target (rather than the true branch from Statement 7, leading

to Statement 8), and an input that causes the predicate at State-

ment 6 to be true. This same input very likely produces the

value false for the predicate at Statement 7. However, further

search effort (i.e., further fitness evaluations) is required to

make the predicate at Statement 7 true (i.e., to make c equal

to a as well as b). Here, it is the larger of the two search

efforts that captures the prior computations of a and c.

Because of the stochastic nature of the search for test data,

each search was run 30 times for each target, as is common in

search-based testing experiments (e.g., [25]). This raises the

question of how to best aggregate the multiple runs. Obviously

the more data the better. We initially considered the mean of

the 30 runs, but this necessitates the omission of predicates

for which as few as one of runs fails to find viable test data

since we treat such results as effectively ∞. The median is

better able to include hard targets that skirt the resource limit.

In the analysis we consider both the mean and the median so

that we can assess the impact of this choice.

The success of a given search also depends on the size

of the search space (i.e., the input domain used for each

program). For example, for input variables of integer type,

a tester will set a realistic range (e.g., -1,000 to 1,000) rather

than use the whole range of the type. However, larger search

spaces typically require more work on behalf of the search.

To counter this potential threat, we used two input domain

sizes. All inputs to the programs we studied were numeric, so

with the smaller range, every integer has a range of -1,000

to 1,000, unless it was used as a Boolean by the program, in

which case the range was 0 to 1; while we set every floating

point variable to a range of of -100.0 to 100.0 (i.e., the same

size as an integer variable, but accounting for one decimal

place). For the large range, we followed the same rules, but

use a range of -10,000 to 10,000 for integers and -1,000.0 to

1,000.0 for floating point types.

Using both the median and the mean and having two ranges

gives rise to the four data sets used in the experiments: large-

mean, large-median, small-mean, and small-median. Each of

these provides a value of the response variable, Evals, which

is our measure of testability.

To produce the final data sets, this testability data must

be matched with the path-length data. Given our use of

three kinds of paths, BO, CO, and DO, the matching process

produces at most 416 × 3 values. In fact it produces fewer

than this for several reasons. First, there are 65 predicates

that are unreachable via paths of only data-dependence edges.

This occurs, for example, when the predicate is a con-

stant such as found in the oft-seen conventional C macro

“#define printd if (DEBUG) printf”, where DEBUG is either

true or false and thus not data dependent on any variable.

The rest of the loss is caused by macro expansions, com-

pound conditions, and timeouts. The first of these arises



because the PDG is built after the C pre-processor has run,

while IGUANA works with the original source code. For some

more complex macro expansions it is not practically feasible to

match the two. The second loss occurs because the matching

is done per-condition, which is the level at which IGUANA

works, and not per-predicate, which is the level at which

CodeSurfer works. Thus for a compound condition such as

a > b || x > y, which includes the two predicates a > b and

x > y, we ignore the control-flow implications of C’s short

circuit evaluation.

These structural matching losses are independent of a

model’s ability to find test data and thus apply equally to all

three models. For each function the number of predicates post

matching is shown in the Table I column “Matched”. In total,

there are 282 matched predicates, which includes 43 of the 65

unreachable via DO paths. Thus we consider a total of 282

CO paths, 282 BO paths, and 239 DO paths for a total of 803.

The final loss category occurs when IGUANA fails to

terminate and is therefore dependent on the data set. After ten

minutes, an external monitoring script kills IGUANA causing

no output to be produced for the current predicate and also

for all subsequent predicates in the current file. We record an

∞ value for the current predicate just as if it had reached the

fitness evaluation limit. However, we get no information about

the subsequent predicates and thus record no data for them for

the current run.

Obviously if all thirty runs omit a predicate we are forced to

drop the predicate because it has no matching data. However

we retain those that produce partial data. In no case did a

predicate produce fewer than twelve (of 30) values, which

we deemed sufficient for our analysis. The final number of

matched predicates is shown in Table II where it is broken

down based on method and data set size (see the rows labeled

“pre-filter”). It is encouraging to note that for GA, and for AVM

using the large range, the timeout monitor did not terminate

the search, as the pre-filtered data includes all 803 predicates.

V. EMPIRICAL ANALYSIS

This section considers three research questions. The first two

take a look at the testability data and the path length data, and

ask whether the data is sufficient to be amenable to further

analysis. The core of our investigation is captured in the third

research question, which investigates the correlation between

path length and testability. After presenting our results for each

of the three RQs, this section discusses threats to the validity

of our experiments. The next section compares our results in

light of the findings of the reference experiment introduced

in Section III. It also discusses implications of both studies

essentially yielding a negative result.

A. RQ1: Does testability exhibit sufficient variation?

RQ1 asks if the variation in the effort required to generate

test data is sufficient to warrant study. To address this question,

we consider the number of fitness evaluations used to find

test data for each of the matched predicates. It should come

as no surprise that there are predicates for which the search
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Fig. 2. Testability variation of the small-median data. The others are similar.
The lower chart breaks the filtered data out by method, showing that each
method includes ample variation. (Note that the y-axis uses a log10 scale.)

fails. As an extreme example, this is true for all unreachable

predicates. The impact of these searches is evident in the upper

graph of Figure 2, which shows the effort required (regardless

of method) using the small-median data set. The resulting

flat region on the right at 10,000 (the y-axis uses a log10
scale) negatively impacts the creation of linear models because

such models aim to fit the data with a sloped regression line.

Therefore we filter out all predicates for which the search fails.

For the small-median data set, the lower graph of Figure 2

shows the filtered data, this time broken out by method. The

other data sets produce virtually identical graphs. Table II

shows the actual predicate counts pre- and post-filtering. The

filtered values are shown for all four data sets and further

broken down for each path type: BO, CO, and DO.

Numerically filtering removes about 63% of the predicates

(Interestingly Masri and Podgurski at a similar stage in their

experiments remove a comparable 61% of their “flows”).

While more data would be preferable, the fact that so many

predicates prove so difficult is an artifact of our choosing

targets from production source code. With approximately one

hundred predicates in each remaining category, there is suffi-

cient data to support the statistical analysis. This observation

is supported statistically by the bootstrapping considered in

Section V-D. Combined with the range of values shown in

Figure 2 where the y-axis uses a log scale and thus the data

spans five orders of magnitude, we conclude that there is

sufficient variation in the testability data. The filtered data sets

are used in the remainder of the analysis.

B. RQ2: Does path length exhibit sufficient variation?

The second research question mirrors the first except that

it looks at the dependence path data. Using the small-median

data set, the three charts shown in Figure 3 graph the density

of the three edge sets. (Informally, these graphs can be thought

of as smoothed histograms where the area under the curve is

normalized to one; thus, the area under the curve between



TABLE II
PREDICATE COUNTS

Data set GA AVM Random Total

large pre-filter 803 803 661 2267

mean filtered 284 321 206 818
BO 98 111 71 280
CO 98 111 71 280
DO 88 99 64 251

median filtered 322 375 239 936
BO 111 129 82 322
CO 111 129 82 322
DO 100 117 75 292

small pre-filter 803 656 661 2120

mean filtered 302 323 239 864
BO 104 111 82 297
CO 104 111 82 297
DO 94 101 75 270

median filtered 348 335 239 922
BO 120 115 82 317
CO 120 115 82 317
DO 108 105 75 288

two x values is the probability of a value being between those

two x values.) The other three data sets produce only minor

variations, but retain the same general shape. Each graph has a

line for each of the min, mean, and max path-length measures.

Despite being dominated by smaller values, the graphs

shown in Figure 3 illustrate that the dependence path lengths

show sufficient variation for use in the study. This is more

true for the mean and max lengths, which is supported by the

statistical analysis presented in the next section.

C. RQ3: Can testability be modeled using dependence path

length?

To answer our main research question, we built statistical

models for each pairing of a search method (GA, AVM, or

Random) with a path edge type, (BO, CO, or DO). We built

these nine models using each of the four data sets, resulting

in the 36 models considered in this analysis. (The next section

considers additional models including non-linear models.) Pro-

viding the details of all 36 models is overwhelming and space

consuming, so where appropriate we focus the discussion on

the nine models of the small-median data set. The others are

comparable. Each model seeks to characterize testability, as

captured by Evals, as a function of the explanatory variables,

which include the three measures of path length, min, mean,

and max, along with File, the file from which the predicate

was taken.

As mentioned in Section IV, the explanatory variable File

enables the models to have different intercepts for each file and

thus to account for differences related to local programming

style. The estimates are relative to gimpdraw.c, which is

randomly chosen by the analysis. In most cases the differences

are not statistically significant. However, if for at least one file

the difference is significant, then the explanatory variable File

is retained in the model. An example is shown in Table III

where spice.c (the second line) is one of several files that show

a statistically significant difference from gimpdraw.c. In this

TABLE III
Random: DO STATISTICAL MODEL

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1245 164 7.62 < 0.0001

spice.c -777 235 -3.31 0.0016

gamma cody.c -784 372 -2.11 0.0391

i0.c -1105 326 -3.38 0.0012

k0.c -1074 326 -3.29 0.0016

pnchisq.c -1107 613 -1.81 0.0756
pnorm.c -618 208 -2.97 0.0042

ptukey.c -952 222 -4.29 < 0.0001

rhyper.c -1028 443 -2.32 0.0236

toms708.c -912 443 -2.06 0.0436

min -136 57 -2.39 0.0197

case, its testability is less challenging, requiring, on average

777 fewer fitness evaluations.

Table III also provides an example where the stepwise

elimination retains a term of dubious value [24]. While mean

and max were eliminated, min’s p-value of 0.0197 is below

the technique’s cutoff value of 0.05 and thus min is retained.

However, its effect is minor. When describing a model, we

tend to discount terms such as min that have dubious p-

values. Furthermore, in the next section we consider a range

of alternate models including models that initially omit such

dubious explanatory variables. This evaluation enables us to

assess the elimination’s impact on our conclusions.

We begin the analysis by looking at the 36 model equations

shown in Table IV. Because it is a categoric variable, including

File in a model equation requires a term for each level (i.e.,

for each file), making the resulting equations long and visually

challenging to read. As a simplification, we use the term file

to denote the inclusion of the nine File specific intercepts.

The 36 models exhibit several interesting patterns. Perhaps

the most striking in the context of this research is the absence

of min, mean, and max from 21 of the 36 models. The

absence of influence from any of the path-length measures

in over half of the models suggests (perhaps surprisingly) that

squeeziness [27] is not related to longer dependence paths.

Of the fifteen remaining models, eight include only path-

length measure with a negative coefficient indicating that

longer paths are correlated with a reduction in testing cost.

Two models include only measures with positive coefficients,

and five include both mean and max, but with opposite signs

(two of these five also include min).

A model that includes two related variables with opposite

coefficient signs can indicate that the two act to counter

balance each other, in which case they may be strongly

correlated. We investigated the pairwise correlations between

min, mean, and max in each data set and found that while

min was not strongly correlated with the other two (R2 values

ranged from 0.08 to 0.31), mean and max were strongly

correlated in all four data sets. The large-mean data set has the

steepest slope with max = 1.60×mean−1.26 with an R2 value

of 0.98. The large-median data set has the shallowest slope

with max = 1.50 ×mean − 0.81 with and R2 value of 0.99.

The two small data sets produce virtually identical models

to their large counterparts. All four of these correlations are
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Fig. 3. Path length variation using the small-median data. All four data sets are similar.
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Fig. 4. Prediction of max using 1.54×mean− 0.97 for the small-median
data set.

strong, as visually evident for the small-median data shown

in Figure 4. These strong correlations suggest the inclusion of

interaction terms, which we investigate in the next section.

Because of the strong correlations, combining the mean and

max terms is reasonable. For example, with the small-median

data set we replace 7616×mean with 7616/1.54×max (and

adjust the intercept) in GA’s BO model. This replacement leads

to an aggregate coefficient of +316 indicating that longer paths

are correlated with greater testing challenge. The net effect is

also positive in one other of the five models that include both

mean and max, and negative in the remaining three.

In summary, over all 36 models increased path length has

no effect on 21 of the models, it (surprisingly) has a negative

effect on nine of the models, and a positive effect on just

four. The remaining two models show a negative effect with

respect to mean and max, but a positive impact with respect

to min. With only 17% (6 of 36) models showing any positive

correlation, it is hard to argue that longer paths are the cause

of testability challenge.

We next separately consider the models for each edge type.

To begin with, of the twelve DO models shown in Table IV,

five omit min, mean, and max. Six of the remaining seven

include either min or max, but with a negative coefficient. In

the remaining models that include both mean and max, the net

effect of the two is again negative. Finally, the p-values for

the length measures range from 0.016 to 0.038, indicating that

none provide strong evidence. As such, for data dependence

edges, longer paths are not correlated with test generation cost

and even show the inverse more often than not.

We next consider the twelve CO models. Nine of these

models exclude min, mean, and max. In two of the three

that include path length measures, the net effect is negative.

Only the large-median AVM-CO model shows a positive corre-

lation between increased control dependence path length and

increased testability cost. In addition, the two models showing

a negative effect with respect to mean and max, but a positive

impact with respect to min are both CO models. Looking again

at the p-values, with the exception of mean’s 0.034 in the

large-median AVM model, all the others are reasonably strong.

Compared to the DO models, the data suggests that control

dependence is more important than data dependence when it

comes to testability expense.

Finally, when considering paths of both edge kinds, seven

models omit all three of min, mean, and max, and two show a

negative correlation (the p-values of 0.041 and 0.017 indicate

these influences are not strong). Of the remaining three, the

large-mean AVM model includes a positive influence from

min; however, its p-value of 0.0498 leads us to discount this

influence. In contrast, the small-median model for GA and the

large-median model for AVM include a net positive influence

from mean and max both with p-values < 0.0001.

In summary, the dearth of positive correlations and the

notable variation across the four data sets regarding which

models do show the rare positive correlation, supports the

absence of a noteworthy correlation between dependence path

length and testability. Moreover, only two of the model’s R2

values exceed 0.50.

In summary for RQ3, there is an intuitive attraction to the

observation that longer sequences of (dependent) statements

should lead to greater “information squeeze” and thus to in-

creased testability cost. Despite the appeal of this observation,

the data suggests otherwise. Thus, in addition to the direct

answer of “no” to RQ3’s “Can testability be modeled using

dependence path length?”, this result raises some fascinating

potential future work.

D. Threats to Validity

One threat to the validity of this study comes from the

selection of C functions. Our results may not generalize to

other programs or to code written in other languages. However,

the 28 functions we selected represent a range of complexity,

with 2 to 42 predicates (i.e., branching nodes) and from 13 to

334 lines of code — the latter representing a relatively large

figure for a single function/method of an overall program.

A second external validity threat is that our results may not

generalize to other test data generators that use different types



TABLE IV
SIMPLIFIED MODEL EQUATIONS

M
et

ho
d

E
dg

e
T
yp

e
R2 Equation

Small Mean

GA BO 0.04 1062 −38 max

GA CO 0.00 535
GA DO 0.00 591
AVM BO 0.27 7536 + file −1417 min

AVM CO 0.22 5246 + file

AVM DO 0.25 6241 + file −281 max

Random BO 0.32 1344 + file

Random CO 0.32 1344 + file

Random DO 0.37 1534 + file −58 max

Large Mean

GA BO 0.00 1029
GA CO 0.25 132 + file +3949 min −8648 mean +4676 max

GA DO 0.06 1926 −217 max

AVM BO 0.04 -342 +437 min

AVM CO 0.00 484
AVM DO 0.00 425
Random BO 0.00 2428
Random CO 0.00 2428
Random DO 0.31 9574 + file −1302 min

Small Median

GA BO 0.39 6021 + file +7616 mean −4665 max

GA CO 0.45 9072 + file +11036 min −27417 mean +16006 max

GA DO 0.21 8857 + file

AVM BO 0.19 3704 + file

AVM CO 0.19 3704 + file

AVM DO 0.00 1490
Random BO 0.35 968 + file

Random CO 0.35 968 + file

Random DO 0.41 1245 + file −136 min

Large Median

GA BO 0.00 2493
GA CO 0.00 2493
GA DO 0.00 2582
AVM BO 0.69 -3223 + file +5729 mean −3362 max

AVM CO 0.77 -8999 + file +1909 min +452 mean

AVM DO 0.44 -1009 + file +6230 mean −5054 max

Random BO 0.32 9427 + file

Random CO 0.32 9427 + file

Random DO 0.36 10965 + file −447 max

of searches, fitness functions, or techniques to generate inputs.

For example, EvoSuite [8], takes a “whole test suite” approach,

where the fitness function encourages the generation of tests

that cover as many branches as possible. However, EvoSuite

still bases its fitness function on the notion of branch distance,

gradually peeling back levels of the control dependency graph

during the search process. As such, we have reason to believe

similar trends will be observed for example generating test

suites for Java programs with EvoSuite.

A further threat arises from the tools used in our study. As

we study C code, we used the publicly available IGUANA tool.

It is possible that defects are present in its implementation,

thereby affecting our results. However, IGUANA is a relatively

mature tool, having featured in several previous studies [25],

[28], [29], [30]. The same applies more or less to CodeSurfer

and to the path-length counting code. In all three cases, we

checked the results wherever possible for errors.

The statistical tests used are all well established and their

implementations publicly available in R and thus well vetted.

The linear models built by R’s lm function do assume there

is no autocorrelation of the residuals and that the residuals

are normally distributed. An inspection of the acf plot reveals

a varying degree of autocorrelation. To check its impact,

bootstrapping was applied to the data. The resulting R2 values

are all similar to those found in Table IV. Depending on the

amount of autocorrelation, they range from 0–6 percentage

points higher. However, they show the exact same trends as

found in Table IV. This indicates that non-normality of the

residues is not impacting the interpretation of the data. Fur-

thermore, the stability of the bootstrapping models indicates

the sufficiency of each data set’s size. By checking these

assumptions and using well vetted techniques, we hope to

mitigate threats to statistical validity; however, it is possible

that more appropriate tests unknown to us might provide more

appropriate evidence. We also endeavored to follow the most

up-to-date information from the statistics community when

interpreting the models [24].

Our IGUANA setup, subjects, experimental results and

analysis are available for inspection in a replication package

at https://bitbucket.org/depchaintest/ replication-package/ .

VI. DISCUSSION OF IMPLICATIONS

A. Replication Discussion

This section first discusses the implications of our replica-

tion and then of both results being negative. Despite being

a conceptual replication and thus having a markedly different

setup, such as the choice of explanatory variables, both studies

(ours and the reference experiment) yield the same main

finding: the absence of a correlation between information

flow and program dependence. In addition, both experiments

suggest that control dependence has the dominant effect in

terms of information loss. Thus our replication reproduced all

of the key results from the reference experiment.

In greater detail, based on visual graph inspection, Masri

and Podgurski conclude that “the length of an information

flow is not indicative of its strength.” Following Voas and

Miller, in our experiment we use the cost of search-based test

data generation as a measure of information loss, which is

the opposite of its strength. Substituting in the variables used

in this paper, Masri and Podgurski find that “the length of a

(dynamic) dependence path is not indicative of its testability.”

In other words, their chief finding matches ours for RQ3.

One of the more interesting differences in the two studies

is our use of static dependences while Masri and Podgurski

made use of dynamic dependences. One might expect dynamic

dependence to more accurately mirror the flow of data during

execution. On the other hand, because dynamic dependence

analysis requests treating each instance of a dependence that

occurs during runtime, one might expect patterns to be less

pronounced. That both studies come to the same conclusion

means that they mitigate the potential threat of the other. Here

again, our use of a conceptual replication serves to increase

external validity.



TABLE V
SPEARMAN CORRELATIONS

Evals min mean max

Evals 1.000 0.007 -0.038 -0.038
min 1.000 0.480 0.402
mean 1.000 0.990
max 1.000

Given the nature of search based algorithms, which adapt

inputs to execute specific paths through a program to attain

test coverage, one might expect that control dependence would

dominate the cost of the search. Indeed, we find this to be

the case. However, the explanation seems to run deeper than

just our use of search-based test data generate techniques.

For instance, in Table IV, Random search actually gets easier

with longer DO paths. Even more significant, Masri and

Podgurski, who do not make use of search-based techniques,

find that “flows due to data dependencies alone are stronger,

on average, than flows due to control dependencies alone.”

Because a strong flow is the same as finding less loss, we

can paraphrase their finding using our explanatory variables

as “flows due to data dependencies alone show less loss,

on average, than flows due to control dependencies alone.”

Or, as we have observed before, “control dependence brings

greater information loss.” Thus, both experiments support the

notion that control dependence effects dominate those of data

dependence.

B. Negative Result Discussion

One key difference in the two studies is our extensive

use of statistical modeling rather the relying on visual graph

inspection. To reinforce the validity of our modeling, we

consider two possibilities. First, we examine the possibility

of non-linear correlations between the variables, and, second,

we go on a regression fishing expedition.

Non-linear Models. It is possible that there are strong non-

linear correlations between Evals and the three length mea-

sures. To consider this possibility we applied Spearman’s Rank

Correlation. The results for the small-median data set are

shown in Table V. From the top line of the table, it is clear

that there are no strong rank correlations with Evals. The only

strong correlation is between mean and max, which mirrors

the result shown in Figure 4.

Next, the charts shown in Figures 2 and 3 show evidence

of skewed distributions. For example, Evals covers five orders

of magnitude. Therefore, we applied a log-transformation,

which is classically used to deal with skewed data. We do

so independently to each explanatory variable. In short, this

transformation does not improve any of the models.

Regression Fishing. Given the absence of strong correlations,

we investigated the possibility that our initial statistical models

or the third-party elimination software were inadequate. The

investigation considers a range of simpler and more complex

models. In one direction we started with fewer explanatory

variables to see if elimination took the analysis down a “bad

path.” In the other direction, as suggested by the correlation

between mean and max, we considered interaction terms

between the three path-length measures. An interaction term

between two variables A and B allows the effect of B to differ

for different values of A.

For each data set we consider the following starting points

(1) a model that includes all pairwise interactions between min,

mean, and max, (2) the three models without one of the three

interaction terms, (3) the three models without two of the three

interaction terms, (4) the three models without interactions

and without one of the three length measures, (5) the three

models without interactions and without two of the three

length measures, and (6) a model without any of the length

measures. This yields fourteen additional models for each

pairing of an edge type and a search method (126 total). These

are on top of the 36 models shown in Table IV. Additionally,

we consider all these models with File, with Function, and

with neither File nor Function. For example, the motivation

for omitting File is that if the File specific intercepts are only

marginally significant, then omitting them might cause other

significant patterns to emerge. This yields 378 models for each

data set, or a total of 1512 initial regression models used as

input to the stepwise elimination.

Producing 1512 models and then picking “the one” that

shows a desired correlation is what gives “regression fishing”

its name. Here we are doing the opposite. We are pointing out

how wide-spread the absence of a correlation is even over a

large collection of possible models.

We start by considering the 504 models that initially include

the explanatory variable File. Over all four data sets and nine

combinations of method and edge-type, 17 of the 36 models

are never better than the one presented in Table IV. For 18

of the remaining 19, including interaction terms improves the

R2 value. The largest improvements are for models whose R2

value is 0.00 in Table IV (the largest of these is to R2 = 0.42).

For the models that did not originally degenerate, the average

improvement is only 0.07. In the final model, using the non-

interaction initial models for the small-mean data set Random-

DO shows an improvement of 0.01 when min or max are

excluded from the initial model. Such a small difference is

ignorable.

We next compare the 504 models that include the explana-

tory variable File with the corresponding models that do not.

Overall, 154 are identical, while in the other 350, omitting File

leads to a lowering of the R2 value.

Finally, the replacement of File with Function produces no

consistent pattern. Considering groups of models that share

a method and an edge type, replacing File with Function im-

proves six groups, worsens eleven, and leaves nine unaffected.

Random is the “big winner” with nine improvements and three

worsenings. The ratio is three to two for GA and four to six

for AVM, making it the “big loser.” Finally, as a function of

edge-type, BO has five groups up and three down, CO has five

up and four down, and DO has six up and four down, with

the remaining groups being unaffected.

To summarize the results of this regression fishing expe-

dition, none of the alternatives proves a clear improvement

over the models presented in Table IV nor did the log-



transformation provide any improvement. This absence of any

groups with strong correlations provides further support for the

negative finding that dependence path length is not correlated

with test generation difficulty.

Overall, having two independent studies that are only con-

ceptually related in terms of their structure adds to the external

validity of both results. Studying the question in the context

of random and search-based test data generation provides

us with some key lessons, however. The primary lesson is

that dependence path length does not, on its own, predict

testability for any of the search algorithms that we evaluated.

Instead, we need to look at the nature of these dependencies.

For example, the use of boolean flags in programs is well-

known to introduce plateaus in fitness landscapes when used

in predicates [31], providing no guidance to search-based

techniques. This is one type of problematic data dependency

that can be tackled using a special type of program trans-

formation called a testability transformation [1]. Our results

therefore call for researchers to orient themselves away from

coarse-grained metrics in the search for good predictors of

program testability, towards fine-grained features particular to

the test methods concerned. Although we concentrate on C

programs and particular search algorithms, we believe our

results will be more widely applicable to search-based testing

of programs written in other languages (e.g., Java), since the

fitness functions involved are built on similar principles of

monitoring control flow through approach-level-like metrics

and/or branch distance calculations.

Despite our two studies providing essentially the same

conclusion, the issue may be more complex than either study is

capable of uncovering. For example, Androutsopoulos et al. [3]

find a clear connection between squeeziness (information loss)

and failed error propagation that seems at odds with our

finding and thus deserving of future investigation.

Finally, Masri and Podgurski include the following caution

in their conclusion “we caution, however, that definitively

confirming our results and understanding their full implica-

tions for specific applications will require substantial further

study.” While not its primary goal, our study my be viewed

as considering their results through the lens of the test data

generation. However, despite there now being two studies

supporting this negative result regarding dependence path

length and information loss, we echo their words of caution.

VII. RELATED WORK

Voas and Miller [32], [7] were some of the first to study

sources of poor software testability. They defined a metric,

known as the domain/range ratio (DRR) for program specifi-

cations. DRR is the ratio of the cardinality of the domain of

a subfunction to the cardinality of its range. They posited that

a high DRR, and thus high “narrowing” of the input space

with respect to outputs, leads to a higher probability of faults

“hiding” from testing.

Clark and Hierons take an information-theoretic view of

domain narrowing, measuring information loss through the

paths of a program through the definition of a metric called

“squeeziness” [4]. Squeeziness occurs when correct and in-

correct states coincide. So-called collisions of correct and

incorrect program states allow faults to be masked in testing.

Masri and Podgurski explored variable dependence within

a program and how this relates to (an estimate of) information

flow [5]. They found that while there were many cases where

there is a (data) dependence, there was negligible information

flow. Our findings are similar and reinforce this previous work.

‘The “squashing” of a number of inputs to relatively small

number of intermediate or output variables during program

execution has been shown to be a problem for search-based

testing. The classical and most extreme case is that of the flag

problem [31], where an entire input domain is squashed down

to a true or false value through computations resulting in an as-

signment to a boolean variable. Harman et al. proposed a code

transformation known as a testability transformation [1] to

remove boolean flags from programs, for greater effectiveness

of search-based techniques. As discussed in this paper, nested

predicates are responsible for causing control dependence

paths where information about each condition is revealed only

incrementally as the levels of nesting are penetrated. This

can cause the search for test data to fail in extreme cases.

McMinn et al. [33] evaluated a nesting-flattening testability

transformation, for greater testability, noting the problem to

be at its most severe when the control paths also involve data

dependencies. Testability transformations also have other uses,

e.g., to create pseudo oracles [30] for search-based testing.

VIII. CONCLUSIONS AND FUTURE WORK

This paper explores the relationship between testability

and dependence path length. The paper is a conceptual,

generalization and extension replication of a negative result

first presented by Masri and Podgurski [5] who observed no

relationship between the length of an information flow and

its strength. However, they provide only visual evidence in

the from of several charts. Thus our work formalizes their

informal observation and provides it with formal statistical

backing. This includes over 1500 statistical models including

both linear and non-linear models. Thus it adds considerable

weight to the counterintuitive result of the reference study.

The replication considers a different set of real-world pro-

grams as subjects and thus improves the external validity

of both studies. It also makes use of static dependencies in

contrast to the reference experiments use of dynamic depen-

dencies. Finally, both studies find that control dependence is

more important than data dependence for testability.

Looking forward, we are interested in experiments that help

us better understand the relation between testability, depen-

dence, and information flow, e.g., the connection between

squeeziness (information loss) and failed error propagation

found by Androutsopoulos et al. [3], which seems at odds

with our finding and thus deserving of future investigation.
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