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Variational hybrid quantum-classical optimization represents one the most promising avenue to show the

advantage of nowadays noisy intermediate-scale quantum computers in solving hard problems, such as finding

the minimum-energy state of a Hamiltonian or solving some machine-learning tasks. In these devices noise

is unavoidable and impossible to error-correct, yet its role in the optimization process is not much understood,

especially from the theoretical viewpoint. Here we consider a minimization problem with respect to a variational

state, iteratively obtained via a parametric quantum circuit, taking into account both the role of noise and the

stochastic nature of quantum measurement outcomes. We show that the accuracy of the result obtained for a

fixed number of iterations is bounded by a quantity related to the Quantum Fisher Information of the variational

state. Using this bound, we find the unexpected result that, in some regimes, noise can be beneficial, allowing a

faster solution to the optimization problem.

Introduction:– Quantum computers are nowadays available

as physical devices that are expected to perform calculations

essentially impossible for our best classical supercomputers

[1]. However, the quantum advantage has been proven only

for a specifically designed problem whose practical applica-

tion is currently unknown. In fact, the devices currently being

built are noisy intermediate-scale quantum devices (NISQ)

[2], for which many of the most promising uses can be formu-

lated as hybrid optimizations using parametric quantum cir-

cuits [3–9]. These optimizations can solve useful problems,

and potentially show quantum advantage, by using the quan-

tum device to manipulate objects that live in a space whose

dimension grows exponentially with the number of qubits.

The manipulation is done via gates that depend on param-

eters which are iteratively updated via a feedback strategy:

measurement outcomes of the device are classically processed

to propose better parameters in the spirit of a variational ap-

proach.

Different authors, see for instance Refs. [5, 10, 11], studied

the effect of noise (e.g. noisy gates, dephasing etc.) in pro-

tocols designed for the noiseless case, and found that noise

is usually detrimental. Meanwhile, the role of stochasticity

of outcomes from quantum measurements has been described

using the stochastic gradient descent framework [12, 13].

However, how to tame the combined effect of noise and

stochasticity in hybrid variational optimization is still far from

being understood.

Here we analytically study the convergence properties of

hybrid variational optimizations, in terms of the number of

times, hereafter dubbed iterations, that the NISQ device must

be queried to find the optimal parameters with a desired pre-

cision. We focus on the effects both of noisy gates and of

stochastic measurement outcomes, not matter whether opti-

mal observables are chosen to properly extract information

from the noisy process, or not. We find that the attainable pre-

cision for fixed number of iterations is bounded by a quantity

that depends on the Quantum Fisher Information [14–16]. Our

analysis of such bound shows that, in some circumstances,

noise can speed up the solution in the sense that it can pro-

vide better approximations for fixed number of iterations. The

meaning of our theoretical prediction is corroborated by nu-

merical experiments.

Variational Hybrid Optimization:– We consider the mini-

mization of the cost function

C(θ) := 〈ψ(θ)| Ĥ |ψ(θ)〉 , (1)

where |ψ(θ)〉 is a variational quantum state of N qubits,

namely a state that depends on P classical parameters θ =
(θ1, . . . , θP) ∈ RP, and Ĥ is a cost operator that depends on

the problem. In the variational quantum eigensolver [3], for

instance, Ĥ is the Hamiltonian of a quantum many-body sys-

tem and the task is to find a good variational approximation

of the ground state; in the quantum approximate optimization

algorithm (QAOA) [4] the task is to solve some combinato-

rial optimization problem and Ĥ is an Ising-like Hamiltonian

whose ground state contains the solution to the problem [17];

in quantum control [18], it is Ĥ = Û |ψ0〉〈ψ0| Û† where Û

is a target unitary, |ψ0〉 is a reference state, and C(θ) is the fi-

delity of state preparation; finally, it is also possible to express

in this language some machine learning applications, such as

quantum classifiers [5, 19].

One of the most popular choices for the variational ansatz

|ψ(θ)〉 in (1) is the output of a parametric quantum circuit

|ψ(θ)〉 = e−iθP X̂P · · · e−iθ1 X̂1 |ψ0〉 , (2)

i.e. of a series of evolutions generated by different, and yet

fixed, Hamiltonian operators X̂ j, for times θ j representing the

variational parameters. The reason for this choice is that

parametric quantum circuits are implementable in nowadays

NISQ devices [2] as long as X̂ j contains 1- and 2-local inter-

actions only. The fixed reference state |ψ0〉 is chosen among

states that are easy to prepare, and it is typically separable

|ψ0〉 ≡
⊗N

j=1
|ψ( j)

0
〉.

Variational hybrid quantum-classical algorithms, schemat-

ically shown in Fig. (1), operate by using a quantum device

to prepare the variational state (2) and estimate the cost (1),

and possibly its derivatives ∂θ j
C, via quantum measurements
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and f (θ, y) = Ey is the associated cost,

of θ. When the eigendecomposition of

can still get C(θ) from Pauli measurements,

posing Ĥ as Ĥ =
∑L
µ=1 hµσ̂µ where each

of Pauli matrices and hµ the corresponding

then by independently estimating each

that many σ̂µ typically commute with

quired number of independent measurements

than L.

Suppose now that ∇C(θ) = Ez∼q(z|θ)[

i.e. that the gradient of C can be written
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show a theoretical experiment in the IBM’s QASM Simulator

[27] where our predictions are confirmed.

Noise-Assisted Variational Optimization:– Due to the un-

avoidable errors in their operation, NISQ devices cannot ex-

actly prepare the ideal variational state (2), which must hence

be substituted with ρ̂(θ) = E(θ)[ρ̂0], where ρ̂0 is the noisy

version of |ψ0〉 and E(θ) the noisy dynamical map. Although

most of our results hold for more complex noise models, for

the sake of simplicity in the following we use the decomposi-

tion

ρ̂(θ) = EθP

P
◦ · · · ◦ Eθ1

1
[ρ̂0] , (4)

where ◦ indicates composition and Eθ j

j
is the noisy version of

the ideal parametric unitary channel Uθ j

j
[ρ̂] = e−iθ j X̂ j ρ̂eiθ j X̂ j

implemented by the j-th parametric gate of the NISQ device.

In what follows, Cmin := minψ〈ψ|H|ψ〉 is the exact minimum

of the cost function. Since ρ̂(θ) is a mixed state, the minimiza-

tion of the cost function Cnoisy(θ) := Tr
[

ρ̂(θ)Ĥ
]

only provides

an approximation to the minimum C(θopt) that can be obtained

in the noiseless case. The convergence rate of stochastic op-

timization towards the noisy minimum Cnoisy(ϑopt.
), with op-

timal parameters ϑopt
, can be bounded as in Eq. (3). Consid-

ering both the error due to the finite number of iterations and

the error due to the difference between C(θopt) and Cnoisy(ϑopt
)

we may write

Cnoisy(θ[1:I]) −C(θopt) ≤ Err(θopt,ϑopt
) + R

Gnoisy

√
I

, (5)

where

Err(θ,ϑ) := Cnoisy(ϑ) −C(θ) . (6)

The inequality (5) shows a simple and yet important aspect:

after a fixed number of iterations I, our best approximation to

the noiseless variational minimum has an error that is given

by two different terms. The first one follows from the differ-

ence between the noiseless and noisy cases, while the second

one depends on the gradient estimator and always decreases

for increasing I. To simplify our discussion and provide a

worst-case scenario, we assume that we know how to choose

an ideal variational ansatz (2) that provides Cmin = C(θopt),

and consequently ensures Err(ϑopt
, θopt) ≥ 0. This is typi-

cally not the case, as variational ansatze are normally chosen

as simple circuits that are easy to implement in a NISQ de-

vice, for which one might get a negative Err(ϑopt
, θopt). The

worst-case error coming from the first term in the r.h.s. of

(5) can be bounded by adapting the “peeling” technique from

[28, 29]. Indeed, we show in the supplementary material that

Err(θ,ϑ) ≤ P‖Ĥ‖∞maxk ‖Eϑk

k
−Uθk

k
‖⋄ so the error increases at

most linearly with the depth P and depends on the maximum

distance, as measured by the diamond norm [30, 31], between

the ideal gates and their noisy implementations. An alter-

native inequality Err(θ,ϑ) ≤ 2‖Ĥ‖∞
√

1 − 〈ψ(θ)| ρ̂(ϑ) |ψ(θ)〉
shows that the first error term is bounded by the fidelity be-

tween the optimal pure state and its noisy version.

We now focus on Gnoisy in (5), which depends on the

procedure to estimate the gradient from quantum measure-

ments. The measurement of an observable with associated

operator ĝ j provides an unbiased estimator of the gradient if

∇ jC = Tr
[

ρ̂ĝ j

]

for each j. In this sense, we refer to the ob-

servables ĝ j as estimators of the gradient. In the noiseless case

different estimators have been proposed [6, 12, 19, 20], either

based on the Hadamard test or the so-called parameter-shift

rule. However, those estimators may result biased if noisy

gates only are available: therefore, a rigorous generalization

to the noisy regime is still lacking. The convergence of SGD

with biased gradient estimators is not much understood, aside

from specific algorithms such as SPSA [32] where the bias

can be controlled. In order to define an unbiased estimator in

the general case we use the geometry of quantum states, from

which we known that any derivative can be written as [15, 33]

∇ jρ̂ =
L̂ jρ̂ + ρ̂L̂ j

2
, (7)

where the operator L̂ j is called the symmetric logarithmic

derivative (SLD). The gradient of the cost C(θ) = Tr
[

ρ̂(θ)Ĥ
]

can hence be obtained by measuring observables with associ-

ated operators

ĝ j(θ) =
L̂ j(θ)Ĥ + ĤL̂ j(θ)

2
+ λ jL̂ j(θ) , (8)

for any λ j. The freedom in choosing λ j follows from (7), since

Tr
[

L̂ jρ̂
]

= Tr
[

∇ jρ̂
]

= ∇ j Tr
[

ρ̂
]

= 0, implying the expectation

value ∇ jC = Tr
[

ĝ jρ̂
]

is independent of λ j. Therefore, the

free parameters λ j are analogous to the so-called baselines,

commonly employed in reinforcement learning for variance

reduction [34]. The optimal λ js are discussed in the sup-

plementary material. The measurement of the gradient op-

erators provides stochastic outcomes gSLD
j

(θ, γ) with proba-

bilities 〈gγ, j|ρ̂|gγ, j〉, where we used the eigendecomposition

ĝ j=
∑

γ gSLD
j

(θ, γ)|gγ, j〉〈gγ, j|. For pure states, the SLD operator

has a simple form L̂ j = |ψ(θ)〉 〈∇ jψ(θ)| and the above estima-

tion strategy becomes equivalent to others already proposed in

the literature [6, 12, 19, 20], which can be explicitly measured

using a generalization of the Hadamard test [12].

An alternative estimator can be obtained using the log-

derivative (LD) trick [35], also called “reinforce” in the ma-

chine learning literature [36], which consists in writing the

gradient of the cost function ∇ jC =
∑

y Ey∇ j p(y|θ) as en ex-

pectation value of gLD
j

(θ, y) = Ey∇ j log p(y|θ) over the original

distribution p(y|θ) = 〈y| ρ̂(θ) |y〉 where Ĥ =
∑

y Ey |y〉〈y|.
In the supplementary material, we show that all different

estimators for the gradient satisfy the upper bound

Gnoisy ≤
√

PG
noisy
∞ ≤

√
P‖Ĥ‖∞max

j,θ

√

QFI j(θ) , (9)

where QFI is the Quantum Fisher Information

QFI j(θ) = Tr
[

ρ̂(θ)L̂ j(θ)
2
]

, (10)
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FIG. 2. Two sources of error, (a) the square root of second statistical

moment of the gradient estimator maxθ

√

E[‖g(θ)‖2
2
] ≤ Gnoisy and

(b) the excess cost Err(θopt,ϑ
opt

), as a function of the depolarising

noise strength η. The variational circuit corresponds to a QAOA for

a ring of N = 6 qubits with 20 variational parameters. Different gra-

dient estimators are considered: the one based on the log-derivative

trick (LD) and the one based on the symmetric logarithmic deriva-

tive (SLD). Those are plotted against the upper bound (9) based on

the Quantum Fisher Information (QFI).

a central quantity in quantum metrology [15] that is also rel-

evant for studying quantum phase transitions [37–39]. The

bound (9), based on the QFI, shows a very important aspect:

while the first term in the r.h.s. of (5) increases as a function

of the noise strength, the second one can decrease. Indeed, it

is known that noise is normally detrimental for metrology, as

it can reduce the QFI from O(N2) (Heisenberg limit) to O(N)

(standard quantum limit) [16, 40].

Our analysis thus shows that the convergence accuracy, as

defined by the l.h.s. of (5), is bounded by the sum of two terms

that typically display opposite behaviours as a function of the

noise strength, with first one increasing and the second one

decreasing, as shown in Fig. (2) for the specific example that

will be described in the following section. Therefore, depend-

ing on the values of the constant R and on the number of iter-

ations I, we may observe that noise does actually help. This

will be shown with explicit simulations on the IBM QASM

Simulator which effectively models the noisy evolution ob-

served in the IBM-Q processors. Our analysis also shows that

when I is very large, i.e. I ≫
√

PR2QFI, then noise is al-

ways detrimental, as observed in some numerical experiments

[41, 42]. In fact, noise-assisted optimization can only be ob-

served for relatively few iterations, i.e. for a small number of

queries of the quantum device, which is indeed the regime of

interest for most variational problems on NISQ hardware.

Explicit example:– QAOA [4] is a specific ansatz for vari-

ational hybrid optimization which consists in the repetition of

two types of parametric quantum evolutions generated by two

different non-commuting Hamiltonians, typically called Ĥγ

and Ĥβ. Here Ĥγ ≡ Ĥ is equal to the cost operator appearing

in Eq. (1) and is a function of the Pauli σ̂z
j
operators, where the

indices j = 1, . . . ,N refer to the different qubits. In the com-

putational basis defined by the eigenstates {|0〉 , |1〉} of σ̂z
j
, H

is diagonal. The other Hamiltonian is fixed as Ĥβ = −
∑

j σ̂
x
j
,

where σ̂x
j

are other Pauli operators, which are not diagonal in

the computational basis. The QAOA evolution can be written

as in Eq. (2) with sequential applications of Ĥγ and Ĥβ

|ψ(γ,β)〉 = e−iβPĤβe−iγPĤγ · · · e−iβ1Ĥβe−iγ1Ĥγ |+〉⊗N . (11)

The parameters are then split as θ = (γ,β) and the total depth

of the circuit is 2P. The initial state |ψ0〉 = |+〉⊗N , where

|+〉 = (|0〉+ |1〉)/
√

2, is the ground state of Ĥβ. QAOA is a uni-

versal model for quantum computation [43, 44], meaning that,

with specific choices of Ĥγ, any state can be arbitrarily well

approximated by |ψ(γ,β)〉 with suitable parameters γ j, β j and

P → ∞. For the specific choice γ j ∝ j/P and β j ∝ (1 − j/P),

Eq. (11) can be interpreted as a discretization of an adiabatic

evolution [4, 45] and QAOA is guaranteed to perform well

for large enough P. Nonetheless, QFI can be very large when

the adiabatic evolution crosses a dynamical phase transition

[37–39]. Therefore, we expect that the error from Gnoisy in (5)

can be significant when the Hamiltonian βĤβ + γĤγ displays

a quantum phase transition for some choices of (β, γ). One

such example is the Ising ring [46] studied below, where Ĥβ

models the global transverse field.

Here we study QAOA applied to an antiferromagnetic ring

with Ĥγ =
∑N

j=1 σ̂
z
j
σ̂z

j+1
and periodic boundary conditions

σ̂z
N+1
≡ σ̂z

1
. QAOA with this model has been studied in

[10, 11], using the exact mapping to a free-fermion model.

In particular, it has been proven [10] that the ground state can

be exactly expressed with the QAOA ansatz (11) as long as

P ≥ N/2. The effect of noise in an overparameterized QAOA

is shown in Fig. 2, where we consider the effect of a local

depolarising error, as in (4) with Eθ j

j
[ρ̂] = D[e−iθ j X̂ j ρ̂eiθ j X̂ j ],

D =
⊗N

j=1
D j and D j(ρ) = (1 − η)ρ̂ + ησ̂z

j
ρ̂σ̂z

j
. All bounds

are computed by numerically finding the operators L̂ j from

Eq. (7). In Fig. 2 we see that our theory predicts a decreas-

ing Gnoisy in (5) as a function of η. In the Supplementary

Material, we also study a different noise model, where the

NISQ computer implements noisy yet unitary gates e−i(θ j+ηǫ j)X j

where ǫ j ∼ N(0, 1) is a Gaussian random variable. We found

that also with this noise, the error terms display the same be-

haviour shown in Fig. 2.

We test our theoretical predictions using the QASM kit [27]

that simulates QAOA on a physical hardware. In these simu-

lations, the error model consists of single- and two-qubit gate

errors, i.e. depolarizing error followed by a thermal relaxation

error, and lastly single-qubit-readout errors. Furthermore, the

gradient estimator is obtained using the SPSA algorithm [47].

In spite of the more complex model, the numerical results

shown in Fig. 3 agree with our theoretical predictions. In

Fig. 3 we show the probability of sampling from the differ-

ent bit strings in the ideal and noisy case, for P < N/2 and

P > N/2. We observe that the exact ground state, which cor-
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P 〈H〉 (∆H)2
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Noisy
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Noisy
8

-6.426

-6.543

5.209

6.604

Exact -10 0

FIG. 3. Histograms of the probabilities of sampling the different bit

strings after an optimization with 1024 samples. We use N = 10 and

two values of P, P = 3 in the upper row and P = 8 in the second

row. The first and second columns correspond, respectively, to the

noiseless and noisy case. The bit strings are ordered via the Ham-

ming distance from 0101 . . . , and the two degenerate ground state

configurations are shown in red. For visual clarity, the configura-

tions with small probabilities are not shown. The total energy and

energy variance of the different configurations is shown in the table.

responds to an equal superposition of the two antiferromag-

netic configurations, is not even obtained for P > N/2, where

the exact ground state is in principle achievable. This is due

to the finite number of samples, and mere access to stochas-

tic observations. Remarkably, the noise has a positive effect

for both P < N/2 and P > N/2, enhancing the probability of

sampling from the correct solutions at the end of the optimiza-

tion. The enhancement is less pronounced for P > N/2, as the

first term in the r.h.s. of (5) is larger for larger P and can only

be positive in this specific example since C(θopt) = Cmin for

P ≥ N/2.

Discussion:– Let us first comment upon the way QFI enters

our results. We understand its occurrence as due to the use of

stochastic optimization methods, which involve the gradient

of the cost function with respect to the variational parameters,

and hence the operators L̂ j in (7) and QFI via its definition

(10). We also notice that in estimation theory one aims at a

larger FI for a better determination of the wanted parameter

via the sampling of a function that depends on it, and this

is because a larger FI follows from larger local values of the

derivatives, and hence a higher sensitivity of the overall esti-

mation procedure. Quite interestingly, though, in the scheme

to which we are referring the role played by the parameter and

the sampled function are reversed: we input different values of

θ aiming at exploring the C(θ)-landscape, possibly locating its

minimum. In fact, this exploration is more agile if the above

landscape is more level, which corresponds to a lower FI. This

general argument holds both in a classical and in a quantum

setting, and we think it lies underneath the result Eq. (9) in

the following sense: noise can help an algorithmic procedure

to more easily explore the landscape of the cost function one

wants to minimize, thus increasing, at least as far as its detri-

mental effect on the cost-function evaluation is not too strong,

the overall efficiency of the optimization scheme.

Getting into detail, we underline that QFI enters our anal-

ysis by only providing a theoretical upper bound that never

needs being evaluated. In fact, should the QFI be efficiently

measurable, one could use more sophisticated stochastic al-

gorithms, such as Amari’s natural gradient [48]; this has been

recently applied to noiseless parametric quantum circuits [49]

based on the fact that, when C = − log p(x, θ), the natural

gradient is Fisher efficient, i.e. such that the variance of the

estimator θ[1:I] asimptotically meets the Cramér-Rao lower

bound. However, such a result does not hold for more gen-

eral cost functions like (1). Furthermore, no efficient method

(e.g. poly(N)) for estimating the QFI from measurements is

currently available in the noisy regime and, even if it existed,

estimating the QFI at each step would require further quan-

tum measurements that would increase the query complex-

ity. In fact, understanding whether one can obtain Fisher effi-

cient estimators of the optimal parameters is currently an open

question.

Summarizing, we have shown that variational hybrid

quantum-classical optimization algorithms provide results

whose difference w.r.t. the exact ones can be upper bounded

by the sum of two terms: the first one is the difference between

the noisy and the noiseless result, and typically increases for

stronger noise; the second term, though, is proportional to the

square root of the quantum Fisher information, that usually

decreases with noise. Due to the competition between these

two terms, once the precision of the final result is chosen, the

time the algorithm needs in order to get to its goal can be

shorter in a noisy setting. In conclusion, we have theoreti-

cally found and numerically confirmed that there exist opera-

tional regimes where noise can be beneficial to speedup con-

vergence, a result that we believe can inspire the development

of new hybrid algorithms that fully take advantage of quantum

effects.
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Appendix A: Bound on Err(θ,ϑ)

Most of our results hold irrespective of assumption (4), and

are valid for any error model

ρ̂(θ) = E(θ1, . . . , θP)[ρ̂0] . (A1)

Here we show on the other hand that when the local error

model (4) is assumed, then the error Err(θ,ϑ) grows at most

linearly with the number of parameters. We study an upper

bound to the first error in (5), which is clearly valid irrespec-

tive of the sign of Err(θ,ϑ)

Err(θ,ϑ) := Tr
[

Ĥ(ρ̂(ϑ) − |ψ(θ)〉〈ψ(θ)|)
]

(a)

≤ ‖Ĥ‖∞ ‖ρ̂(ϑ) − |ψ(θ)〉〈ψ(θ)| ‖1
(b)

≤ ‖Ĥ‖∞ ‖E(ϑ) −U(θ)‖⋄ , (A2)

where ‖X̂‖∞ is the maximum singular value of X̂, namely the

maximum absolute value |x j| where x j are the eigenvalues of

X̂, ‖X̂‖1 = Tr
[√

X̂X̂†
]

is the trace norm, and ‖X‖⋄ is the dia-

mond norm for quantum channels [30, 31]. In the last line it

is

U(θ) := UθP

P
◦ · · · ◦ Uθ1

1
, (A3)

and

ρ̂(ϑ) = E(ϑ)[|ψ0〉〈ψ0|] , |ψ(θ)〉〈ψ(θ)| = U(θ)[|ψ0〉〈ψ0|] ,

where for simplicity we have absorbed the noisy preparation

of |ψ0〉 into E1. To derive (A2), in (a) we used the Hölder

inequality and in (b) we used the distance induced by the dia-

mond norm

‖E − U‖⋄ = max
ρ
‖I ⊗ E(ρ) − I ⊗U(ρ)‖1 , (A4)

where I is the identity channel. We can now apply the “peel-

ing” technique from [28, 29] to bound the error in the diamond

distance. To this aim, we now use the decomposition from

Eq. (4) from the main text, and let δP = ‖E1:P −U1:P‖⋄, where

the 1:k refers to the composition of the first k channels. Then,

using the monotonicity of the diamond norm over CPTP maps

and the triangle inequality, we may write

δP =

‖EP ◦ E1:P−1 − EP ◦ U1:P−1 + EP ◦ U1:P−1 −UP ◦ U1:P−1‖⋄
≤ ‖EP ◦ E1:P−1 − EP ◦ U1:P−1‖⋄+
+ ‖EP ◦ U1:P−1 −UP ◦ U1:P−1‖⋄
≤ δP−1 + ‖EP −UP‖⋄ .

Iteratively applying the above inequality one gets

δP ≤
P

∑

k=1

‖Ek −Uk‖⋄ ≤ P max
k
‖Ek −Uk‖⋄ . (A5)

Combining (A5) and (A2) we find that the error increases at

most linearly with P, according to

Err(θ,ϑ) ≤ P‖Ĥ‖∞max
k
‖Ek −Uk‖⋄ . (A6)

An alternative bound can be obtained from (A2) via the

Fuchs-van de Graaf inequality [50]

Err(θ,ϑ) ≤ 2‖Ĥ‖∞
√

1 − 〈ψ(θ)| ρ̂(ϑ) |ψ(θ)〉 . (A7)

Appendix B: Bound on Gnoisy

We first focus on the estimator based on the log-derivative

trick. We write the cost function as C =
∑

y Ey p(y|θ), where

p(y|θ) = 〈y| ρ̂(θ) |y〉, Ĥ =
∑

y EyΠ̂y is the possibly unknown

eigendecomposition of H and Π̂y = |y〉〈y|. Then

∇ jC = Ey∼p(y|θ)[Ey∇ j log p(y|θ)] . (B1)

From the above, we find that g j = Ey∇ j log p(y|θ) is an un-

biased estimator of ∇ jC. We recall the definition of the con-

stants Gnoisy and G∞ such that

E

















∑

j

g2
j

















≤ G2
noisy , max

j
E

[

g2
j

]

≤ G2
∞ . (B2)

To get those constants we need to find upper bounds for

E

[

g2
j

]

. By explicit calculation, following a similar derivation

of Ref. [15] we find

E[g2
j ] =

∑

y

E2
y p(y|θ)[∇ j log p(y|θ)]2 (B3)

=

∑

y

E2
y

[∇ j p(y|θ)]2

p(y|θ) (B4)

(a)
=

∑

y

E2
y

[Tr Π̂y(ρ̂L̂ j + L̂ jρ̂)/2]2

Tr
[

Π̂yρ̂
] (B5)

=

∑

y

E2
y

[Re Tr
(

Π̂yρ̂L̂ j

)

]2

Tr
[

Π̂yρ̂
] (B6)

≤
∑

y

E2
y

∣

∣

∣

∣

Tr
(

Π̂yρ̂L̂ j

)

∣

∣

∣

∣

2

Tr
[

Π̂yρ̂
] (B7)

=

∑

y

E2
y

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tr

























√

Π̂y

√

ρ̂
√

Tr
[

Π̂yρ̂
]

√

ρ̂L̂ j

√

Π̂y

























∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(B8)

(b)

≤
∑

y

E2
y Tr

(

Π̂yL̂ jρ̂L̂ j

)

(B9)

= Tr
(

Ĥ2L̂ jρ̂L̂ j

)

, (B10)

where in (a) we used the definition of the SLD (7), and in

(b) the Cauchy-Schwartz inequality. Using then the Hölder

inequality and the fact that L̂ jρ̂L̂ j is a positive operator we

find then

E[g2
j ] ≤ ‖Ĥ‖2∞‖L̂ jρ̂L̂ j‖1 ≤ ‖Ĥ‖2∞QFI j , (B11)
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where QFI j is the Quantum Fisher Information (10). The up-

per bounds (B2) then follows with

G = ‖Ĥ‖∞

√

P

(

max
j

QFI j

)

, (B12)

G∞ = ‖Ĥ‖∞
√

max
j

QFI j . (B13)

A similar bound is obtained with another unbiased estima-

tor of the gradient. Here we set λ j = 0, while the general case

is studied in the next section. Using the SLD we note that

∇ jC = Tr
[

Ĥ(ρ̂L̂ j + L̂ jρ̂)/2
]

=
1

2

〈

ĤL̂ j + L̂ jĤ
〉

ρ̂(θ)
(B14)

≡
〈

Re(ĤL̂ j)
〉

ρ̂(θ)
, (B15)

where 〈Â〉ρ̂ = Tr
[

ρ̂Â
]

, Re[Â] := (Â + Â†)/2, so the gradient

can be estimated by quantum measurements of the operator

Re(ĤL̂ j). An upper bound is then obtained as

E[g2
j ] ≡

〈

Re(ĤL̂ j)
2
〉

ρ̂(θ)
(B16)

≤
〈

Re(ĤL̂ j)
2
+ Im(ĤL̂ j)

2
〉

ρ̂(θ)
(B17)

=
1

2
Tr

[

ρ̂(L̂ jĤ
2L̂ j + ĤL̂2

j Ĥ)
]

(B18)

=
1

2
Tr

[

L̂ jρ̂L̂ j(Ĥ
2
+ L̂−1

j ĤL̂2
j ĤL̂−1

j )
]

, (B19)

where we have assumed that L̂−1
j

exists. Using again the

Hölder inequality we get

E[g2
j ] ≤

1

2
‖L̂ jρ̂L̂ j‖1

(

‖Ĥ‖2∞ + ‖L̂−1
j ĤL̂ j‖2∞

)

(B20)

≤ ‖Ĥ‖2∞QFI j , (B21)

which is equivalent to Eq. (B11).

Appendix C: Optimal baselines

We discuss the role of the free parameters λ j, dubbed “base-

lines”, in the optimization. In principle, such parameters

should be chosen to minimize E[g2
j
]. We may write

E[g2
j ] ≡

〈











{Ĥ, L̂ j}
2
+ λ jL̂ j













2〉

ρ̂(θ)

(C1)

=

〈











{Ĥ, L̂ j}
2













2

+ λ j

{L̂ j, {Ĥ, L̂ j}}
2

+ λ2
j L̂

2
j

〉

ρ̂(θ)

=

〈











{Ĥ, L̂ j}
2













2

+ λ j

{L̂ j, {Ĥ, L̂ j}}
2

〉

ρ̂(θ)

+ λ2
jQFI j ,

where {Â, B̂} = ÂB̂ + B̂Â. Since QFI is always positive, the

optimal value of the “baseline” λ j is the vertex of the above

parabola, namely

λ
opt

j
= −

〈

{L̂ j, {Ĥ, L̂ j}}
〉

ρ̂(θ)

4QFI j

. (C2)

We note that the bound (B11) continues to hold even when the

optimal baseline is used, as by definition E[g2
j
] with the opti-

mal baseline is smaller than E[g2
j
] for the non-optimal λ j = 0.

Appendix D: Fluctuating parameters

We consider an experimentally motivated noise model

where the parameters θ j cannot be tuned exactly. The lack of

exact accuracy is modeled by a Gaussian noise with variance

σ2
j
. This corresponds to the following substitution

θ j → N(θ j, σ
2
j ) , (D1)

namely that the parameters are normally distributed around

a mean value θ j with variance σ2
j
. In the limit σ j → 0 we

recover the deterministic unitary operation (2). For σ j , 0 we

show that the above noise can be expressed into the form of

Eq. (4). We first note that

Eθ j

j
[ρ̂] =

∫

dϑ
e
− (ϑ−θ j )2

2σ2
j

√

2πσ2
j

e−iϑX̂ j ρ̂eiϑX̂ j (D2)

= D j ◦ Uθ j

j
[ρ̂] ≡ Uθ j

j
◦ D j[ρ̂] , (D3)

whereUθ j

j
[ρ̂] = e−iθ j X̂ j ρ̂eiθ j X̂ j is the noiseless gate and

D j[ρ̂] =

∫

dϑ
e
− ϑ2

2σ2
j

√

2πσ2
j

e−iϑX̂ j ρ̂eiϑX̂ j , (D4)

is independent on θ j. To simplify our discussion we assume

that X̂2
j
= 11. Although a more general form can also be ob-

tained in other cases, any tensor product of Pauli matrices sat-

isfies the constraint X̂2
j
= 11, so we believe that this restriction

covers the most common gates that can be implemented in

current NISQ devices. From series expansion it is simple to

show that

e−iϑX̂ j [ρ̂]eiϑX̂ j = ρ̂ + sin2(ϑ)(X̂ jρ̂X̂ j − ρ̂) − i

2
sin(2ϑ)[X̂ j, ρ̂] .

(D5)

Performing the integration in (D4) we get a dephasing-like

channel, but with more general operators X̂ j

D j[ρ̂] = (1 − η j)ρ̂ + η jX̂ jρ̂X̂ j , (D6)

where

η j =
1 − e−2σ2

j

2
. (D7)

For σ j → 0 we see that η j → 0 andD j reduces to the identity

channel.

We have studied the effect of Gaussian fluctuations in the

parameters of a QAOA as a function of of the noise rate η j ≡
η. We found that the two terms in the bound (5) display the

same behaviour as observed in Fig. 2.


	 Noise-Assisted Variational Hybrid Quantum-Classical Optimization 
	Abstract
	 Acknowledgments
	 References
	A Bound on  Err(bold0mu mumu —,bold0mu mumu —)  
	B Bound on Gnoisy
	C Optimal baselines
	D Fluctuating parameters


