

This is a repository copy of Outer membrane c-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of Shewanella oneidensis MR-1 cells to goethite.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166593/

Version: Supplemental Material

Article:

Jing, X, Wu, Y, Shi, L et al. (5 more authors) (2020) Outer membrane c-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of Shewanella oneidensis MR-1 cells to goethite. Applied and Environmental Microbiology. ISSN 0099-2240

https://doi.org/10.1128/aem.01941-20

© 2020 American Society for Microbiology. This is an author produced version of an article published in Applied and Environmental Microbiology. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Outer membrane *c*-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of *Shewanella oneidensis* MR-1 cells to goethite during dissimilatory iron

reduction

Xinxin Jing¹, Yichao Wu^{*,1}, Liang Shi^{2,3}, Caroline L. Peacock⁴, Noha Mohamed Ashry^{1,5},

Chunhui Gao¹, Qiaoyun Huang¹, Peng Cai^{*,1}

1 State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China

2 Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China

3 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China

4 School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

5 Agriculture Microbiology Department, Faculty of Agriculture, Benha University, Moshtohor,

Qalubia, 13736, Egypt

Supplementary Methods:

Genotypic phenotypic characterization. PCR amplification and and immunolocalization were applied to characterize the genotypic and phenotypic traits of strains this amplified used in study. *mtrC* was with primer mtrC-F (5'-ACTCGCCACGTTGATTCTGT-3') and mtrC-R (5'-ACATGCGTCAAGGCCTACAA-3'). omcA was amplified with primer omcA-F (5'-TGGAAAGCCCACGAAAGTGA-3') and omcA-R (5'-CTGCCTAAAGCGATACCCGT-3'). The antibodies against the hydrophilic and surface-exposed regions of MtrC and OmcA were produced as the previous study (1). The amino acid sequences of immunogenic peptides are GCKNGALDPKATIN (MtrC, 399-410) and GCHTEKPSAHHSSTD (OmcA, 349-364).

Iron oxides reduction assays. During the cell-mineral attachment experiment, QCM-D effluent was collected periodically in an acid-washed vial purged with nitrogen gas to prevent Fe(II) oxidized and precipitated. The Fe(II) concentration of QCM-D effluent were measured by the ferrozine assay (Stookey, 1970) after extracted in 0.5 M HCl overnight. Fe(II) concentration were determined using ferrous ammonium sulfate as a standard solution.

Table S1. IR band assignments for Shewanella

Wavenumber (cm ⁻¹)	IR band assignment
1742	v(C = O) in COOH of OmcA, MtrC(2)
1729-1720	C=O stretch in $COOH(3, 4)$
1700-1600	amide I: C=O stretching, -CN and -NH bending in amines(5)
1550-1540	amide II: N-H bending, C-N stretching(3-5)
1482-1454	bending of $CH_2/CH_3(3, 4)$
1450-1360	$v_{\rm s}({\rm COO^{-}})(3)$
1260-1220	$v_{\rm as}(\rm PO_2^{-})(4)$
1160-1150	$v_{\rm s}(\text{P-O})$ of phosphoryl surface complexes(5)
1120-1110	v(P=O)(5)
1118-1114	v(C-O-P,P-O-P),ring vibrations(3, 4)
1094-1080	$v_{s}(PO_{2})$; ring vibrations; $v(C-O)$; P=O stretch in phosphodiester,
	phosphorylated proteins, and polyphosphates(3, 5)
1078-1048	C-OH, C-O-C, and C-C vibrations of polysaccharides(3)
1045	v(P-OFe)(5)
1043-1039	v(P-OH, P-OFe)(3, 4)
1020-1016	v(P-OFe), ring vibrations(3, 4)
1011-995	$v_{as}(P-(OFe)_2)(5)$
979-962	symmetric stretching of PO_3 and $PO_2(3, 5)$
955-950	v(P-OH,P-OFe)(5)
930-927	$v_{\rm s}({\rm P-(OFe)_2})(5)$
886	δ (OH) of goethite(5)

	0 , ,				
	1645	1543	1087	1053	1046
1645	+	+(0)	+(+)	+(+)	+(+)
1543		+	+(+)	+(+)	+(+)
1087			+	+(0)	+(0)
1053				+	+(0)
1046					0

Table S2. Signs of each cross-peak in the 2D correlation maps of WT cells during short-term attachment (Figure S7A, B). "0" indicates no cross peak in the position.

peak intensity: $v_{s}(PO_{2}^{-})(1087 \text{ cm}^{-1}) > v(P-OFe)(1053 \text{ cm}^{-1}) > \text{amide II}(1543 \text{ cm}^{-1}) > \text{amide II}(1645 \text{ cm}^{-1})$

reaction sequences: $v_s(PO_2^{-1})(1087 \text{ cm}^{-1}), v(C-OH/C-O-C/C-C) (1053 \text{ cm}^{-1}), v(P-OFe) (1046 \text{ cm}^{-1}) > \text{amide I}(1645 \text{ cm}^{-1}), \text{ amide II}(1543 \text{ cm}^{-1})$

	1645	1546	1398	1076	1048			
1645	+	+(+)	+(0)	+(+)	0(+)			
1546		+	+(0)	+(+)	0(+)			
1458			+	+(+)	0(+)			
1398				+	0(0)			
1076					0			

Table S3. Signs of each cross-peak in the 2D correlation maps of WT cells during long-term attachment (Figure S7C, D). "0" indicates no cross peak in the position.

peak intensity: v(C-OH/C-O-C/C-C) (1076 cm⁻¹) > amide II(1546 cm⁻¹)>amide I(1645 cm⁻¹) > $v_s(COO^-)$ (1398 cm⁻¹)

reaction sequences: $v(C-OH/C-O-C/C-C)(1076 \text{ cm}^{-1}) > \text{amide II}(1546 \text{ cm}^{-1}) > \text{amide I}(1645 \text{ cm}^{-1})$

	Bare er 1, 2). 0		per per in in in p	001110111	
	1648	1550	1238	1079	1040
1648	+	+(+)	+(+)	+(+)	0(0)
1550		+	+(+)	+(+)	0(0)
1238			+	+(+)	0(+)
1079				+	0(0)
1040					0

Table S4. Signs of each cross-peak in the 2D correlation maps of $\triangle mtrC$ cells during short-term attachment (Figure 5A, B). "0" indicates no cross peak in the position.

peak intensity: $v_{s}(PO_{2}^{-})(1079 \text{ cm}^{-1})$ amide I(1648 cm⁻¹) > amide II(1550 cm⁻¹)> $v_{as}(PO_{2}^{-})(1238 \text{ cm}^{-1})$

reaction sequences: $v_{s}(PO_{2}^{-})(1079 \text{ cm}^{-1}) > v_{as}(PO_{2}^{-}) (1238 \text{ cm}^{-1}) > \text{amide II}(1550 \text{ cm}^{-1}) > \text{amide II}(1648 \text{ cm}^{-1})$

			, , -		1	1	
	1644	1548	1404	1236	1082	1051	1040
1644	+	+(0)	+(+)	+(0)	+(+)	+(+)	0(+)
1549		+	+(+)	+(0)	+(+)	+(+)	0(+)
1404			+	+(-)	+(+)	+(+)	0(+)
1236				+	+(+)	+(+)	0(0)
1082					+	+(0)	0(+)
1051						+	0(+)
1040							0

Table S5. Signs of each cross-peak in the 2D correlation maps of $\triangle omcA-\triangle mtrC$ cells during short-term attachment (Figure S8A, B). "0" indicates no cross peak in the position.

peak intensity: $v_s(PO_2^-)(1082 \text{ cm}^{-1}) > v(C-OH/C-O-C/C-C) (1051 \text{ cm}^{-1}) > \text{ amide I}(1644 \text{ cm}^{-1}) > amide II(1548 \text{ cm}^{-1}) > v_s(COO^-)(1404 \text{ cm}^{-1}) > v_{as}(PO_2^-)(1236 \text{ cm}^{-1})$ reaction sequences: $v(C-OH/C-O-C/C-C)(1051 \text{ cm}^{-1}), v_s(PO_2^-)(1082 \text{ cm}^{-1}) > v_s(COO^-)(1404 \text{ cm}^{-1}) > amide II(1548 \text{ cm}^{-1}), v_{as}(PO_2^-) (1236 \text{ cm}^{-1})$

		- , , -		1	1			
	1646	1548	1462	1400	1236	1086	1046	943
1646	+	+(+)	+(+)	+(-)	+(0)	+(+)	+(+)	+(+)
1548		+	+(+)	+(-)	+(-)	+(0)	+(+)	+(+)
1462			+	+(-)	+(-)	+(-)	+(-)	0(0)
1400				+	+(0)	+(+)	+(+)	0(+)
1236					+	+(+)	+(+)	+(+)
1086						+	+(0)	+(+)
1049							0	+(0)
943								+

Table S6. Signs of each cross-peak in the 2D correlation maps of $\triangle omcA$ cells during short-term attachment (Figure 6A, B). "0" indicates no cross peak in the position.

peak intensity: amide I(1646 cm⁻¹) > amide II(1548 cm⁻¹) > $v_s(PO_2^-)$ (1086 cm⁻¹)> v(P-OFe)(1046 cm⁻¹)> $v_{as}(PO_2^-)$ (1236 cm⁻¹) > $v_s(COO^-)$ (1400 cm⁻¹)> $\delta(CH_3/CH_2)$ (1462 cm⁻¹) > v_s (P-(OFe)₂)(943 cm⁻¹)

reaction sequences: $\delta(CH_3/CH_2)$ (1462 cm⁻¹) > v(P-OFe) (1046 cm⁻¹) , $v_s(PO_2^-)$ (1086 cm⁻¹), amide II(1548 cm⁻¹) > amide I(1646 cm⁻¹) > $v_s(COO^-)$ (1400 cm⁻¹)

attachment (Figure 6C, D). "0" indicates no cross peak in the position.							
	1641	1548	1065	1044			
1641	+	+(-)	+(-)	0(0)			
1548		+	+(-)	0(0)			
1065			+	0(0)			
				0			

Table S7. Signs of each cross-peak in the 2D correlation maps of $\triangle omcA$ cells during long-term attachment (Figure 6C, D). "0" indicates no cross peak in the position.

 1000
 +
 0(0)

 peak intensity: $v(C-OH/C-O-C/C-C)(1065 \text{ cm}^{-1}) > \text{amide II}(1548 \text{ cm}^{-1}) > \text{amide I}(1641 \text{ cm}^{-1})$

 reaction sequences: amide I(1641 cm^{-1}) > amideII (1548 cm^{-1}) > $v(C-OH/C-O-C/C-C)(1065 \text{ cm}^{-1})$

accaeline (underindent (1 igure 5 c, 2). o mateures no eross peur in the position.							
	1648	1550	1397	1226	1085	1040		
1648	+	+(+)	+(-)	+(-)	+(-)	0(-)		
1550		+	+(-)	+(-)	+(-)	0(-)		
1397			+	+(-)	+(-)	0(0)		
1226				+	+(+)	0(-)		
1085					+	0		

Table S8. Signs of each cross-peak in the 2D correlation maps of $\triangle mtrC$ cells during long-term attachment (Figure 5C, D). "0" indicates no cross peak in the position.

peak intensity: $v_{s}(PO_{2}^{-})(1085 \text{ cm}^{-1}) > \text{amide I}(1648 \text{ cm}^{-1}) > \text{amide II}(1550 \text{ cm}^{-1}) > v_{as}(PO_{2}^{-})(1226 \text{ cm}^{-1}) > v_{s}(COO^{-})(1397 \text{ cm}^{-1})$ reaction sequences: amide II(1550 cm⁻¹) > amide I(1648 cm⁻¹) > $v_{s}(PO_{2}^{-})(1085 \text{ cm}^{-1}) > v_{s}(COO^{-})(1397 \text{ cm}^{-1}) > v_{as}(PO_{2}^{-})(1226 \text{ cm}^{-1})$

······································							
	1648	1551	1224	1084	1059	1049	
1648	+	+(+)	+(-)	+(-)	+(-)	0(0)	
1551		+	+(-)	+(-)	+(-)	0(0)	
1224			+	+(+)	+(+)	0(0)	
1084				+	+(-)	0(-)	
1059					+	0(0)	
1049						0	

Table S9. Signs of each cross-peak in the 2D correlation maps of $\triangle omcA-\triangle mtrC$ cells during long-term attachment (Figure S8C, D). "0" indicates no cross peak in the position.

peak intensity: v_s(PO₂)(1084 cm⁻¹)> v(C-OH/ C-O-C/C-C) (1059 cm⁻¹)> amide I(1648

 $\frac{1}{v(C-OH/C-O-C/C-C)} (1059 \text{ cm}^{-1}) > v_{as}(PO_2^{-1})(1224 \text{ cm}^{-1}) = v_{as}(PO_2^{-1})(1224 \text{ cm}^{-1}) = v_{as}(PO_2^{-1})(1084 \text{ cm}^{-1}) > v_{as}(PO_2^{-1})(1084 \text{ cm}^{-1}) > v_{as}(PO_2^{-1})(1224 \text{ cm}^{-1}) = v_{as}(PO_2^{-1})(1224 \text{ cm}^{-1})$

	Adhesion forces (nN)	Rupture length (nm)
WT	1.17±0.05 a	292.33±11.35 a
$\Delta m tr C$	1.18±0.05 a	182.64±6.94 b
$\Delta omcA$	0.71±0.03 b	99.02±4.80 d
$\Delta omcA$ - $\Delta mtrC$	0.75±0.03 b	132.02±7.43 c

Table S10. The adhesion forces and rupture length of four strains in AFM analysis. Different letters following the mean values \pm SE (n=100) indicate significant differences among the strains (*P*<0.05).

Table S11. Fe(II) concentration of QCM-D effluent during the cell-mineral attachment experiment

	Fe(II) concentration (µg/ml)						
Strain	0 h	0.5 h	1 h	3 h	5 h	8 h	11 h
Abiotic control	0.043±0.005	0.050 ± 0.010	0.035 ± 0.005	0.046±0.013	0.047 ± 0.038	0.054 ± 0.003	0.041±0.005
WT	0.030 ± 0.008	0.045 ± 0.004	0.052 ± 0.008	0.041 ± 0.001	0.041 ± 0.001	0.050 ± 0.005	0.049 ± 0.006
$\Delta omcA$	0.036 ± 0.005	0.042 ± 0.002	0.041 ± 0.004	0.047 ± 0.005	0.046 ± 0.005	0.053 ± 0.004	0.051±0.003
$\Delta m tr C$	0.068 ± 0.006	0.045 ± 0.001	0.043±0.006	0.051 ± 0.005	0.044 ± 0.002	0.044 ± 0.009	0.048 ± 0.005
$\Delta omcA - \Delta mtrC$	0.032±0.001	0.059 ± 0.002	0.040 ± 0.000	0.040±0.001	0.036±0.001	0.037±0.001	0.039±0.001

Fig. S1. The microscopic images of QCM-D sensors after 10-h attachment, the bar is 20 $\mu m.$

Fig. S2. ATR-FTIR spectra of goethite-free Shewanella cells.

Fig. S3. ATR-FTIR spectra of WT (A), $\Delta mtrC$ (B), $\Delta omcA$ (C) and $\Delta omcA-\Delta mtrC$ (D) attachment to goethite during short-term (0-2 h) and long-term (2-16 h).

Fig. S4. The changes of peak area for amide II (1543 cm⁻¹) as a function of time.

Fig. S5. Synchronous (A, C) and asynchronous (B, D) 2D correlation map of time-dependent ATR-FTIR spectra for the short-term (A, B) and long-term (C, D) attachment of WT cells to goethite. The red and blue regions represent positive and negative correlations intensities.

Fig. S6. Synchronous (A, C) and asynchronous (B, D) 2D correlation map of time-dependent ATR-FTIR spectra for the short-term (A, B) and long-term (C, D) attachment of $\Delta omcA - \Delta mtrC$ cells to goethite. The red and blue regions represent positive and negative correlations intensities.

Fig. S7. QCM-D ΔD - Δf plots for *Shewanella* cells attached on goethite surface.

Fig. S8. Validation of PCR products by gel electrophoresis. M: DL5000 marker; Lane 1-4: Amplication frag-ment of the *S. oneidensis* MR-1 WT (1), $\Delta omcA$ (2), $\Delta mtrC$ (3), $\Delta omcA-\Delta mtrC$ (4) using primer pairs of omcA-F and omcA-R(A), mtrC-F and mtrC-F(B).

Fig. S9. Structured illumination microscopy images of WT (A, E), $\Delta mtrC$ (B, F), $\Delta omcA$ (C, G) and $\Delta omcA - \Delta mtrC$ (D, H) stained by DAPI (blue). Outer membrane OmcA and MtrC were specific labeled with antibodies against OmcA (A-D, green) or MtrC (E-H, green).

Fig. S10. Transmission electron microscopic (TEM) images of goethite (A). Powder X-ray diffraction (XRD) patterns of goethite (B).

Fig. S11. The frequency (Δf) and dissipation (ΔD) shift for the attachment of WT (A), $\Delta mtrC$

(B), $\Delta omcA$ (C) and $\Delta omcA-\Delta mtrC$ (D) on golden sensors.

Fig. S12. Fluorescence microscopic images of WT (A, E), Δ mtrC (B, F), Δ omcA (C, G) and

 Δ omcA- Δ mtrC (D, H) incubated in 0.1 M NaCl for 0 hours and 11 hours.

Reference

- Marshall MJ, Beliaev AS, Dohnalkova AC, Kennedy DW, Shi L, Wang Z, Boyanov MI, Lai B, Kemner KM, McLean JS, Reed SB, Culley DE, Bailey VL, Simonson CJ, Saffarini DA, Romine MF, Zachara JM, Fredrickson JK. 2006. *c*-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by *Shewanella oneidensis*. PLOS Biology 4:e268.
- You LX, Rao L, Tian XC, Wu RR, Wu X, Zhao F, Jiang YX, Sun SG. 2015. Electrochemical in situ FTIR spectroscopy studies directly extracellular electron transfer of *Shewanella oneidensis* MR-1. Electrochim Acta 170:131-139.
- 3. Elzinga EJ, Huang JH, Chorover J, Kretzschmar R. 2012. ATR-FTIR spectroscopy study of the influence of pH and contact time on the adhesion of *Shewanella putrefaciens* bacterial cells to the surface of hematite. Environ Sci Technol 46:12848-12855.
- 4. Parikh SJ, Chorover J. 2006. ATR-FTIR Spectroscopy Reveals Bond Formation During Bacterial Adhesion to Iron Oxide. Langmuir 22:8492-8500.
- 5. Yan W, Wang H, Jing C. 2016. Adhesion of *Shewanella oneidensis* MR-1 to Goethite: A Two-Dimensional Correlation Spectroscopic Study. Environ Sci Technol 50:4343-4349.