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ABSTRACT: Metalenses are nanostructured surfaces that mimic the functionality of optical 

elements. Many exciting demonstrations have already been made, e.g.  focusing into diffraction-

limited spots, or achromatic operation over a wide wavelength range. The key functionality that is 

yet missing, however, and that is most important for applications such as smartphones or virtual 

reality, is the ability to perform the imaging function with a single element over a wide field of 

view. Here, by relaxing the constraint on diffraction limited resolution, we demonstrate the ability 

of single layer metalenses to perform wide field of view (WFOV) imaging while maintaining high 

resolution suitable for most applications. We also discuss the WFOV physical properties and in 

particular, we show that such a WFOV metalens mimics a spherical lens in the limit of infinite 

radius and infinite refractive index. Finally, we use Fourier analysis to explain the dependence of 

the FOV on the numerical aperture. 

KEYWORDS: dielectric metalens, crystalline silicon, wide field of view metalens, metasurface,  
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Introduction 

Metalenses are an emerging technology that uses nanostructures to modulate the amplitude and 

phase of an optical beam, thus achieving optical functionalities that can replace or improve bulk 

optical systems 1-6. A canonical example for this capability is the development of the hyperbolic 

metalens, which is free from spherical aberrations 7, 8, a property that is difficult to obtain in bulk 

optics, especially with single elements. The metalens paradigm, in contrast, can be readily 

designed to impose a hyperbolic phase profile, thus leading to diffraction limited resolution 6, 8-13. 

More interestingly, metalenses can also be designed to realise functionalities that are impossible 

to achieve in bulk optics. We exploit this new degree of freedom for metalens design by addressing 

the problem of field of view (FOV), which has not received much attention so far. Indeed, in many 

applications, such as imaging systems, FOV is the crucial parameter, but metalens designs that 

have been put forward to date are limited to procedures that reduce off-axis aberration via 

numerical optimisation 14, often combined with a doublet system 15, 16. While ingenious, these 

approaches are limited to moderate Numerical Apertures (NA) and do not explore the physical 

mechanisms limiting the FOV. An alternative strategy is to relax the requirement of diffraction 

limited resolution in order to achieve a wide FOV (WFOV) in a singlet system17-19. Here, we 

demonstrate WFOV imaging with a single layer metalens with an NA of 0.8. We show that the 

Point Spread Function (PSF) shape remains undistorted inside an angular cone > 170°. The design 

trades off FOV against the diffraction limited resolution equivalent to an NA of 0.27, which is 

however sufficient for most imaging applications, including smartphones. We discuss the physical 

properties of the WFOV metalens and, using Fourier analysis, we show that the WFOV metalens 

achieves an arbitrarily large FOV by mimicking a bulk spherical lens with infinite refractive index 

and infinite radius of curvature. The WFOV is therefore unique in that its bulk counterpart is 
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impossible to obtain. Finally, we compare the WFOV metalens to the diffraction limited (DL) 

hyperbolic metalens, showing that they are complementary in the sense that the FOV of the former 

and the resolution of the latter improve monotonically with the NA. 

2. Design 

The DL and WFOV metalenses employ a hyperbolic (Equation 1) and a quadratic (Equation 2) 

phase profiles, respectively. DL metalenses with hyperbolic phase profiles were first demonstrated 

by 20. Since their properties are well known in the literature 4, 6, 8-11, 20-22, we focus attention on the 

description of the quadratic phase profile. 
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A quadratic phase profile for WFOV metalenses was first proposed by Pu et.al 17. As shown by 

the authors, WFOV is achieved because the quadratic phase profile translates a linear phase 

(imposed by a plane wave at oblique incidence) into a spatial shift, as shown in Equation 3 below. 

As a result, the effect of oblique incidence is a spatial translation of the focal spot. 
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 The quadratic metalens achieves a WFOV but it introduces spherical aberrations, which limits 

the resolution. As shown in 17, the resolution limitation can be understood in terms of an effective 

aperture of the metalens, outside of which the phase modulation is so rapid that diffraction orders 

become evanescent. The resolution of the quadratic metalenses, however, is sufficiently high for 

most imaging applications, as we show in the next section. Further insights into the physics of 

quadratic phase-profile lenses are provided in the following sections. A key remaining challenge 



 5 

not addressed by 17 is wide field of view imaging in the visible wavelength range, which we 

demonstrate here. 

Experimental demonstration 

The metalenses are realised using an array of 230 nm tall c-Si posts on a sapphire substrate 21, 22 

as shown in Figure 1a. Following the usual procedure, the metasurface is constructed from the 

transmission/phase maps of periodic arrays of c-Si posts (Figure 1b). The period of the arrays a is 

fixed and define the size of the meta-atoms, which in our design is a =190 nm. Each array has a 

different diameter of the c-Si posts, and their transmission and phase were calculated using the 

Rigorous Coupled Wave Analysis (RCWA)23, 24. The resulting transmission and phase of each 

array are then combined to generate the phase map (Figure 1b).  The desired phase profile is then 

discretised using the phase map. All metasurfaces shown here use 8 different phase levels, which 

are marked with circles in Figure 1b. More details are provided in the Supporting Information (SI), 

Section S1 including the angle-dependent phase maps.  

 Micrographs of the metasurfaces are shown in Figure 1c-d, highlighting the excellent 

fabrication quality despite the very small period of 190 nm (see materials and methods, for details 

on fabrication and the imaging system, and section S2 of the SI for more micrographs). A picture 

of the metalens on a ruler is shown in Figure 1e. The imaging system (Figure 1f) integrates the 

metalens with a complementary metal oxide semiconductor (CMOS) sensor (Sony IMX219) in a 

3D printed box. We fabricated two metalenses: a WFOV using a quadratic profile 17-19, and a 

diffraction limited (DL) metalens using a hyperbolic profile as a reference. The role of the phase 

profiles is discussed in the next section. 

The performance of the WFOV lens is shown in Figure 2a, in comparison to a DL design (Figure 

2b) using a USAF 1964 chart. The USAF chart is shown in Figure 2c, highlighting the field of 



 6 

view zones. The metalenses have the same numerical aperture of NA = 0.8 which is here defined 

as , where D and f are the lens aperture diameter and focal length, respectively. For 

all lenses, we use a focal length of f = 750 μm and a diameter of D = 2 mm. It is clear that the 

image obtained with the WFOV metalens is virtually free of aberrations, except for the barrel 

distortion or “fish-eye” effect, which is typical of optical systems with a wide field of view15. The 

barrel distortion arises due to a mismatch between the actual displacement of the focal spot (which 

depends on the sine of the angle of incidence), and the paraxial displacement (which depends on 

the tangent of the angle). The measured displacements are shown in Figure 2d. Because this 

displacement is predictable, it can be corrected in post-processing 25, so it does not constitute a 

fundamental limitation of the lens. 

 The image of the DL metalens, in contrast, is strongly blurred by off-axis aberrations. The only 

area where the DL lens achieves superior performance is the very centre of the image. The 

extremely large FOV of the WFOV metalens is demonstrated by analysing the Point Spread 

Function (PSF) shown in Figure 3a-b for different angles of incidence (see the materials and 

methods section for details on the measurement setup). The normalized PSF of the WFOV 

metalens is virtually unchanged for an incoming angle as high as 89° (Figure 3a), while the 

normalized PSF of the DL lens is already badly distorted for an angle of only 2° (Figure 3b). The 

focusing efficiency of the WFOV metalens is virtually unchanged up to an angle of incidence of 

20 degrees, and reduces for higher angles due to a reduction in the transmission efficiency. A more 

detailed analysis of the efficiency is shown in the end of this section.  The angular dependence of 

the PSF’s full width at half maximum (FWHM) in the x-direction in Figure 3a-b is shown in Figure 

3c, comparing experimental and theoretical values (see SI for details on how the PSF is calculated). 

For perpendicular incidence (0°), the DL lens has a diffraction limited FWHM, which explains its 

2 2
4D D f+
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high performance at the very centre of the image, while the FWHM of the WFOV lens is twice as 

large  (we notice in Figure 3c that the measured FWHM of the DL lens is larger than the theoretical, 

which we attribute mainly to the objective used in the imaging of the PSF – see SI for more details). 

The FWHM of the DL lens, however, rapidly increases for small angles of incidence, while the 

FWHM of the WFOV lens is constant up to angles as high as ±89°. 

We notice that our WFOV single layer metalens achieves a FOV > 170° (characterised by the 

PSF measurements) and a FWHM ~ 2λ0, which is comparable to bulk optics WFOV lenses. For 

example, the wide and ultra-wide lenses of the iPhone 11 Pro Max have a FOV = 60°, FWHM ~ 

1.87λ0 and a FOV = 120°, FWHM ~ 2.26λ0, respectively 26, 27. As another example, the Nikkon 

AS-Fisheye NIKKOR 8-15mm f/3.5-4.5E ED system has a FOV = 60°, and FWHM ~ 3.54λ0. 

The angle dependent focusing and transmission efficiencies of the quadratic and hyperbolic 

metalenses are shown in Figure 4a (quadratic) and Figure 4b (hyperbolic) for both s (black lines) 

and p (blue lines) polarizations.  The theoretical efficiencies, determined by numerical simulations, 

are shown in Figure S10 of the SI, section S10. The focusing efficiencies were determined by 

integration of the energy in the focal spot using a circular aperture with a radius of 7.5 µm. The 

dotted lines show the transmission efficiencies. To better assess the metalens performance, the 

experimental focusing efficiency with respect to both incident (solid lines) and transmitted power 

(dashed lines) are shown in Figure 4. Comparing these two efficiencies is helpful to determine 

whether a reduction in the focusing efficiency comes from a loss of the metalens ability to focus 

light, or from a loss of the transmitted power itself. We thus conclude that the reduction of the 

focusing efficiency with respect to the incoming power (Figure 4a, solid lines) is not due to a loss 

of ability to focus light, but it is rather due to a loss of transmitted power itself (Figure 4a, dotted 

lines), which is mostly due to the cosine dependent projected area. Nevertheless, the efficiency 
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with respect to incoming power (Figure 4a, solid lines) is virtually unchanged up to an angle of 

20º. 

As expected, the efficiencies of the quadratic lens are more tolerant at oblique incidence than 

the efficiencies of the hyperbolic lenses. Notice, however, that the efficiencies of the quadratic 

lens (3.5% for focusing with respect to incoming power and 14% for transmission) are much lower 

than the efficiencies of the hyperbolic lens (23% for focusing with respect to incoming power and 

31% for transmission). This is an intrinsic consequence of a combination of spherical aberrations 

and the effective numerical aperture of the quadratic lens17, (for a more detailed analysis, see SI – 

Section S3). This feature highlights the need of using low loss materials, such as c-Si, in the design 

of WFOV metalenses. Notice that the simulated focusing efficiency (shown in Figure S10a, solid 

lines) is -13 dB, (i.e., 5%), as compared to the -14.5 dB (i.e., 3.5%) of the experimental efficiency 

(Figure 4a, solid lines). We therefore achieve an experimental focusing efficiency of 3.5/5*100% 

= 70% compared to the simulated efficiency. 

Relationship with bulk optics and role of phase profile 

In order to understand how the physics of the WFOV metalens relates to bulk optics and how it 

achieves an arbitrarily large FOV, consider a conventional spherical lens with light incident at 

oblique incidence at some angle θ = 30°, as shown in Figure 5a for a conventional lens with R = 

500 μm and f = 500 μm (ray tracing obtained using Comsol). The focal distance f of the spherical 

lens is given by the ratio of the radius of curvature R and the refractive index contrast Δn between 

the lens and the surrounding medium (f = R/(2Δn)). It is obvious from the equation that the same 

focal length can be achieved by keeping the ratio of radius and index contrast constant. 

Conventional optical systems are constrained to index contrasts of typically Dn < 1 by the 

availability of suitable materials, so this ratio is not explored in practise. Metalenses do not have 
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this constraint, however, and they can be designed to mimic large radii and high refractive indices. 

This opportunity is explored in Figure 5. For example, Figure 5b shows the example of a lens with 

twice the radius and twice the index contrast  (R  = 1000 μm, Δn = 1) of the conventional lens. 

Note that the ray convergence is already improved compared to the lens of Figure 5a. The 

convergence then improves further as the radius of curvature is increased while keeping the focal 

length constant, as illustrated in Figure 5c, for which R  = 1500 μm, Δn = 1.5. 

This improvement of convergence with increasing radius and refractive index can be readily 

understood via the Fourier Transform (FT) of the field distribution immediately after the lens for 

perpendicular incidence (Figure 5d), i.e. by considering k-space. The FT of the large radius lens 

(Figure 5d - blue line) is flatter than that of the conventional lens (Figure 5d - black line), which 

increases the symmetry of the Fourier components (see sections S4 and S5 on the SI for more 

details). Symmetry in k-space is important because it ensures that the rays contributing to image 

formation from opposite sides of the lens have equal strength, thus forming a well-defined spot. 

For oblique incidence (Figure 5e), this symmetry is compromised, unless the FT is flat, which is 

the case for large radius spherical lenses (see also Figure 6a-b). Note that the asymmetry in k-space 

is particularly pronounced for the hyperbolic lens, which explains its very limited field of view 4. 

These insights clarify the optical performance of the WFOV lens. Indeed, the quadratic profile 

is obtained in the limit of both R and Δn going to infinity while keeping f = R/2Δn constant, as 

shown in Equation 4 (see materials and methods and section S6 on the SI for more details on the 

phase profiles). 

                  (4) ( )
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Where next is the refractive index of the focusing medium, λ0 and r are the free space wavelength 

and the distance to the metalens’ centre, respectively. Since a metalens with quadratic profile 

corresponds to the limit of a spherical lens with infinite radius and infinite refractive index, we 

conclude that the WFOV metalens does not have a bulk counterpart. We notice that a bulk lens 

with quadratic profile is not equivalent to the WFOV lens, since their optical characteristics 

coincide only for paraxial rays (see SI for a comparison between the metalens and the bulk lens). 

Fourier analysis of the FOV and relationship with hyperbolic metalenses 

The FT of the WFOV lens is further explored in Figure 6a for NAs of 0.4 (black line), 0.65 (blue 

line) and 0.9 (red line). Notice that, the larger the NA, the wider the FT. In fact, for an NA ≈ 0.9 

the FT covers the range of normalized k vectors from -2 to 2, i.e., it covers a region twice as large 

as the light line, which makes the FT invariant for oblique incidence (Figure 6b), thus resulting in 

a FOV = 180°.  We note an interesting difference of lens performance on NA; for most lens 

designs, including the hyperbolic design, it is the spatial resolution which increases with increasing 

NA. For the WFOV lens, however, it is the FOV that increases with increasing NA. This interesting 

behaviour is explored in Figure 6c-d.  As expected, the	FWHM of the DL (hyperbolic) lens (Figure 

6c – black line) decreases monotonically as the NA increases, while the FWHM for the spherical 

(blue line) and WFOV (red line) lenses remain constant beyond an NA of 0.2 (spherical) and ≈ 0.3 

(WFOV). The FTs of the WFOV and DL lenses are very similar up to an NA ≈ 0.3 (see section S4 

on the SI for the Fourier Transform profiles), and consequently their FWHM are identical in the 

low NA regime; for higher NAs, however, their FTs differ, which is a manifestation of spherical 

aberrations and limits the FWHM of the WFOV lens.  

In terms of field of view, however, the roles are reversed. The FOV of the DL lens now rapidly 

decreases as the DL increases (Figure 6d – black line – see section S7 on the SI for detailed 

information on how the FOV is quantified), while the FOV of the WFOV lens (red line) increases 
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monotonically with NA, until it reaches 180° for NA ≈ 180°. Note that the FOV of the spherical 

lens (blue line) saturates at a value of ≈ 20°. This limitation of the spherical lens highlights the 

unique advantage of the WFOV design: even though the WFOV lens is fundamentally based on 

the spherical design, it achieves much higher performance by going to the R,n → +∞ limit. 

Therefore, while the spatial resolution of the DL lens increases with	NA (at the expense of FOV), 

it is the FOV that increases with NA for the WFOV lens. We note, however, that the spatial 

resolution of the WFOV lens can be readily improved by using oil immersion, while the limited 

FOV of the DL lens can only be improved with a suitable phase corrector, e.g. in a doublet 

configuration 15, 16.   

Discussion 

In conclusion, we demonstrate WFOV imaging with a single layer metalens by relaxing the 

constraint on diffraction limited resolution; in particular, we show that WFOV metalenses mimic 

a spherical lens in the limit of infinite radius of curvature and infinite refractive index. This 

metalens has an arbitrarily large FOV and can be seen as complementary to the established DL 

(hyperbolic) lens design, in the sense that the FOV of the WFOV lens increases with the NA, while 

it is the resolution which increases with NA in DL lenses. We note that the  WFOV metalens 

achieves a FWHM ≈ 2λ0 which is sufficient for all but the most demanding imaging applications, 

including the very best smartphone cameras which have a maximum NA of ~ 0.3 (notice that 

FWHM ≈ 2λ0 is obtained in the DL lens with NA = 0.27). The WFOV metalens opens up an 

unprecedented degree of freedom to control the FOV, with achromatic operation presenting the 

next challenge. Overall, we believe that the WFOV metalens will make an important contribution 

to the development of novel wide-field and high-resolution imaging applications, including 

smartphone imaging, virtual reality viewers and miniaturised high-end scientific imaging systems. 
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Methods 

Fabrication: The metalenses were fabricated on commercially available 230 nm thick c-Si (100) 

wafers epitaxially grown on a sapphire substrate (from The Roditi International Corporation 

Limited.). The sample was cleaned using acetone, isopropyl alcohol (IPA) and oxygen plasma. It 

was subsequently spin-coated with a 300 nm positive electron beam resist layer (AR-P 6200.13, 

AllResist GmbH) followed by a 60 nm charge dissipation layer (AR-PC 5090, AllResist GmbH). 

The structure was then patterned using an e-beam system (Voyager, Raith GmbH) followed by a 

resist development in xylene for 2 minutes. The pattern was transferred to silicon using reactive 

ion etching. SEM micrographs of finished metalenses are shown in Figure S5a-f on section S2 of 

the SI. 

Camera (imaging system): The metalens was integrated with a CMOS sensor (Sony IMX219 

8-megapixel sensor) to form a metalens camera. The camera set-up is shown in Figure S6a-c on 

section S2 of the SI. Figure S6a shows a schematic of the metalens position with respect to the 

CMOS sensor, where the red arrow indicates that the CMOS position is adjustable to focus the 

image. Figure S6b-c shows the integrated system without and with the lid on, respectively. The 

imaging system uses a monochromatic light source, as indicated in Figure S6d. In order to better 

show the FOV, parts of the image were magnified with the system shown in Figure S6e. The set-

ups of Figure S6d-e were then used to record the images shown in Figure S8a-b, respectively. The 

images obtained with the WFOV and DL metalenses are shown in Figure S8a-b, respectively. The 

areas indicated by the squares were magnified and shown in Figure S8b-d. 

Point Spread Function (PSF) characterization setup: The PSFs were measured using a 

rotation stage, as shown in Figure S9. The metalens was illuminated by a laser at a wavelength of 

532 nm, and the corresponding PSFs were then imaged onto the CMOS sensor. 
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Lenses phase profiles: The lenses’ phase profiles are defined on Table S3 with the pertinent 

parameters defined at Table S4 in section S7 of the SI. 

Notice that the limit of the spherical lens when the radius and refractive index go to infinity, 

keeping the focal length fixed, is given by a quadratic profile. One might then think that the WFOV 

lens behaves just like a bulk lens with a quadratic profile. We emphasise that this is not the case, 

however, because their behaviour is only equivalent for paraxial rays, as illustrated in Figure S13, 

which shows a ray tracing comparison between the WFOV metalens (left) and quadratic bulk lens 

(right).  

Notice that the WFOV metalens, for being flat, focuses light at the same distance (750 µm), 

irrespective of the angle of incidence. The focal point of the bulk quadratic lens, in contrast, is 

dependent of the angle of incidence (which is a manifestation of Petzval curvature aberration). 

This effect is highlighted by comparing the blue dashed line in Figure S13d-e, that marks the focal 

point for different angles of incidence, with the red dashed line that marks the focal distance at 

normal incidence. Notice how the focal length of the bulk lens increases at oblique incidence, 

tracing the Petzval field curvature.  
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Figure 1. (a) Meta-atom representation and (b) transmission and phase maps. D is the diameter of 

the c-Si posts, and the circles mark the eight phase levels used to encode the metalens (the 

diameters are shown in section S1 on the SI). The operating wavelength is 532 nm. (c) and (d) 

show SEM micrographs of the array of c-Si nanoposts forming the metalens. The scale bars are 

400 nm (c) and 3 μm (d). (e) photograph of the fabricated metalenses. The ruler’s units are in mm 

indicating the 2 mm diameter. (f) Setup of the 3D-printed system integrating the metalens with a 

CCD camera.  
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Figure 2.  (a) Image of a USAF 1964 chart obtained with the WFOV (quadratic) metalens using 

the setup of Fig. 1 (f); the scale bar is 100 μm long. (b) Image of a USAF 1964 chart obtained with 

the DL (hyperbolic) metalens using the setup of Fig. 1 (f); the scale bar is 100 μm. The distance 

between the lens and the object is 6 cm. (c) Picture of the USAF 1964 chart with the field of view 

zones highlighted by dashed circles. The field of view zones marked by the solid circles (from 

innermost to outermost) are 20°, 40° and 70°. The radius of the outermost circle is 4.2 cm. See SI, 

section S2 for an image with a wider field of view (d) Focal spot displacement as function of the 

incident angle. The continuous line shows the product of the sine function with the focal length. 
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Figure 3. PSFs for different angles of incidence for the WFOV (a) and the DL (b) metalenses. The 

x axis in (a) and (b) is centred at the maximum of each PSF. (c) Dependence of the FWHM on the 

angle of incidence for both lenses.  Focal length is 750 μm, diameter is 2 mm, operating wavelength 

is 532 nm and the NA=0.8. 
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Figure 4. Measured transmission (dotted lines) and focusing efficiencies (dashed and solid lines) 

as a function of angle the of incidence for both s and p polarisations. The focusing efficiency is 

determined with respect to both incoming power (solid lines) and transmission power (dashed 

lines). (a) efficiencies of the quadratic metalens. At perpendicular incidence, the transmission 

efficiency is 14%, the focusing efficiency with respect to incoming power is 3.5% and the focusing 

efficiency with respect to transmitted power is 25%. (b) efficiencies of the hyperbolic metalens. 

At perpendicular incidence, the transmission efficiency is 31%, the focusing efficiency with 

respect to incoming power is 23%, and the focusing efficiency with respect to transmitted power 

is 74%.  
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Figure 5. Comparison between the WFOV metalens and spherical bulk lens. Ray traces for a 

spherical bulk lens (NA=0.65) for oblique incidence (θ=30°) and a radius of curvature of (a) 500 

μm, (b) 1000 μm, and (c) 1500 μm. (d) FT amplitude of the field generated by the spherical lenses 

in (a) (black line) and (c) (blue line); the FT in (d) is for perpendicular incidence and (e) for oblique 

incidence (θ=30°). 
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Figure 6. (a) Fourier Transforms of the WFOV lens for an NA of 0.4 (black), 0.65 (blue) and 0.9 

(red), for perpendicular incidence. (b) same as red line in (a), but for oblique incidence. (c) Spatial 

resolution (2FWHM⁄λ0) and (d) FOV as a function of NA for the DL (black), spherical (blue) and 

WFOV (red) metalenses. The operating wavelength is 532 nm and focal length is 500 µm for all 

cases. 
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