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Abstract Continuous structural parameterization (CSP) is a proposed method for approximating
different numerical model parameterizations of the same process as functions of the same grid‐scale
variables. This allows systematic comparison of parameterizations with each other and observations or
resolved simulations of the same process. Using the example of two convection schemes running in the Met
Office Unified Model (UM), we show that a CSP is able to capture concisely the broad behavior of the two
schemes, and differences between the parameterizations and resolved convection simulated by a high
resolution simulation. When the original convection schemes are replaced with their CSP emulators within
the UM, basic features of the original model climate and some features of climate change are reproduced,
demonstrating that CSP can capture much of the important behavior of the schemes. Our results open the
possibility that future work will estimate uncertainty in model projections of climate change from estimates
of uncertainty in simulation of the relevant physical processes.

Plain Language Summary Numerical models are used to provide estimates of future weather
and climate change. The models contain “parameterizations,” which are algorithms that simulate the
effect of processes too small or poorly understood to represent using physical equations. Although they are
based as much as possible on physics, parameterizations are a large source of modeling uncertainty because
there can be large disagreements on how to best represent a given process. The method and even the
variables used by two different parameterizations may differ. It is therefore very difficult to know how
different parameterizations cause numerical models to produce different results and whether the
parameterizations we have are adequate and span the range of uncertainty concerning our knowledge of the
processes they represent. Using the example of small‐scale atmospheric convection linked to rain and
thunderstorms, this paper describes a mathematical method for expressing different parameterizations
within the same framework. This allows easy but formal mathematical comparison of different
parameterizations and gives future work the potential to understand whether our parameterizations
perform as they should in conjunction with future observations.

1. Introduction

Numerical models of weather and climate contain “parameterizations,” which are physically motivated but
approximate algorithms that represent processes that cannot be simulated explicitly on the model grid. One
example is atmospheric convection, which could be represented by the same equations of fluid dynamics
and thermodynamics used to simulate larger‐scale atmospheric dynamics, but which typically occurs below
the grid scale of contemporary climate models and some numerical weather prediction models. Another
example is land surface vegetation, for which we do not even know the governing equations. The aim of
parameterization is to relate the behavior of interest to resolved processes on the model grid.
Parameterizations are derived semiempirically using insights from process understanding, observations,
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or high‐resolution simulations that do capture the relevant processes explicitly but that would be too expen-
sive to run inside a weather or climate model.

A body of literature suggests that parameterizations are the chief cause of differences between predictions of
future climate change taken from different climate models (e.g., Geoffroy et al., 2017; Mauritsen et al., 2012;
Sherwood et al., 2014; Webb et al., 2013). What is not known, however, is exactly how the parameterizations
that we have are different from each other and whether the differences are representative of our uncertainty
in the relevant processes. This poses a problem for climate prediction because it is unclear how to translate
climate model output into probability distributions of possible future climate change. The difficulty arises
partly because different parameterizations of the same process can have different physical bases, meaning
that they may be written in terms of different equations and even different variables, and partly because it
is not clear how best to write parameterizations in a way that is directly comparable to observations or
resolved simulations of the same process.

Previous work has endeavored to address some of these problems. Perturbed physics ensembles (PPEs) are
groups of general circulation model (GCM) simulations derived from one base climate model but with their
uncertain parameterization parameters perturbed over the ranges of values considered possible by relevant
experts (e.g., Murphy et al., 2004; Sanderson, 2011; Sexton et al., 2019). PPEs explore the uncertainty asso-
ciated with one set of parameterizations systematically because the difference between different ensemble
members is unambiguously defined by the differences in their parameters. However, the approach is trapped
within one model structure and cannot fully explore the set of plausible parameterizations. Another set of
parameterizations can be introduced into the ensemble (e.g., Shiogama et al., 2013), but the ability to define
systematic differences is lost.

Meanwhile, the impulse‐response method of Kuang (2010) and Herman and Kuang (2013) does allow sys-
tematic comparison of parameterizations in a way that is agnostic to their structure by testing the effect of
idealized perturbations in the model resolved grid‐scale variables on parameterization and then encapsulat-
ing those responses in a responsematrix. As Arakawa (2004) and Herman and Kuang (2013) stated, one view
is that the important question is “What does each scheme actually do [at the gridscale]?” The internal
machinery of each parameterization is secondary. This is particularly true where different parameterizations
have different physical motivations, because mechanistic comparison of the internal workings of each para-
meterization may not then be possible. Further, because the impulse‐response method is written as a func-
tion of the resolved variables only, it is possible in principle to do the same analysis for high‐resolution
simulations or observations of the same process, as Herman and Kuang (2013) demonstrated for atmo-
spheric convection.

The derived response matrices must also be put in the GCM in place of the original parameterization, as was
done by Kelly et al. (2017) and Mapes et al. (2019) for the impulse‐response method. This is necessary if we
are to demonstrate that the matrix representation captures the essence of the parameterization relevant to
modeling. We can then test the effects of multiple structurally distinct schemes using one parameterization
code and define and explore the unknown parameter space between them in a GCM. If the matrix represen-
tation was sufficiently accurate, then the extent to which a particular parameterized process is responsible
for intermodel differences when all other model components remain the same could be determined without
the expensive overhead of having to port a range of structurally different parameterizations to one GCM. As
with PPEs, the systematic differences between model versions would be known, and it would be possible to
determine quantitatively how available parameterizations differ from one another and howwell they sample
the possible “structural” parameter space defined by the response matrices compared with observations or
high‐resolution simulations. If differences in GCM simulation of some aspect of climate change were
strongly controlled by parameterization of one or more processes, then oversampling or undersampling of
regions of the relevant parameter space could be taken into account when providing projections of future
climate change. This would be an alternative to rewarding each GCM in the ensemble with one vote, as is
frequently done in ensemble studies of climate change (e.g., Collins et al., 2013). The oversampling or under-
sampling of regions of the structural parameter space could also assist the direction of future model
development.

A variety of studies have shown the potential for “machine learning” techniques to represent complex atmo-
spheric processes and replace traditional parameterizations running within a GCM. Krasnopolsky (2010)
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used a neural network to replace the radiation parameterization within the Community Atmosphere Model
(CAM). Errors were comparable with the GCM's natural internal variability for a fully coupled
ocean‐atmosphere simulation. The speed of simulation was also substantially accelerated compared with
the case of using the original parameterization. O'Gorman and Dwyer (2018) used a random forest algorithm
to parameterize convection in an idealized version of the Geophysical Fluid Dynamics Laboratory model
coupled to a slab ocean and trained on data from a conventional convective parameterization. An accurate
representation of both the climatological and climate change features of the original GCM containing
the conventional parameterization was achieved. Rasp et al. (2018) used a neural network to represent
all parameterized processes in the model atmosphere of the superparameterized CAM (SPCAM).
Superparameterizationmeans that there is a high‐resolution simulationwithin eachGCMgridbox and hence
Rasp et al. (2018)'s neural network was effectively emulating a high‐resolution explicit representation of
sub‐GCMgrid‐scale processes (although processes are not shared betweenGCMgrid boxes). It was found that
the neural network parameterization provided an accurate simulation of precipitation, atmospheric heating,
and wave structure when compared to SPCAM and superior to the conventionally parameterized CAM.
Brenowitz and Bretherton (2018) trained a neural network to emulate all subgrid‐scale processes in a
high‐resolution simulation. It was found that using this neural network parameterization in the CAM led
to a superior simulation when compared with the conventionally parameterized CAM. These studies suggest
that applying machine learning techniques to parameterization will be useful for improving GCM accuracy
and computational speed. Combined with impulse response or other statistical techniques, they can also be
useful for understanding how to parameterize processes (O'Gorman & Dwyer, 2018), although direct
interpretation of what complex neural networks or random forest techniques are doing remains difficult.

In this paper we describe continuous structural parameterization (CSP), which is a method for writing para-
meterizations of the same process at a given model resolution in terms of functions of the same grid‐scale
variables, making parameterizations with distinct structures formally comparable to one another, but retain-
ing enough skill to replace the original parameterizations in a GCM. We base our discussion around a can-
didate CSP for atmospheric convection derived using linear algebra. In some ways the approach is similar to
the forward method of Kuang (2010) and Herman and Kuang (2013). Where it differs is in the attempt to
achieve efficient descriptions of parameterizations through a set of orthogonal modes most important to
GCM simulation. This allows easy analysis of how parameterizations differ from one another or observa-
tions or high‐resolution simulations of the same physical process. Orthogonality also allows fitting of our sta-
tistical model to output from standard GCM simulations. CSP has four broad goals:

1. Build a statistical emulator that expresses the grid‐scale outputs of parameterizations as simple functions
of their grid‐scale inputs.

2. Provide low‐dimensional descriptions of the most important differences between parameterizations
and high‐resolution simulations or observations using a diagram or other easily interpretable method.

3. Replace original parameterizations with CSP statistical emulators in the GCM to assess the degree to
which relevant processes are captured.

4. Test the importance of errors introduced by a given parameterization type in ensembles of models used to
predict climate change.

The overall aim is not to replace conventional parameterization nor to improve GCM integration speed but
to understand our parameterizations in the context of process knowledge and provide tools for parameteri-
zation development and interpretation of climate model projections. Here we approach Goals 1–3 for con-
vective parameterization using an example CSP, following the earlier work described above and
recognizing that convection is believed to be one of the key processes causing model error in current
GCMs (Sherwood et al., 2014; Webb et al., 2015). When our CSP emulators are run in a GCM in place of
the original parameterizations, we find that basic features of climate and some features of climate change
are preserved. Our results are less accurate than those achieved when machine learning techniques are
applied, but we retain the ability to explain differences between parameterizations and a high‐resolution
data set. The remainder of the paper is organized as follows. Section 2 describes the GCM experiments that
we use to build and test CSP, section 3 presents our statistical methodology, section 4presents our results for
both parameterized and high‐resolution representations of convection, section 5 is a discussion of the impli-
cations of our results, and section 6 presents our main conclusions.
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2. Model Experiments

To train and test our statistical emulators, we take data from both coarse simulations run with parameterized
convection and high‐resolution convection permitting simulations.

2.1. UM Simulations

Our coarse simulations with parameterized convection are run using the Global Atmosphere 7.0 configura-
tion of theMet Office UnifiedModel (UM) (Walters et al., 2019). The UM solves the fully compressible, deep‐
atmosphere, nonhydrostatic Navier‐Stokes equations using a semi‐implicit, semi‐Lagrangian approach.
Parameterizations of atmospheric radiation, boundary layer turbulence, large‐scale, and convective cloud
and precipitation are included. The model resolution is 2.5° longitude by 2° latitude with 38 vertical levels
and a time step of 20 min. Two convection schemes are used in our study: the well‐established Gregory‐
Rowntree (GR) mass‐flux scheme of Gregory and Rowntree (1990) with improvements described by
Walters et al. (2019) and the Lambert‐Lewis (LLCS) simple moist adjustment scheme of the authors' devising
described in Appendix A. The statistical emulation of these two schemes and their differences is the basis for
our demonstration of CSP. The model atmosphere is coupled to a 2.5 m deep “slab” ocean with thermody-
namics but no representation of ocean dynamics (Boutle et al., 2017). The model is free to find its own equi-
librium state by bringing top of atmosphere radiative fluxes into balance. This choice provides a stronger test
of the accuracy and stability of our emulators than holding surface temperatures constant. It also allows us to
test the climate change response when an emulator is used.

A number of simplifications to the simulations were made to ease the process of coding the statistical emu-
lators and to simplify the behavior that needs to be predicted. The UM was run in aquaplanet mode with no
continents or sea ice. Planetary obliquity was set to zero, meaning that seasons are only represented through
the effect of Earth's orbital eccentricity of 0.0167. The sophisticated prognostic cloud scheme (PC2) and the

Table 1
Met Office Unified Model Simulations

Simulation CO2 [g kg
−1] Convection Training output Length

LLCS CON 0.5941 LLCS, rc ¼ 0.8 Off 10 years
LLCS 4 × CO2 2.3764 LLCS, rc ¼ 0.8 Off 10 years
GR CON 0.5941 GR Off 10 years
GR 4 × CO2 2.3764 GR Off 10 years
LLCS CON rc¼ 0.7 0.5941 LLCS, rc ¼ 0.7 Off 10 years
LLCS 4 × CO2 rc¼ 0.7 2.3764 LLCS, rc ¼ 0.7 Off 10 years
LLCS CON rc¼ 0.9 0.5941 LLCS, rc ¼ 0.9 Off 10 years
LLCS 4 × CO2 rc¼ 0.9 2.3764 LLCS, rc ¼ 0.9 Off 10 years
LLCSEMU CON 0.5941 LLCS emulator Off 10 years
LLCSEMU 4 × CO2 2.3764 LLCS emulator Off 10 years
GREMU CON 0.5941 GR emulator Off 10 years
GREMU 4 × CO2 2.3764 GR emulator Off 10 years
LLCS CON January 0.5941 LLCS, rc ¼ 0.8 On 30 days
LLCS CON July 0.5941 LLCS, rc ¼ 0.8 On 30 days
LLCS 4 × CO2 January 2.3764 LLCS, rc ¼ 0.8 On 30 days
LLCS 4 × CO2 July 2.3764 LLCS, rc ¼ 0.8 On 30 days
LLCS CON rc¼ 0.7 January 0.5941 LLCS, rc ¼ 0.7 On 30 days
LLCS CON rc¼ 0.7 July 0.5941 LLCS, rc ¼ 0.7 On 30 days
LLCS 4 × CO2 rc¼ 0.7 January 2.3764 LLCS, rc ¼ 0.7 Off 30 days
LLCS 4 × CO2 rc¼ 0.7 July 2.3764 LLCS, rc ¼ 0.7 Off 30 days
LLCS CON rc¼ 0.9 January 0.5941 LLCS, rc ¼ 0.9 On 30 days
LLCS CON rc¼ 0.9 July 0.5941 LLCS, rc ¼ 0.9 On 30 days
LLCS 4 × CO2 rc¼ 0.9 January 2.3764 LLCS, rc ¼ 0.9 Off 30 days
LLCS 4 × CO2 rc¼ 0.9 July 2.3764 LLCS, rc ¼ 0.9 Off 30 days
GR CON January 0.5941 GR On 30 days
GR CON July 0.5941 GR On 30 days
GR 4 × CO2 January 2.3764 GR On 30 days
GR 4 × CO2 July 2.3764 GR On 30 days
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radiative effect of clouds were switched off to simplify the relationship between GR and grid‐scale moisture.
To compensate for the absence of cloud albedo, we increased the surface albedo to 0.3. (Surface albedo is 0.07
for ice‐free ocean surfaces in the UM when radiatively active clouds are present.) The UM's targeted diffu-
sion parameterization was switched on, as it was found that very occasional grid point storms occurred when
running the LLCS CSP emulator. (Grid point storms are large values of grid‐scale precipitation and upward
vertical velocity that occur when physically unrealistic resolved convection arises.) Targeted diffusion dis-
perses boundary layer water vapor to adjacent grid boxes when grid‐scale vertical velocity crosses a threshold
(0.2 m s−1 in our simulations).

We run 10 year control (0.5941 g kg−1 atmospheric CO2) and 4 × CO2 (2.3764 g kg
−1 atmospheric CO2) simu-

lations for LLCS and GR, and the cases where the original convection schemes are replaced by their CSP sta-
tistical emulators between latitudes 30°N and 30°S, and no convection scheme is used poleward of 30°
(GREMU and LLCSEMU). (It would be preferable to run the original parameterizations poleward of 30°,
but this is technically difficult for GR. A test with LLCS shows that similar results are found for the original
parameterization and no parameterization poleward of 30° cases, as shown in Figure S2 in the supporting
information.) For the original parameterization GR and LLCS cases, we also run one 30 day simulation
for January and one 30 day simulation for July for which values of potential temperature, θ, and specific
humidity, q, are output on every model level at every time step directly before and after convection between
30°N and 30°S, allowing us to collect cases that we will use to train the statistical emulator in section 3. These
simulations are spun off from 1 January and 1 July of Year 5 of the relevant 10 year simulation. We also run
control and 4 × CO2 cases for two perturbed physics setups with the original LLCS parameterization in
which the value of the critical relative humidity for initiation of moist convection, rc, is perturbed from its
standard value of 0.8 to 0.7 and 0.9. All the simulations are summarized in Table 1. Comparisons of the
GR and LLCS climatology to more complete GCM simulations including fully coupled atmosphere‐ocean
GCMs are shown in Text S1 (Danabasoglu, 2019; Danabasoglu et al., 2019, 2020; Ridley et al., 2018; Webb
et al., 2017; Williams et al., 2018).

2.2. Cascade High‐Resolution Simulations

We use data derived from the 4 km convection permitting simulations of the Cascade experiment (Holloway
et al., 2012). As above, the Cascade simulations are run with the UM, but the 4 km resolution allows the
convective parameterization to be switched off and the explicit dynamics of the model dynamical core are
used to represent convection. The expectation is that a much more faithful simulation of convection should
be achieved than when a parameterization is used making Cascade a good tool to benchmark parameteriza-
tions against (e.g., Guichard et al., 2004). Christensen et al. (2018b) produced a coarse‐grained version of the
4 km Cascade data to provide forcing data for the European Centre for Medium‐Range Weather Forecasting
(ECMWF) Integrated Forecasting System (IFS) single‐column model (SCM). The SCM was then run forced
by the coarse‐grained Cascade input data. This is very useful for our study because both the coarse‐grained
overall tendency of the Cascade data and the dynamical and parameterized tendencies of the IFS SCM were
archived byChristensen et al. (2018a), allowing us to construct an emulator of a high‐resolution simulation of
convection.

We take the coarse‐grained overall tendency of the Cascade data from the last 9 days of the simulation
(avoiding the spin‐up) over a region of the Indian Ocean (54–90°E longitude and 21°S to 4.5°N latitude)
and subtract the radiative, boundary layer, and coarse dynamical tendencies of the SCM obtaining an esti-
mate of the remaining dynamical processes that ought to be represented by a convection scheme. The esti-
mate is not likely to be highly accurate since Cascade was created using the Met Office UM and the SCM is
an ECMWF product. Cascade data are also only archived once per hour, in contrast to the 15 min time
steps of the SCM, meaning that the SCM may drift substantially from the Cascade state as it is reinitialized
only once every four time steps. We further average the data in the horizontal from its Christensen et al.
(2018b) resolution of 0.3° × 0.3° to as a close as possible to the UM grid of 2.5° longitude by 2° latitude
without horizontal interpolation but interpolated in the vertical to the UM grid. Differences across each
15 min time step are rescaled by multiplying by 4/3 to allow comparison with UM data, which are on
20 min time steps. Given their limitations, we analyze these data as a demonstration rather than a defini-
tive investigation of treating high‐resolution simulation of convection with CSP.
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3. Statistical Methodology
3.1. Linear Models

In this section the statistical techniques we use to build convection emulators using training data are pre-
sented. First, we take n vertical columns of potential temperature, θ, and specific humidity, q, on m model
levels and their respective changes due to convection across the time step, Δθ and Δq, from a GCM or the
high‐resolution simulation. There are other variables that are typically inputted into and outputted from
convective parameterizations, but θ and q are the most important and the data we use for this first study.
θ and q are converted to components of moist enthalpy, cpθ and Lq, where cp is the specific heat capacity
of dry air at constant pressure and L is the latent heat of vaporisation. Placing the cpθ and Lq values for each
of the m model levels for one horizontal grid point at one time step into a single vector, we form a “case.”
Combining the n input cases into a n × 2m matrix and subtracting the mean of cpθ and Lq on each vertical
level yields

X ¼
cpðθ1;1 − θ1Þ … cpðθm;1 − θmÞ Lðq1;1 − q

1
Þ … Lðqm;1 − q

m
Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
cpðθ1;n − θ1Þ … cpðθm;n − θmÞ Lðq1;n − q

1
Þ … Lðqm;n − q

m
Þ

0
B@

1
CA;

where cpθ i and Lqi are the means of cpθ and Lq on the ith level, respectively. The dry and moist compo-
nents of enthalpy are then of similar sizes, putting dry and moist components on the same footing for sta-
tistical modeling. Similar benefits can be achieved by normalizing each θ and q component by its mean
and variance, but using enthalpy units has the convenient property that the sum of cpΔθ and LΔq over
levels within a column is close to zero as enthalpy is conserved by convection. (It is not exactly zero
because we neglect the latent heat of fusion associated with freezing, which is simulated by GR but not
LLCS.)

We find the matrix of eigenvectors, U (2m × 2m), and their corresponding weights, P (n × 2m), so that
X¼ PU, by taking the singular value decomposition of the covariance matrix XTX. Similarly, columns of

cpΔθ and LΔq have their means on each level cpΔθ and LΔq removed and are combined to form the output
matrix, Y (n × 2m), which is written in terms of its eigenvectors, V (2m × 2m), and their corresponding
weights, Q (n × 2m), such that Y¼QV, by taking the singular value decomposition of YTY. The aim then
is to predict unknown values of output Q and hence Y from known values of the inputs P. We predict Q
from P rather than predicting Y from X because correlations between values of θ and q on different vertical
levels that could cause large errors in our statistical analysis are avoided (e.g., see discussion of multiple
regression in Hastie et al. (2008), Chapter 3). A two‐step linear statistical emulator is used that first predicts
whether convection is occurring and then, when convection is predicted to occur, predicts Δθ and Δq on
model levels. The two‐step choice is helpful because convection is a rare event even in the tropical atmo-
sphere. It is difficult to represent large numbers of cases of no or little convection, and small numbers of
cases of large convection simultaneously using a linear model. Two similar steps are also used by many con-
vection schemes, including the ones analyzed in this paper.

Whether or not convection occurs is predicted using logistic regression. For the ith case in P, an estimate of
the probability that convection will occur is

Ci ¼ expðPiβÞ
1þ expðPiβÞ; (1)

where β (2m component vector) are coefficients to be determined, one for each input eigenvector.
Nominally, convection is expected when Ci> 0.5, but experience with data can lead us to shift the decision
boundary in practice. If it is predicted that convection is occurring, then Q and hence Δθ and Δq on levels
are predicted from a linear model:

Q ¼ Pγ þ ϵ; (2)

where γ (2m × 2m) are the coefficients to be determined for each output eigenvector in terms of each input
vector and ϵ is the error. Both β and γ are estimated using ridge regression, which is a constrained variant
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of ordinary least squares regression that penalizes large components of β and γ via a tunable coefficient λ.
To estimate β, we maximize

ln
expðPiβÞ

1þ expðPiβÞ
� �

−
λ
2
βTβ:

The best estimate of γ is

bγ ¼ ðPTPþ λIÞ−1PTQ:

Providing λ is positive and nonzero, the analysis is not very sensitive to its precise value. We use λ¼ 10 for
logistic regression estimates of convective triggering and λ¼ 2 for linear regression estimates of convective
strength throughout. Ridge and related techniques such as the Bayesian lasso are powerful tools for con-
straining regression parameters when correlations between components of the input weights permit a
large range of coefficients. That should not be an issue here because the singular value decomposition
almost eliminates correlations in the training data. However, experience with convecting data shows that
there is still the possibility that chance correlations between small features in the input data and signifi-
cant features in the output data can lead to very large coefficients and large prediction errors when the
statistical model is used to predict outputs for an unseen input data set. The ridge models used avoid these
problems because large coefficients are suppressed. More details of the logistic and ridge regression meth-
ods are given by, for example, Hastie et al. (2008).

Finally, the output matrix is estimated via Ŷ≃Pγ̂V. The means cpΔθ and LΔq are added to Ŷ, yielding esti-
mates of Δθ and Δq. Hence, the information in the training data is encoded into the eigenvectors U and V,

the coefficients β and γ, and the means cpθ, Lq, cpΔθ, and LΔq. The training data can be discarded and the
statistical models tested against unseen data to assess their accuracy.

3.2. Model Training and Truncation

The statistical emulators for the LLCS and GR parameterizations are trained for the tropics (30°N to 30°S)
using output from the 30 day January and July simulations described in section 2.1. These simulations out-
put several million cases each, of which around 2–3% show appreciable convection. We calculate cpΔθtrop,
which is defined as the mean atmospheric heating between 700 and 100 hPa for each case and then choose
for training the cases closest to 30,000 equally spaced values of cpΔθtrop from its minimum to its maximum
value. This attempts to build an emulator that is equally competent at representing the full range of convec-
tive events rather than the most common ones. The largest events are rare, and therefore, each is typically
represented on multiple occasions in the training data. A further 30,000 nonconvecting cases (defined as
cpΔθtrop <0.05 MJ m−2, equivalent to a temperature change ΔTtrop ≃ 10.1 K day−1, although results are
insensitive to the precise choice) are chosen at random. For each convection scheme, we compose control
emulators, which take half of their input from control January and half from control July. For standard
LLCS and GR, we also compose combined control −4 × CO2 emulators, which take a quarter of their input
from each of control January, control July, 4 × CO2 January, and 4 × CO2 July. The combined emulators
show only minor differences with their control counterparts but are useful for running emulators online
in the GCM and testing the behavior of emulated convection under climate change. The choice of 60,000
cases was made, as it is realistic to perform analysis on matrices of this size with available computing
resources. It is found that using smaller sample sizes has little effect on accuracy (section 4.1).

The input and output eigenvectorsU and V are calculated via singular value decomposition from the 30,000
equally spaced samples and their weights P and Q calculated for all 60,000 equally spaced and nonconvect-
ing cases for each convection scheme. The γ coefficients in Equation 2 are estimated from the 30,000 equally
spaced cases only. Cases from the equally spaced group deemed nonconvecting (cpΔθtrop < 0.05 MJ m−2) are
then discarded, as are an equal number of nonconvecting cases. This leaves an equal number of convecting
and nonconvecting cases from which we estimate the β coefficients in Equation 1. For our simulations
around 85 % of cases are retained, see Table S1. (Optimally, a different set of input eigenvectors that also con-
sider the nonconvecting sample would be calculated to remove correlations between components of Pwhen
considering nonconvecting data. However, in practice, the very slight benefit of doing this is outweighed by
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the tractability of using one set of eigenvectors.) Both β and γ are fitted using the scikit‐learn python pack-
age; see Acknowledgments. The fidelity of the emulator is tested using a data set independent from the
training data.

There is then the option of truncating the matrices to improve interpretability. The eigenvectors are ordered
by the proportion of variance that they represent in the training data, each representing the largest remain-
ing fraction of variance possible after variance associated with the previous eigenvectors has been removed.
In our aquaplanet simulations, it is found that the vast majority of output convective behavior can be
described with relatively few eigenvectors. We typically retain two or three for discussion in the results
sections and use 10 when the emulators are run online as part of the GCM. Truncating the input space,
on the other hand, is difficult to do because convection is a rare event and successfully predicting its
occurrence and strength relies on retaining small signals in the input data. Hence, instead of truncating,

we rotate β and γ back into θ,q on levels by forming the 2m component vector βθ;q ¼ UTβ and the 2m × 2m

matrix γθ;q ¼ UTγ to interpret our results. βθ,q is the sensitivity of convective triggering to departures of θ,q

from their mean values on each level. The columns of γθ,q are the sensitivity of each output modeV to depar-
tures of θ,q from their mean values, given that convection is occurring. Having identified βθ,q and γθ,q, a new
low‐dimensional input space that doespreserve the input signalsnecessary todescribe convection canbebuilt.
We demonstrate this in section 4.2 and show its use for comparing multiple convection schemes.

For Cascade, after coarse‐graining to 2.5° longitude by 2° latitude, only 35,952 cases are available over the
selected Indian Ocean region, with only 5,506 showing appreciable convection with cpΔθtrop> 0.05 MJ m−2.
At 15%, this is much more frequent than the 2–3% of cases seen to convect in the GCMs. Nevertheless,
the small amount of data available force a change in our experimental design. The emulator is trained on
2,000 cases and then evaluated for the entire data set including the training data. The training set contains
the majority of deep convecting cases, so our assessment of our ability to emulate convection should be
considered preliminary, as the test data set lacks substantial independence.

4. Results
4.1. Emulation of LLCS, GR, and Cascade Control Data

This section presents results for statistical models fitted to the first 10 components of the output modes,V, for
each representation of convection. The most important modes of response for the control CO2 LLCS CON,
GR CON, and Cascade runs are depicted in Figure 1. Shown are the mean convective responses
when convection is occurring (defined as cpΔθtrop> 0.05 MJ m−2, equivalent to a temperature change
ΔTtrop ≃ 10.1 K day−1) (Figures 1a–1c), and the first and second eigenvectors, V1 and V2, that describe
how convecting cases vary across the training data (Figures 1d–1i). Physically, the mean responses and V1

are identified with deep convection. For LLCS, positive V2 is associated with stronger convection and more
heating higher in the troposphere. For GR and Cascade, positive V2 is associated with shallow convection.
The first two components of V account for 75% of the variance in the convecting training data for LLCS,
79% for GR, and 93% for Cascade. In units of enthalpy change, it is found that the combined sum over ver-
tical levels of dry and moist components of V is near zero for LLCS and GR, meaning that enthalpy is almost
conserved by the convection schemes as expected. Agreement is less good for Cascade, which is unsurpris-
ing, given that instances of convection are estimated rather than exactly known.

Figures 2a–2c show the corresponding mean input associated with the mean convecting case for each model
control run. Figures 2d–2i show the rotated γθ,q,1 and γθ,q,2, which are the variations from the mean input
necessary to achieve variations of size V1 and V2 from the mean output. Also shown are the range of
responses for 1,000 subsamples of the training data where 10,000 cases are chosen at random without repla-
cement and γ is recalculated (1,000 subsamples of 1,000 cases for Cascade). Evidently, our calculations are
likely to be affected by sampling errors, especially near the surface and especially for Cascade. Results for
βθ,q, which control convective triggering, are similar to γθ,q,1 (in other words deep convection) in each case,
so we omit them for brevity.

Taking Figures 1 and 2 together, we can identify clear differences between the convection that occurs in the
different data sets. Analyzing the mean and deep convective components, V1, it is plain that LLCS consumes
far too much boundary layer moisture (Figures 1a and 1d) compared with GR (Figures 1b and 1e). LLCS
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convection occurs when the atmosphere is cooler and drier than GR (Figures 2a–2c) and strengthens as the
surface layer becomes wetter and warmer than those aloft (Figure 2d). This is in contrast to GR, where deep
convection also relies on a warm atmospheric boundary layer (Figure 2e). It is more difficult to make similar
arguments using the Cascade data set perhaps due to the small sample size and limitations of the input data
(section 2.2). However, the convection realized is similar to GR if apparently weaker, although this may be
due to the temporal and spatial averaging undertaken (Figures 1c, 1f, and 1i).

We now test the ability of our statistical models to reproduce convection simulated in independent data sets
not used for fitting. (Due to the small amount of data available, results for Cascade include the training data,
so these results should be treated as preliminary.) Summary statistics for C¼ 0.6 are shown in Table 2.
Overall, prediction of whether or not convection should trigger (defined as where cpΔθtrop > 0.05 MJ m−2)

Figure 1. Main modes of convective response for LLCS (a, d, and g), GR (b, e, and h), and Cascade (c, f, and i) control cases. The top row shows the mean
responses when convection is occurring; the middle row shows the first eigenvectors describing variations in convective response across the training data, V1;
and the bottom row shows the second eigenvectors, V2. Red lines are the effective convective heating rate, Q1, and blue lines are the effective convective
drying rate, Q2. Percentages in the titles of panels d–i are the proportion of output variance accounted for by each component of V. Both are shown in
temperature units of K day−1, where Q2 corresponds to the latent heat of condensation associated with drying. Note the different horizontal scales
in each panel.
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is quite good, especially for GR. It is also the case that predicting both CON and 4 × CO2 cases using one
emulator does not substantially degrade performance for either LLCS or GR. At first sight, percentage
results are particularly encouraging for nonconvecting cases. However, because nonconvecting cases are
by far the majority of all cases, the number of cases that would be incorrectly predicted to convect is high.
This could pose problems when using the emulator online in a GCM. The proportion of nonconvecting
cases correctly predicted can be increased by increasing the value of C. However, this increases the
number of convecting cases that are incorrectly predicted to be nonconvecting. Experience shows that
C¼ 0.6 provides a balance between the convecting and nonconvecting prediction errors that gives
reasonable results when run online in the GCM. Still, it is necessary to further reduce the number of

Figure 2. Inputs associated with convecting cases in the training data. The top row shows mean atmospheric profiles: (a) Temperature, T; (b, c) q. The middle and
bottom rows show how anomalies from the mean input drive changes in (middle row) V1 and (bottom row) V2. Dry enthalpy components are red; moist
components are blue. The lighter red and blue shading depicts the range of γθ,q for the 1,000 subsampled training cases. Panels a and b are shown in
temperature units of K where moist components are expressed in K via the latent heat of vaporisation associated with q, as in Figure 1. Panel c is
shown in kg kg−1. Panels d–i are in units of day−1. Note the different horizontal scales on each panel and that the vertical scale only shows the
region 800–1,000 hPa for panels d–i (signals for 100–800 hPa are small on these panels).
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convecting cases online, which we do by allowing only a fraction of diagnosed cases to convect (section 4.3).
Figure 3 shows the performance of the emulator in predicting ΔTtrop. Values of R

2 for convecting cases are
given in Table 2. Predictions for LLCS aremost accurate, followed by GR. Predictions for Cascade are weaker
and show poor R2. Using the subsampled estimates of γ has almost no effect on R2 for CON and 4 × CO2 fits.
Subsampled LLCS fits show 0.65 < R2 < 0.67; GR fits show 0.49 < R2 < 0.50. The effects of statistical
parameter choices including the impact of sampling error on distributions of actual and emulated
convection are shown in Text S2.

4.2. Joint Analysis of LLCS, GR, and Cascade Control Data

This subsection presents LLCS, perturbed physics LLCS, GR, and Cascade emulators built in terms of a com-
mon set of input, UC, and output, VC, eigenvectors, allowing direct comparison of values of β and γ that
determine convective response to a given input. We build our joint input and output spaces from the com-
bined LLCS CON and GR CON training data. (We use control data because those are the only data available
for the LLCS perturbed physics versions we will consider.) Common output eigenvectors, VC, and their cor-
responding weights, QC, are derived from the singular value decomposition of 60,000 equally spaced cases
taken from the relevant January and July training runs. This is sufficient to capture the dominant behavior
of convection in a few modes, as with the individual decompositions in the previous subsection. Because
large numbers of input modes are important to convection in each data set, we derive the common input
modes in a slightly different way in order to obtain a small tractable set. First, common means on each

Table 2
Results for the LLCS and GR Independent Data Sets and the Cascade Complete Data Set, Which Includes the Training Cases, for C¼ 0.6

Simulation Convecting Nonconvecting R2

LLCS CON 77% (87,584/11,4299) 86% (4,197,723/4,862,341) 0.65
LLCS CON and 4 × CO2 76% (88,434/11,6200) 86% (4,203,611/4,860,440) 0.66
LLCS CON rc¼ 0.7 72% (74,204/102,363) 86% (4,197,361/4,874,277) 0.69
LLCS CON rc¼ 0.9 70% (70,638/101,226) 88% (4,283,043/4,875,414) 0.65
GR CON 81% (73,430/90,419) 95% (2,295,750/2,404,466) 0.47
GR CON and 4 × CO2 79% (78,395/98,843) 95% (2,275,794/2,396,850) 0.50
Cascade 74% (4,084/5,506) 90% (27,334/30,446) 0.20

Note. For LLCS and GR, results are given for emulators of the control (CON) simulations and for emulators of the combined control and 4 × CO2 simulations. The
“convecting” and “nonconvecting” columns are the percentages and number of cases correctly identified as convecting and not convecting, respectively, in the
simulations. R2 is the coefficient of determination for cpΔθtrop for all convecting cases (including those labeled as nonconvecting by the emulator).

Figure 3. ΔTtrop for simulated versus emulated cases in the independent data sets for CON and 4 × CO2 (a) LLCS and (b)
GR and for the complete data set for (c) Cascade. Lighter colors indicate a higher density of cases. The red line is y¼ x.
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vertical level, cpθi and Lqi, are calculated for and subtracted from all the input data so that the mean differ-

ences between the LLCS and GR inputs are preserved. We form Xγθ,q,1− 3, where γθ,q,1− 3 are the first three
regression coefficients linking anomalies in θ,q inputs X to anomalies in outputs Y. New θ,q input data sets
containing only those data determined to be linked to convection are then written Xγθ; q;1 − 3γ

T
θ; q;1 − 3 .

Finally, concatenating the 30,000 LLCS and 30,000 GR equally spaced training cases, we apply singular value
decomposition one more time and arrive at combined input eigenvectors, UC.

Figure 4 shows the most important first four components of UC and the first two components of VC. UC,1

reflects the warmer, moister atmosphere found when convection is occurring in GR compared with LLCS,
which is apparent because a common mean is used for the inputs. UC,2 is a mode with a warm boundary
layer and moist near surface, UC,3 is a very moist surface mode, and UC,4 is difficult to interpret physically
but has strongly anticorrelated dry and moist components. The first output, VC,1, is a deep convective mode
similar to that seen in the individual GR decomposition; the second output, VC,2, describes large near surface
drying similar to that seen for deep convection in LLCS. In the training data, VC,1 accounts for 21% of the

Figure 4. (a–d) The first four joint input eigenvectors for the LLCS CON and GR CON data sets. As in Figure 2, dry
temperature components are red, and moist components are blue in units of K. (e, f) The first two joint output
eigenvectors. As in Figure 1, the red lines are the effective convective heating rate, Q1, and the blue lines are the effective
convective drying rate, Q2, in units of K day−1. Note the different horizontal and vertical scales on each panel, in
particular the vertical scales for (b) and (c), which show the boundary layer only.
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output variance of LLCS, 63% in GR, and 84% in Cascade; VC,2 accounts for 51% of the output variance of
LLCS, 5% in GR, and 1% in Cascade.

Statistical models that describeVC in terms ofUC are then composed for all control training data sets, includ-
ing the LLCS rc¼ 0.7 and rc¼ 0.9 cases. First, we estimate values of β and γ for the individual data sets as
before using their original input weights, P, to take advantage of their orthogonality, but using the common

LLCS‐GR outputs, QC. β and γ are then rotated into the UC basis by taking βC¼UCU
Tβ and γC ¼ UCUTγ.

Projecting the statistical models into the truncated rotated basis reduces their fidelity. The proportion of con-
vecting and nonconvecting cases correctly predicted in an independent data set is altered to 26% and 53%,
respectively, for LLCS, 84% and 87% for GR, and 39% and 70% for Cascade. R2 is reduced to 0.62 for LLCS,
0.46 for GR, and 0.01 for Cascade. Hence, the rotated basis retains the ability to predict changes in convective
strength in LLCS and GR presumably because these are the eigenvectors it is built from, but most other pre-
dictions are damaged, especially for triggering. Note, however, that the degradation depends on the trunca-
tion chosen. Using a larger set of eigenvectors would increase fidelity at the expense of tractability. The
choice depends on the application.

Values of γC that link the first two input and output eigenvectors are shown in Figures 5a and 5b. The effect
on convection of the “warm, moist atmosphere” mode, UC,1, per unit anomaly is weak, but its standard
deviation across the training data is large, and so, it plays an important role in increasing the strength of con-
vection in all simulations through VC,1. We judge this through “importance,” which we define as a given
component of γC multiplied by the standard deviation of the relevant component ofUC. For all LLCS model
variants, increasing UC,1 also reduces VC,2, reducing boundary layer drying and enhancing drying aloft.
Neither GR nor Cascade show this mode very strongly, and VC,2 is therefore not sensitive to the presence
of UC,1 or UC,2 in their input data. Increasing the “warm boundary layer” mode, UC,2, increases VC,1 in

Figure 5. Sensitivity of the first two joint output modes to the first two joint input modes. (a, b) Components of γC. (c, d) Components of γC multiplied by the
standard deviation of the corresponding UC component, demonstrating the typical sizes of change in each component of VC caused by each component of
UC. The large bulls‐eye circles are for the full training set of 30,000 cases for each model. The spreads of smaller points are where 10,000 samples have
been taken for the LLCS and GR simulations and 1,000 samples have been taken for Cascade.
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GR but reduces VC,1 in all LLCS versions. The Cascade data are largely insensitive to UC,2. Components of
UC beyond UC,2 have lower importance and contribute less to convection and intermodel difference.
However, both LLCS and GR VC,1 respond positively to the “moist surface mode,” UC,3 (not shown).

The LLCS perturbed physics versions, rc¼ 0.7 and rc¼ 0.9 show very similar sensitivities to standard
LLCS, so we do not discuss them in detail. However, we note that zonal mean precipitation produced by
LLCS rc¼ 0.9 is more similar to GR than standard LLCS (Figure 7b). Changes in zonal mean precipitation
under 4 × CO2 warming are more like standard LLCS, however (Figure 7c). The model simulations make
it clear that LLCS can be tuned to reproduce GR zonal mean precipitation satisfactorily. However, the
rotated basis shows that the fundamental sensitivities of LLCS to input are little altered by changing rc,
and it is therefore not necessarily a surprise that the climate change simulation is not improved.

Figure 6 is a comparison of the predicted convective triggering probability, β, with the actual amount of con-
vection realized for 60,000 cases from the independent data sets for LLCS CON andGRCON. Using the same
method used to choose the original training data, we select 30,000 convecting cases that represent the range
of mean tropospheric heating and 30,000 nonconvecting cases at random. (Using the entire data set swamps
the parameter space with nonconvecting cases, even where the percentage error in predicting the occurrence
of convection is small because the number of nonconvecting cases is so large; Table 2.) The two‐dimensional
slices show which parts of theUC parameter space defined by the corresponding weights PC are expected to
experience convection. The black idealized contours are values of β when varying components of PC within
the relevant plane but holding others at mean values. The blue contours are for the independent data set
when all components of PC are allowed to vary. The blue and black contours are not coincident because

Figure 6. Convective triggering predictions compared with true simulated tropospheric warming as a function of PC for 60,000 cases (including 30,000
convecting) from the independent data sets. Planes in the PC parameter space for (top) PC,1,2 and (bottom) PC,3,4 for both (left) LLCS CON and (right) GR
CON. Black contours are the predicted probability of triggering convection, C, when varying components of PC in the plane but holding others at mean
values. C¼ 0.6 is the threshold used for triggering convection in our UM simulations. The 0.9 contour is also shown to indicate which side of the 0.6
contour is expected to trigger. The blue 0.6 contours are predictions of β where all components of PC are allowed to vary. Red contours and
accompanying shading are values of simulated ΔTtrop in K day−1. In our analysis the threshold for convection is ∼10.1 K day−1.
For a perfect prediction of convective triggering, the blue contour would overlay the red contour.
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components of PC are correlated, which occurs because the relevant singular value decomposition was done
for the combined LLCS‐GR training data set and not for LLCS or GR individually.

Results for the triggering and strength of convection are complementary within the UC,1,2 plane. PC,1 varies
strongly across both the LLCS andGR data sets. More positive values of PC,1 are associated withmore trigger-
ing of convection and stronger convection in GR. In LLCS stronger convection is associated with more posi-
tive PC,1, but its effect on triggering is apparently small (black contours) but confounded by correlations with
other components of PC in practice (blue contours). As with the strength of convection, the effect of PC,2 is
markedly opposite for convective triggering in GR and LLCS: More positive values of PC,2 trigger convection
inGR but suppress it in LLCS. GR responds positively to increases in both PC,3 and PC,4. The response of LLCS
is more confused. The central region of the PC,3,4 plane is convecting (red contours), but this is not expected
purely from varying PC,3 and PC,4 (black contours). Correlations with other components are required.

Figure 7. (a) Global and tropical mean of last five years for precipitation and temperature for control and 4 × CO2 conditions. In all cases the 4 × CO2 simulation
point is above and to the right of the control simulation point. (b–e) Precipitation where convection is simulated using the original and emulated
parameterizations for LLCS and GR. (b) Last 5 year zonal mean precipitation for the control simulations for 40°N to 40°S. (c) Last 5 year zonal
mean 4 × CO2‐control precipitation change. (d) Histogram of grid box daily precipitation totals for control July, Year 5 for 30°N to 30°S.
(Note logarithmic vertical scale on this panel.) (e) Histogram of grid box daily precipitation 4 × CO2‐control change for July, Year 5.
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Overall, our joint analysis shows clear differences between the different convection schemes that can be
understood in simple terms. Compared with GR, LLCS condenses too much boundary layer moisture, is
relatively insensitive to an important mode of warm‐moist free atmosphere variation, and has the wrong
sign of response to boundary layer warming. This suggests pathways via which LLCS might be improved:
adjustment of the scheme's ability to bring unsaturated parcels from the boundary layer into moist con-
vection aloft could reduce boundary layer moisture consumption; a simple representation of entrainment
could improve interaction with the free atmosphere. It is interesting to note that values of γC for Cascade
have some similarity with GR, but this must be treated with caution, given that the rotated model
describes the Cascade data poorly. The results of this section are largely clear from the individual analyses
of section 4.1. However, our example demonstrates that a low‐dimensional parameter space can express
key differences between a large number of representations of convection concisely. Together, sections 4.1
and 4.2 approach Goals 1 and 2 of CSP, described in section 1. In the next section, we approach Goal 3 by
running the statistical emulators within the GCM to assess the extent to which they capture relevant
physical processes.

4.3. UM Simulations With Emulated Convection

The 10 year control and 4 × CO2 UM simulations with emulated convection were run for GR and LLCS
rc¼ 0.8 using the combined control‐4 × CO2 emulators (LLCSEMU CON and 4 × CO2, and GREMU
CON and 4 × CO2; Table 1). To reduce the bias caused by incorrectly diagnosing nonconvecting cases as
convecting when running the emulators online, we reduce the number of convecting cases by allowing only

a fraction of diagnosed cases to convect. First, the ratio, F ¼ Δθ̂ trop=Δθtrop, of predicted mean tropospheric

heating due to convection, cpΔθtrop, to actual mean tropospheric heating due to convection, cpΔθtrop, is cal-

culated for the independent data set. Then, for each case diagnosed as convecting online, Ncrit ¼ 1 −
1
F
is

compared with a random number, N, drawn from a uniform distribution such that 0≤N≤ 1. If N>Ncrit,
convection is allowed to trigger; if N≤Ncrit, then convection does not trigger. For LLCS, Ncrit¼ 0.86; for
GR, Ncrit¼ 0.59, reflecting the larger error in diagnosing triggering for LLCS (Table 2).

All simulations have a stable equilibrium climate and reproduce broad features of the original parameter-
ized runs (LLCS CON and 4 × CO2, and GR CON and 4 × CO2) with reasonable fidelity. Figure 7a shows
values of global and tropical mean precipitation and temperature in the original and emulator parameteri-
zation simulations. Control emulator simulations are biased with respect to the corresponding original
simulations in the global mean by 1.6 K and 0.1 mm day−1 for LLCSEMU, and −0.1 K and −0.1 mm
day−1 for GREMU. Tropical mean biases are 1.2 K and 0.4 mm day −1 for LLCSEMU and −0.04 K and
0.1 mm day−1 for GREMU. The 4 × CO2‐control climate change is quite well simulated in LLCSEMU.
Climate change is more disappointing for GREMU, particularly in the tropics, where precipitation increases
at only 0.7% K−1 tropical mean temperature change compared with original GR values of 2.3% K−1.

More detailed precipitation statistics are shown in Figures 7b–7e. Zonal mean precipitation in the
LLCSEMU and GREMU control runs is quite reasonable and clearly captures the difference between
LLCS and GR (Figure 7b). The 4 × CO2‐control zonal mean changes are fair for LLCSEMU, but disappoint-
ing for GREMU (Figure 7c). The sharp features in panels b and c seen at 30°N to 30°S in LLCSEMU and
GREMU occur because the convection emulator is switched off poleward of 30°. Results for convective pre-
cipitation only are very similar (not shown). Figures 7d and 7e are histograms of grid box total daily preci-
pitation for July in Year 5 of the simulations and 4 × CO2‐control changes. LLCSEMU totals are
satisfactory, while GREMU tends to predict too many heavy precipitating events and too few light precipi-
tating events. The 4 × CO2‐control changes show the correct sense of change for both LLCSEMU and
GREMU: More lighter events tend to occur in LLCS, while heavier events increase at the expense of lighter
events in GR. The emulated changes tend to be too weak for both LLCSEMU and GREMU, however, parti-
cularly for lighter events.

Overall, the online LLCSEMU and GREMU results are encouraging. The model is stable, and equilibrium
climate is close to LLCS and GR, although LLCSEMU rains too much in the subtropics and GREMU has
too many heavy precipitation days. Climate change simulations are reasonable, although changes in zonal
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mean precipitation in GR are disappointing and changes in daily precipitation totals are too weak in both
models.

5. Discussion

Our analysis achieves each of Goals 1–3 set out for CSP in section 1 to at least some degree. We have demon-
strated that statistical emulators of two GCM convection schemes and a high‐resolution data set can have
skill in predicting the onset and magnitude of atmospheric convection. The representation is quite approx-
imate but could surely be improved. To form a CSP, a framework need only provide a structure that repre-
sents a group of parameterizations and the differences between them smoothly and unambiguously by
providing as much orthogonality between modes as possible. A straightforward improvement to our CSP
would be to introduce higher order and cross terms into the regression calculations using discrete orthogonal
polynomials. We could also introduce more variables into the analysis, although we note that past work has
found θ and q to be satisfactory for analyzing both model output and observed effects of convection (Johnson
et al., 2016; Mapes et al., 2019; Yanai et al., 1973). Another framework entirely is evolutionary genetic pro-
gramming, which uses Darwinian evolution to produce models from combinations of simple functions (e.g.,
Makkeasorn et al., 2008).

We also showed that a rotated, reduced input space allows us to describe the most important differences
between different representations of convection more easily and might assist in future model development.
Care must be taken in the analysis as the reduced input and output spaces lose skill in predicting aspects of
convection. In our demonstration, representation of triggering was particularly affected perhaps because we
built an input space based onmodes known to control the strength of convection. There is a balance between
emulator skill and tractability that is set by the degree of truncation of our input and output spaces. We may
compose as many representations as we like, each optimized for a different purpose. A key advantage of our
approach over others is that it is possible in principle to define eigenvectors that allow estimation of the rela-
tionship between the most important inputs and outputs without contamination from linear correlations
between variables. A good basis for many applications might be derived from observations or
high‐resolution simulations that explicitly resolve convection. We did not attempt this because the
Cascade high‐resolution data set was small and our ability to represent it was limited. The inaccuracy of
our Cascade emulator may stem from a combination of having too few cases to fit to and the fact that differ-
ent parameterization schemes were used in the original Cascade simulations and the SCM experiments.
Alternatively, it may come from fundamental limitations of our technique. Defining the convection that
should be parameterized and separating it cleanly from other processes is difficult in resolved simulations.
It is even more challenging for observations as explored by Mapes et al. (2019) for the impulse‐response
method, although their analysis did yield useful conclusions regarding the sensitivity of observed versus
resolved simulation of convection to q.

While one major goal for CSP is to develop metrics for model development, another is to develop emulators
with sufficient fidelity that they can be run within a GCM. Success in this goal would mean that the emula-
tors reproduce their targets well enough that we might explore the parameter space of possible parameter-
ization schemes online within a GCM. Our GCM simulations that run the LLCS and GR emulators
interactively show stable equilibrium climates with broadly similar characteristics to GCMs run with the ori-
ginal parameterizations. This is encouraging. Nevertheless, some aspects of the CSP emulator performance
are disappointing, particularly for climate change where emulator simulations tend to respond too weakly.
Performance is certainly weaker than that achieved with the random forest technique of O'Gorman and
Dwyer (2018). Random forest or other machine learning representations of a range of convection schemes
may themselves be analyzed with a linear model, but our complete emulators have an unambiguous rela-
tionship with each other and with the results they achieve when applied within a GCM. Hence, further work
that improves our emulators would be useful.

Our emulators are deterministic—a given input always leads to the same output. However, a body of recent
work suggests that performance can be improved in some cases throughmaking parameterizations “stochas-
tic” by adding noise to the parameterization output (e.g., Christensen, 2019; Lin & Neelin, 2003; Plant &
Craig, 2008). It is trivial to introduce this extension to our statistical emulators by perturbing their para-
meters. When applied to a high‐resolution model or observed data set, CSP is also well adapted to
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discovering the range of outputs that occur for a given set of coarse‐grained inputs, potentially providing new
routes to building stochastic parameterizations.

If a future study is to build emulators good enough to probe the effect of the range of possible convective
parameterization on gross features of future climate change, then it needs to engage with clouds and cloud
radiative effects. A move to a more realistic land and ocean configuration may not be necessary in the first
instance, however, as it has been demonstrated that global mean temperature sensitivity to increased atmo-
spheric CO2 concentration in comprehensive land‐ocean‐atmosphere GCMs is well related to that in corre-
sponding aquaplanet simulations (Ringer et al., 2014). Nevertheless, if the full range of regional climate
responses to our uncertainty in physical processes is to be explored using CSP, then CSP also must be applied
to other parameterizations in the atmosphere, ocean, and land surface.

6. Conclusion

Using the example of convection, we describe Continuous Structural Parameterization (CSP), which is a
method for writing different representations of the same subgrid‐scale process as functions of the same
grid‐scale variables. It is found that CSP can represent two convection schemes implemented within the
Met Office Unified Model (UM) with reasonable fidelity. When emulated convection is implemented within
the UM, the GCM produces a stable equilibrium climate with features broadly similar to the case where the
original convection scheme is used.

Using our CSP, key differences between parameterization schemes can be expressed concisely within a new
parameter space that is agnostic to model structure and offers the possibility of comparison with
high‐resolution models of convection or observations. Here, a CSP representation of a high‐resolution data
set taken from the Cascade experiment has some success, even though the data set is small and not optimally
designed for our purposes. Further CSP development is necessary, and a large high‐resolution data set
designed specifically for emulation is needed to produce cleaner results. Nevertheless, our work suggests that
CSP can assist parameterization development both by indicating realistic areas of the relevant parameter
space and by providing parameterization prototypes directly. Our long‐term goal is that CSP can assist
ensemble prediction of climate change by highlighting how the set of model parameterizations we have
relates to our true uncertainty in physical processes.

Appendix A: Lambert‐Lewis Convection Scheme
The Lambert‐Lewis Convection Scheme (LLCS) is a simple but flexible adjustment scheme that has been
used for simulating the atmospheres of terrestrial planets and for testing new GCM versions at the Met
Office. LLCS has similarities to the simplified Betts‐Miller scheme (Betts, 1986; Frierson, 2007), but also
some significant differences. In contrast to Betts‐Miller, triggering of convection is based on dry and moist
stability arguments, and purely dry convection with no condensation is possible. The scheme first evaluates
whether or not convection should be triggered in a given model vertical column and then constructs new
preliminary “plume” vertical profiles of θ and q in which convective instability is removed, before applying
an adjustment time scale that relaxes the entire vertical column toward the new state while conserving
enthalpy and moisture.

A1. Triggering

Starting from the surface, LLCS searches for the lowest unstable model level, k. Dry triggering occurs if θk+ 1

< θk, meaning that a test parcel from level k perturbed upward to level k+ 1 would find itself to be less dense
than its surroundings and be expected to rise. Moist triggering occurs if rc qsat,k< qk, where rc is the critical
relative humidity parameter and qsat is the saturation specific humidity. In this case, a test parcel on level k is
expected to saturate in situ, leading to condensation and convective heating. Normally, rc< 1, meaning that
the criterion is satisfied when the atmosphere is unsaturated at grid scale. The rationale is that a model col-
umn whose mean specific humidity is rc qsat,k will contain some supersaturated regions able to trigger con-
vection. rc¼ 0.8 is the default value. If the dry trigger is satisfied but the moist trigger is not, then moist
convection can still be triggered on a higher level, l, if rc qsat,l< qk. This occurs if the triggered dry convective
event reaches level l. The value of qsat,l used is that before any dry convective adjustments have taken place.
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A2. Convective Adjustment

Once convection is triggered, a preliminary profile is established through convective adjustment. Where dry
convection is triggered, θk+ 1 is adjusted so that the preliminary value of θk+ 1, θk+ 1,p¼ θk. Dry convection
continues upward, providing that the new value of θk+ 1,p satisfies θk+ 2 < θk+ 1,p. Moisture is mixed upward
by setting qk+ i,p¼ qk, where i is the ith level above k.

If moist convection is triggered on level k, then levels above k involved in the convective event are adjusted to
the moist pseudoadiabat:

Γps ¼
gð1þ rvÞ 1þ Lrv

RdT

� �

cp þ rvcpv þ L2vrvðηþ rvÞ
RdT2

;

where rv is the mass‐mixing ratio of water vapor, L is the latent heat of vaporisation of water vapor, Rd is
the gas constant for dry air, and η≃ 0.622 is the ratio of the dry air and water vapor gas constants.
Preliminary q is set to its saturation value, qk¼ qsat,k, on each level that moist convection is occurring,
including the bottom level unless qk+ i,p> qsat,k+ i,p. Similar to dry convection, moist convection continues
upward if the new value of θk+ 1,p derived from the pseudoadiabat satisfies θk+ i+ 1 < θk+ i,p.

If the dry or moist convective event terminates below the highest model level, then subsequent levels are
tested to determine whether another event can trigger in the same vertical column. Note that LLCS does
not consider the freezing level and assumes that all condensation and precipitation is liquid.

A3. Relaxation Time Scale and Conservation

Recognizing that evolution to a new stable profile is not instantaneous, the original input θ and q are relaxed
toward the preliminary values, θp and qp via

Δξr ¼ ðξp − ξÞ 1 − exp −
tstep
τ

� �� �
;

where ξp represents either θp or qp, ξr represents either θr or qr, subscript r corresponds to values after the
relaxation time scale has been applied, tstep is the GCM time step (1,200 s in our experiments), and τ is a
relaxation time scale, a free parameter of the scheme. The standard value used in our simulations is the
“pure mixing time scale” of 3,600 s of Tompkins and Craig (1998).

Moisture and enthalpy are then conserved within each separate convective event in the column. First, moist-
ure is adjusted so that the total mass of water vapor within each convective event,Mq,r, is the same as in the
input,Mq, less the amount of water condensed to produce latent heating,ML, by adjusting specific humidity
via

qf ;k ¼
Mq −ML

Mq;r

� �
qr;k;

where subscript f refers to final calculated values. ML is outputted by the scheme as precipitation at the
surface, thus conserving the moist component of enthalpy. This is done on all convecting levels of a given
event including dry convection below the level at which condensation first occurs. Hence, the scheme has
the tendency to eliminate large amounts of boundary layer moisture, producing behavior that arguably
should be simulated via the UM boundary layer scheme. This feature may be revised in future versions
but is probably useful for suppressing the occurrence of grid point storms.

Dry enthalpy must be conserved to take account of heat added to the column during dry adjustment. As for
moist enthalpy, this includes all levels of convective events that begin as dry adjustments that then trigger
moist events above the bottom level. For each level, implied dry heating is written ΔQd¼Mkcp(Td,k− Tk),
whereMk is the total mass of the level, Tk the initial temperature, and Td,k is the implied temperature change
if latent heating is neglected (equal to the entire convective adjustment for events with nomoist component).
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The final temperature change ΔTf is calculated by subtracting ΔQd from the relaxation value ΔTr uniformly
per unit mass:

ΔTf ¼ ΔTr −
cpΣkΔQd

ΣkMk
:

Final output θf is calculated via

θf ¼ θk þ ΔTf
p0
p

� �κ

;

where p0 ¼ 1,000 hPa and κ ¼ Rd

cp
.

Data Availability Statement

The scikit‐learn package is available online (from https://scikit-learn.org/). Both the Unified Model simula-
tion data (https://doi.org/10.5281/zenodo.3836042) and the statistical model training data (https://doi.org/
10.5281/zenodo.3837627) are available from Zenodo. The coarse‐grained Cascade data are available from
the Natural Environment Research Council Centre for Environmental Data Analysis (Christensen et al.,
2018a).
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