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LiPMatch: LiDAR Point Cloud Plane based

Loop-Closure

Jianwen Jiang1, Jikai Wang1, Peng Wang2, Peng Bao1, and Zonghai Chen1

Abstract—This paper presents a point clouds based loop-
closure method to correct long-term drifts in Light Detection
and Ranging based Simultaneous Localization and Mapping
systems. In the method, we formulate each keyframe as a fully-
connected graph with nodes representing planes. To detect loop-
closures, the proposed method employs geometric restrictions
to define a similarity metric to match current keyframe and
those in the map. After similarity assessment, the candidate
keyframes which comply with the geometric restrictions are
further checked out successively by normal constraints of planes,
and validated by an improved Iterative Closest Point method.
The latter also provides relative pose transformation estimation
between the current keyframe and the matched keyframe in the
global reference frame. Experimental results demonstrate that
the proposed method is able to fulfill fast and reliable loop-
closure. To benefit the community by serving a benchmark for
loop-closure, the entire system is made open source on GitHub3.

Index Terms—SLAM, Mapping, Localization, Range Sensing.

I. INTRODUCTION

LOOP-closure represents one of the key challenges to-

wards accurate Simultaneous Localization and Mapping

(SLAM) solutions. As drift is inevitable when performing state

estimation without global positioning information [1], [2], [3],

reliable loop-closure becomes crucial for many robotic plat-

forms. In recent years, Light Detection And Ranging (LiDAR)

based SLAM [4], [5], [6], [7] have been extensively developed.

The LiDAR sensor is capable of capturing geometric features

stably in a considerably fine resolution, thus not suffering as

much as computer vision when illuminations and viewpoints

vary. However, there are still existing challenges in the LiDAR

based loop-closure paradigm, since LiDAR point clouds only

contain geometry information of the three-dimensional (3D)

space, which makes it difficult for loop-closure detection due

to the lack of textures and colors.
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Fig. 1: An illustration of the presented loop-closure detection frame-
work. The planes of the current keyframe are shown below (in white),
and the corresponding planes of the keyframe in the map are shown
above. Colors are used to indicate the point cloud plane segmentation.

In this paper, in order to alleviate the existing challenges

in LiDAR based loop-closure, we develop a fast, reliable and

complete loop-closure for multi-channel LiDAR-based SLAM,

consisting of fast loop-closure detection and loop-closure

correction, in which planes and their geometric relationships

are exploited. Specifically, we propose a compact plane-based

fully-connected graph representation of keyframes. Loop-

closure detection is therefore considered as a graph match-

ing problem: the graph representing the current keyframe is

compared with those keyframes that are already integrated

into the global map. To solve this problem, we exploit ge-

ometric characteristics of planes and their relative geometric

relationships. For gaining in robustness, we introduce planes’

normal constraints. To perform loop-closure correction, an

improved Iterative Closest Point (ICP) which integrates plane

constraints is proposed. The outputs of ICP can also benefit

the graph matching results validation. The main advantages

of our proposed method for loop-closure are: 1) it is fast and

reliable. 2) It is capable of providing accurate loop-closure

correction.

To summarize, our contributions comprise of four aspects:

(1) we develop a fast, reliable LiDAR-based loop-closure

detection method for multi-channel LiDAR-based SLAM, in

which the similarity of two keyframes is efficiently evaluated;

(2) we apply the geometric constraints between the matched

planes to improve the ICP method in the process of loop-

closure correction;

(3) we integrate our loop-closure detection and loop-closure

correction methods into LOAM, setting up a complete and

practical LiDAR-based SLAM system;

(4) we provide an affordable solution for LiDAR-based

loop-closure by making our system open source on GitHub.
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Fig. 2: The overview of our system.

The remainder of this paper is organized as follows. In

Section II, we discuss the related work. Loop-closure detection

is presented with details in Section III, Loop-closure correction

using geometric features is given in Section IV. Experimental

results demonstrating the effectiveness of our method for loop-

closure are shown in Section V. Finally, Section VI concludes

the paper.

II. RELATED WORK

Detecting loop-closures from 3D data remains an open

problem in SLAM. The problem has been addressed with

different approaches, and we have identified three main trends.

Bosse and Zlot [8] extract keypoints directly from the

point clouds and describe them with a 3D Gestalt descriptor.

Keypoints then vote for their nearest neighbors in a vote matrix

which is finally thresholded for detecting loop-closure.

Using global descriptors of the local point clouds for loop-

closure is also proposed [9], which splits the cloud into

overlapping grids and computes shape properties of each cell

and combines them into a matrix of surface shape histograms.

Similar to other works, these descriptors are compared for

recognizing places.

While local keypoint features often lack descriptive power,

global descriptors still struggle with invariance. Therefore,

3D objects are exploited for the loop-closure task. Somewhat

analogous, seminal works on segment-based loop-closure de-

tection are presented in recent years [10], [11], [12], [13]. For

example, the SegMatch [10] achieves loop-closure by match-

ing semantic features like buildings, trees, and vehicles, etc.

A semi-handcrafted learning method is proposed in [14] for

LiDAR point clouds using LocNets, which regards the loop-

closure detection problem as a similarity modeling problem.

All methods mentioned above detect loop-closures by ex-

tracting and matching descriptors which are usually time

consuming. Other works have been proposed to use geometric

restrictions between objects for the loop-closure task, to miti-

gate the computational burden. Fernandez-Moral et al. [15], for

instance, propose to perform loop-closure detection by detect-

ing planes in 3D environments. The planes are accumulated in

a graph and an interpretation tree is used to match sub-graphs.

A final geometric consistency test is conducted over the planes

in the matched sub-graphs. Their method is applied to small

and indoor environments using RGB-D cameras. Our method

is inspired by the paradigm in [15] which is modified to suit

for outdoor scenes and multi-channel LiDAR.

After loop-closure detection, a point cloud registration

method is used to correct the loop-closure. One classical

method to cope with point cloud registration is ICP [16].

In recent years, ICP has developed many variants such as

point-to-plane, point-to-line, and plane-to-plane [17], [18],

[19]. Being an iterative method, ICP would easily get trapped

into local minima with a poor initialization. General solutions

such as [20] proceed according to the following procedures.

First, feature points are extracted from point clouds. Second,

feature matching is applied to determine the correspondences,

and finally, the initialization is achieved by calculating the

transformation between correspondences.

III. LOOP-CLOSURE DETECTION

In this section, we describe our system for loop-closure

detection from 3D point clouds. The proposed system is

depicted in Fig. 2 and is mainly composed of two modules:

plane extraction and parametrization, and graph matching. We

give details in regard to each module of our system as follows.

A. Plane extraction and parametrization

Inspired by [10], for each incoming point cloud, we trans-

form it into a global reference frame using the output of

LOAM odometry, and accumulate each LiDAR point cloud

into the current keyframe. A new keyframe will be created

when the vehicle moves a certain distance. For each keyframe,

the accumulated point clouds are segmented into a set of point

clusters using the Euclidean clustering method [21]. However,
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the method requires the ground plane to be removed. We

have coped with it by the method in [22]. We drop out those

clusters comprise of less than 100 points and plane extraction

is next applied on the remained clusters. We employ the region

growing approach [10] provided by PCL [21] to extract planes.

A plane is represented by its normal n and the distance d

from the plane to the original point of the global reference

frame. In this way, a 3D point p which lies on the plane

satisfies the equation

n ·p+d = 0. (1)

Each plane P is described by a set of geometric features:

• n the normal vector,

• c the centroid,

• d the distance to the global reference frame,

• λ0, λ1, and λ2 the eigenvalues reflecting the spatial

distribution of point clouds,

• l the polygon contour points defining the convex hull of

the plane,

• a the area of the plane.

In this paper, n and d are provided by PCL, and c is

calculated by averaging out point coordinates on the plane.

The calculation of λ0, λ1, and λ2 with λ0 ≥ λ1 ≥ λ2 is the

same to our previous work [1]. The convex hull l is efficiently

computed by the Jarvis March algorithm [23] from points on

the plane, and a is calculated from the polygon contour points

l [15].

B. Graph matching

Different from [15] that extracts planes for each single

frame and represents the whole map as a graph, we extract

planes for keyframes and represent each keyframe as a fully-

connected graph of planes. The reasons are: 1) The method

in [15] is applied to indoor environment, which is more

likely to contain more planes than outdoor environments. 2)

The method in [15] aims at place recognition in a map,

whereas our method focuses on loop-closure detection in large

scale outdoor environments. In this scenario, using keyframes

would benefit the match efficiency. Besides, our method uses

an adaptation parameter rather than distance difference to

measure the similarity. In the graph, each node is formulated

by geometric features of the corresponding plane.

In order to match two graphs, Gc, generated from the current

keyframe, and Gp, generated from one previous keyframe, we

employ geometric restrictions represented as two sets of unary

and binary constraints. The unary constraints are used to check

the correspondence of two single planes by comparing their

geometric features. The binary constraints serve to validate

whether two pairs of planes within Gc and Gp have similar

relative spatial position, e.g. the distance between the centroids

of the plane pairs within Gc is similar to the centroid distance

between the plane pairs within Gp.

Algorithm 1 details the graph matching process. First, unary

constraints are verified to get candidate matches between Gc

and Gp. Second, the binary constraints are checked with the

already matched planes. If all the constraints are satisfied, a

match between planes of the two keyframes is accepted and

the recursive process continues with updated arguments. The

algorithm finishes when all the candidate matches have been

explored and then returns a list of matched planes LFM .

In spite of the large amount of potential plane matches for

this problem, most of them fail to satisfy unary constraints.

As only simple operations such as 3D vector and scalar

comparisons are performed, the evaluation of these restrictions

requires very little computation. After unary and binary as-

sessments, we choose the keyframe with the largest number of

matched planes as the candidate keyframe. We further validate

the candidate keyframe according to normals of planes and the

fitness score of ICP.

1) Unary constraints: The unary constraints presented here

are designed to reject incorrect matches of two planes. They

are relatively weak constraints, meaning that a fairly relaxing

threshold is set to avoid rejecting correct matches. In other

words, a unary constraint should validate that two planes are

distinct when their geometric characteristics have significant

difference, but they lack information to confirm that these

two observations belong to the same plane. This is because

different planes can have the same characteristics such as

normals.

Different from [15] that uses geometry and color informa-

tion from RGB-D sensors, LiDAR point clouds only contain

geometry information. Several unary constraints have been

used here, which perform direct comparisons of the planes

areas and spatial distribution of the contained points. If the

planes are not satisfied with the following equations, the two

planes are not matched.

R−1 <
ac

ap
< R, (2)

R−1 <
λ c

10

λ
p
10

< R, (3)

R−1 <
λ c

21

λ
p
21

< R, (4)

where λ10 = λ1/λ0, λ21 = λ2/λ1, the superscript c and p mark

the current graph Gc and the previous graph Gp, and R is

a threshold parameter set for filtering out mismatches. The

advantages of using the parameter R include: 1) It reduces the

number of parameters compared with using distance difference

as thresholds. 2) It increases the robustness of our method

when scene scale changes.

2) Binary constraints: As for binary constraints, stemming

from [15], we apply binary constraints to impose geometric

restrictions on the relative positions of two pairs of planes.

These constraints take account for providing robustness in the

graph matching process by enforcing the consistency of the

matched scenes. Three binary constraints

R−1 <
arccos(nc

i ·n
c
j)

arccos(np

i′
·np

j′
)
< R, (5)

R−1 <
‖cc

i − cc
j‖

‖c
p

i′
− c

p

j′
‖
< R, (6)
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R−1 <
nc

j · (c
c
i − cc

j)

n
p

j′
· (cp

i′
− c

p

j′
)
< R, (7)

are imposed to each pair of planes in a matched graph, where

nc
i and nc

j are the normals of a pair of planes from graph Gc,

and similarly n
p

i′
and n

p

j′
are the normals of a pair of planes

from graph Gp, cc
i and cc

j are the centroids of a pair of planes

from the graph Gc, and similarly c
p

i′
and c

p

j′
are the centroids

of a pair of planes from the graph Gp.

3) Normal constraints of planes: After unary and binary

constraint assessments, there is still chance that the detected

loop-closure is incorrect. We observe that the failure tend to

happen when all the matched planes have the same normal.

To improve the robustness of our method, we further explore

normal information. Specifically, for each matched planes in

the current keyframe, if the maximum value of the angles

between two normals is less than a threshold, as is shown in

equation (8), the matched planes in the current keyframe are

considered not distinguishable enough to detect loop-closures.

max
i, j

(nc
i ·n

c
j)< thθ . (8)

In addition, we use equation (9) to get rid of the cases where

the difference between two keyframes’ areas is significant.

R−1
a <

Ac

Ap
< Ra, (9)

where Ac is the sum of matched planes’ area in the current

keyframe, and Ap is that in the matched history keyframe.

When passing through all constraints introduced above, we

determine whether loop-closure is detected according to the

number of matched planes, nmatch. We choose the keyframe

with the largest number of matched planes as the candidate

loop-closure. Generally, there is only one candidate keyframe.

When there are multiple candidate keyframes, we choose the

one with the lowest fitness score.

IV. LOOP-CLOSURE CORRECTION

Once a loop-closure is detected, loop-closure correction

is performed to compute relative pose between the two

keyframes. The problem of loop-closure correction can be

viewed as the registration between the current point cloud and

the history point cloud. Since our ICP method is based on

LOAM, we use the edge-to-edge and plane-to-plane features

to iteratively calculate the relative pose.

Compared with the ICP in odometry block of LOAM, the

relative pose transformation of two keyframes is larger and

it is more likely to trap into a local minimum. In this paper,

we exploit geometric features to alleviate this problem. The

geometric features used here are the matched planes’ normals.

We firstly use the corresponding normals to achieve the initial

relative pose transformation of the two point clouds. The initial

rotation value is achieved as follows:







Mcov = ∑
N
i=1 nc

i ×n
p
i ,

MvΣΣΣsvdMu = SVD(Mcov),
MR = Mv ×MT

u ,
(10)

Algorithm 1: Employ geometric restrictions to search

recursively for the best match between two graphs of

planes Gc and Gp.

Input: Current graph Gc, list of planes of Gc Lc,

previous graph Gp, list of planes of Gp Lp and

list of matched planes LM

Output: Final list of matched planes LFM

1 LFM = MatchGraphs(Lc, Lp, LM)

2 LFM = LM

3 for each plane Pc∈Lc do

4 for each plane Pp∈Lp do

5 if EvalUnaryConstraints(Pc, Pp) == F then

6 continue;

7 for each P
′

c, P
′

p∈LM do

8 if Pc, P
′

c∈Gc and Pp, P
′

p∈Gp then

9 if EvalBinaryConstraints(Pc, P
′

c, Pp, P
′

p)

== F then

10 continue;

11 new Lc = Lc - Pc

12 new Lp = Lp - Pp

13 new LM = LM∪Pc, Pp

14 result = MatchGraphs(new Lc, new Lp,

new LM)

15 if SizeOf(result) >SizeOf(LFM) then

16 LFM = result;

17 return LFM

where Mcov is the normal covariance matrix, Mv and Mu are

the Singular Value Decomposition (SVD) results, and MR is

the determined rotation matrix.

Then, we add geometric constraints to the optimization

problem, which helps to reduce the probability of falling into

a local extremum. We use the Levenberg-Marquardt method

[24] to solve the optimization problem. Our objective function

to minimize ICP matching error given as

dk = Dk +
N

∑
i=1

M

∑
j=1

ni · (T
kpi j − ci), (11)

where Dk represents the error function provided by LOAM at

the kth iteration, Tk represents the relative pose transformation

estimation at the kth iteration, pi j represents the jth point in

the ith matched plane from the history keyframe, ci and ni

represent the centroid and normal of the ith matched plane

from the current keyframe.

After the correction, if the average distance of the corre-

sponding points between two keyframes is less than 0.1 m, we

regard that these two keyframes are aligned. If two keyframes

are not aligned, we do not regard the two keyframes as loop-

closure.

Once the two keyframes are aligned, we perform the pose

graph optimization following the method in [25]. When it is

finished, we update all the point clouds and plane parameters

in the global reference frame.
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V. EXPERIMENTS AND ANALYSIS

A. Datasets

We evaluate our method on the KITTI odometry benchmark

[26], where we use point clouds from a vertical Velodyne

HDL-64E S2 mounted on the roof of a car. Sequences 00 and

05 of the KITTI dataset and data from [27] are processed.

Sequence 00 lasts 3.7 km (470 s) and suits our case as it

contains one large loop where the vehicle revisits the previous

scenarios for a stretch of 500 m. This portion with multiple

traversals will therefore be used in the loop-closure detection

experiment. Sequence 05 lasts 2.2 km (287 s) and is used for

presenting the online operation of the framework. Data from

[27] are used to demonstrate that our method can apply to

various datasets.

B. Baselines

Scan Context [28] is a loop-closure detection method based

on global descriptors. The method extracts global descriptors

and performs loop-closure detection for each frame. The

performance of Scan Context depends on the number of candi-

dates from the KD tree, which has been taken as a criterion to

divide Scan Context into Scan Context-50 and Scan Context-

10. Overall, Scan Context-50 reveals better performance than

Scan Context-10 due to more candidates are used to search

for loop-closures, and consequently takes more time than Scan

Context-10.

The batch version SegMatch [10] performs loop-closure

detection every other distance based on the local map, which

is similar to ours. The incremental version SegMatch [11]

performs loop-closure detection for each frame and is based

on incremental local maps. In order to improve the real-time

performance, the incremental version SegMatch designs an

incremental calculation method of local map maintenance, nor-

mal vector calculation, and local map segmentation. The loop-

closure detection method of incremental version SegMatch is

similar to that of the batch version.

C. Loop-closure detection performance

For segmentation, the maximum Euclidean distance be-

tween two points such that they are considered to belong to

the same cluster is set to 0.8 m. We only consider segments

that contain more than 100 points for the sake of efficiency.

For plane extraction, the number of neighbours is set to 20

points, and the smoothness threshold is set to 15 degrees.

As is shown in Fig. 3, we have computed the ROC curves

with different unary constraints parameter ranging from 1.3 to

6.0, while the binary constraints parameter remains unchanged.

It is worth to mention that when R becomes large, the unary

constraints are greatly relaxed, until they no longer impose

any restrictions on rejecting mismatches.

Fig. 3 shows that the true positive rate reaches the maximum

value fastly and remains almost unchanged while the unary

constraints parameter increases. Overall, the true positive rate

is relatively stable which means the unary constraints have

little effect on the true positive rate. Especially, when the unary

constraints parameter is relatively large, the unary constraints

almost do not affect the true positive rate.

Fig. 3: The ROC curves produced by setting the binary constraints
parameter to 1.3 and 1.6, respectively. For each curve, the marks (stars
and circles) from left to right correspond to the unary constraints
parameter increasing from 1.3 to 6.0.

Besides, the false positive rate gradually reaches the max-

imum value while the unary constraints parameter increases.

The false positive rate’s maximum value is relatively small,

which means when we remove the unary constraints, we can

get almost similar results. But the unary constraints help to

filter out some obvious mismatching to reduce the number of

candidate matches for binary constraints, which can benefit

the computational efficiency. TABLE I shows the difference

of graph matching time with and without unary constraints.

Fig. 4 shows the number of matched planes after unary and

binary assessments.
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Fig. 4: The number of matched planes after unary and binary
constraints.

We compare our method with SegMatch1 and Scan Context2

on a laptop with an Intel i7-7700 CPU at 2.80 GHz and 16

GB memory. Fig. 5 and Fig. 6 demonstrate the robustness of

1https://github.com/ethz-asl/segmap
2https://github.com/irapkaist/scancontext
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TABLE I: The graph matching time with and without unary con-
straints.

with unary constraints without unary constraints

0.259 ms 3.6 ms

these loop-closure detection methods. From Fig. 5 and Fig. 6,

we can conclude that our method’s robustness performance is

better than Scan Context-10 [28] and equivalent to incremental

version SegMatch [11] whose performace is better than that of

the batch version, while slightly lower than Scan Context-50

[28].

Fig. 5: The Precision/Recall curves of our method and the state-of-
the-art methods in KITTI 00.

Fig. 6: The Precision/Recall curves of our method and the state-of-
the-art methods in KITTI 05.

We evaluate the computational cost of each step of our

method on two platforms: a laptop (Intel i7-7700 CPU at 2.80

GHz and 16 GB memory), and the Nvidia Jetson TX2 which

is equipped with an ARM Cortex-A57 CPU. The average

running time of our method while processing KITTI dataset

is shown in TABLE II.

TABLE II: The time table of our system run on two platforms.

plane extraction graph matching correction

Desktop PC 204 ms 0.259 ms 2080 ms
Jetson TX2 440 ms 0.471 ms 2640 ms

It is worth to mention that the execution time of correction

module is affected by many factors including the point cloud

registration method used, the size of local map, the point cloud

density determined by voxel filtering and desired precision etc.

For example, the correction module of Scan Context applies

frame to frame point cloud registration, but the correction

module of our method and SegMatch applies local map to local

map point cloud registration. Therefore, for fair comparison,

we do not include the time cost by this module. Then the

overall execution time of Scan Context-50 including searching

loop and calculating descriptors is 394.8 ms, which is greater

than ours time 204.3 ms. The total time of Scan Context-10

is 211.4 ms, which is also greater than ours time 204.3 ms.

We divide the execution time of SegMatch into two parts

of loop-closure detection and loop-closure correction. The

loop-closure detection time of incremental version SegMatch

including voxel filtering, normal estimation, segmentation,

recognition and others [11] is 90.2 ms, which is indeed less

than ours time 204.3 ms. The loop-closure correction time

of SegMatch is 427.4 ms, which is also less than our loop-

closure correction time 2080 ms. However, our method shows

better robustness as shown in Fig. 5. It is worth to mention

that there are not enough planes in one region on KITTI

sequence 05 and our method can not detect loop-closure in

this region. Therefore, compared with SegMatch, our method’s

Recall can not reach 1.0 on KITTI sequence 05. Nevertheless,

the strategy developed in the incremental version SegMatch is

quite inspiring. We will refer increment SegMatch to further

improve our segmentation and plane extraction part in the

future work.

Overall, our method’s robustness performance is compara-

ble to the state-of-the-art methods. Our method’s efficiency

performance is better than all methods mentioned above except

incremental version SegMatch.

The result of applying our method on KITTI sequence 00

is illustrated in Fig. 7. For these two sequences, the vehicle

trajectory is created using LOAM and we can tell there exists

obvious pose drift. We can see that, in city scenarios, our

method has correctly detected most of the loop-closures.

To further validate and evaluate our method, we imple-

mented our algorithm for loop detection in data from [27].

Fig. 10 shows the results. Note that though we can observe two

‘crossroads’ in the middle of Fig. 10, they actually correspond

to a bridge (the horizontal trajectory) goes over two roads (the

two vertical trajectories). Therefore, there is no loop detected.

D. Loop-closure correction performance

We also show the performance of our loop-closure correc-

tion method in Fig. 9. We apply the fitness score as metric

to evaluate the loop-closure correction performance of our



JIANG et al.: LIPMATCH: LIDAR POINT CLOUD PLANE BASED LOOP-CLOSURE 7

Fig. 7: Illustration of loop-closure detection with LiPMatch: the
figures show loop-closures detected in real time during sequence 00 of
the KITTI dataset. The trajectory is before pose graph optimization.
The red dots represent locations where plane extraction and loop-
closure detection were performed and the yellow lines indicate the
detected loops.

Fig. 8: The left figure shows the local map in dotted box in Fig. 7.
before pose graph optimization and the right figure shows the map
after pose graph optimization. From the right figure, we can find the
streets and walls obviously, but not from the left figure.

method and LOAM. We can tell that our method obtain less

fitness score, which demonstrates that our method can achieve

less alignment errors compared with LOAM.

E. Discussion of viewpoint changes

The unary and binary constraints that are affected by

viewpoint changes are given in (2), (6), and (7). We calculate

the results of the related unary and binary constraints between

all successfully matched planes. The average values of ac

ap ,
‖cc

i −cc
j‖

‖c
p

i′
−c

p

j′
‖
, and

nc
j ·(c

c
i −cc

j)

n
p

j′
·(c

p

i′
−c

p

j′
)

are respectively 1.16, 1.04, and 1.06.

The parameter R is set to 1.3 at a minimum in our experiments

which is greater than all the average values. Therefore, the

setting of parameter R has taken account of potential occlu-

sions caused by viewpoint changes. Besides, each keyframe

represents a local map in our method, which implies that

multiple frames are contained in the local map. As a result,

the local map contains more planes compared with a single

Fig. 9: The three frame sequences correspond to the three loop-
closure detected in dotted box in Fig. 7. The blue bars represent
the fitness score of LOAM among loop-closure correction and the
yellow bars represent the fitness score of our method.

frame. This actually helps to alleviate the potential loop-close

failures caused by occlusions.

In some cases, two planes respectively from two local maps

corresponding to the same object are not matched, which is

caused by viewpoint changes. In this paper, we refer the case to

‘missing matches’. In most city scenarios, local maps contain

abundant planes. Thus, if it is not the case that all or most

of the correct matched planes are missing, our method still

works well. Because a few missing matches have no influence

on the relative positions of other correct matched planes.

Fig. 10: Illustration of loop-closure detection with LiPMatch on data
from [27].

In general, in the scenes with enough planes (most city

scenarios), our method is capable of detecting loop closures.

However, we also observe that viewpoint change could still

lead to deficiency of our method. The reason is twofold.

Firstly, it happens that some local maps contain few planes,

and secondly, there exist massive planes that can not be

completely contained in one local map, which means there

might be only a single plane in the local map. Essentially,
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the performance of our method depends on the number and

quality of features.

This makes binary constraints much difficult to be satisfied,

hence leading to the deficiency of the loop-closure detection

results. One solution is extracting some other segments (fea-

tures) from the local map to ensure that even if some segments

are affected by occlusions, the remaining segments can still

help to detect the loop-closure. These ‘features’ really vary

from scenario to scenario. We would not argue against the

existence of a universal feature, but we are working towards

incorporating other semantic features such as vehicles into our

framework, to make it more robust in the future.

VI. CONCLUSION

We present a new 3D LiDAR point cloud plane based

loop-closure detection and loop-closure correction methods.

We build a plane graph for each keyframe and employ the

geometric characteristics of the planes and their relative posi-

tions to detect loop-closures. We also exploit matched planes

between keyframes to improve the ICP’s robustness. When the

loop-closures are successfully detected, we optimize the pose

graph and get an optimized trajectory and map, to improve the

SLAM accuracy.

We evaluate our method on the KITTI odometry bench-

marks. We have demonstrated that our method can achieve

comparable or better results when compared with the state-

of-the-art methods in city scenarios. In the future, we will

integrate non-structural, semantic information into our loop-

closure detection to generalize our method applicable to more

scenes.
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