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Abstract. The poloidal harmonics of the toroidal normal modes of an unstable

axisymmetric tokamak plasma are employed as basis functions for the minimisation

of the 3D energy functional. This approach presents a natural extension of the

perturbative method considered in [M.S. Anastopoulos Tzanis et al, Nuclear Fusion

59:126028, 2019]. This variational formulation is applied to the stability of tokamak

plasmas subject to external non-axisymmetric magnetic fields. A comparison of the

variational and perturbative methods shows that for D-shaped, high βN plasmas,

the coupling of normal modes becomes strong at experimentally relevant applied 3D

fields, leading to violation of the assumptions that justify a perturbative analysis. The

variational analysis employed here addresses strong coupling, minimising energy with

respect to both toroidal and poloidal Fourier coefficients. In general, it is observed that

ballooning unstable modes are further destabilised by the applied 3D fields and field-

aligned localisation of the perturbation takes place, as local ballooning theory suggests.

For D-shaped high βN plasmas, relevant to experimental cases, it is observed that the

existence of intermediate n unstable peeling-ballooning modes, where a maximum in

the growth rate spectrum typically occurs, leads to a destabilising synergistic coupling

that strongly degrades the stability of the 3D system.

1. Introduction

H-mode tokamak plasma operation, which has beneficial characteristics for fusion

power performance and will be the baseline operational mode of the International

Thermonuclear Experimental Reactor (ITER) [1], is intrinsically linked with the

destabilisation of ideal magneto-hydrodynamic (MHD) instabilities, called the peeling-

ballooning (PB) modes [2][3][4]. Those ideal MHD instabilities arise due to the

establishment of steep pressure gradient and large current density in a narrow “pedestal”

region at the edge of the core plasma. The PB modes are postulated to drive Edge

Localised Modes (ELMs), which are field-aligned filamentary structures that erupt from

the pedestal plasma, leading to large particle and heat transport. In large scale tokamak
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devices like ITER, these transient phenomena, if uncontrolled, will exceed the melting

point of the divertor tiles [5][6], shortening the life of the divertor.

One promising method to control ELMs applies non-axisymmetric magnetic

perturbations (MPs) that lead to ELM mitigation [7][8][9][10], i.e. increase of

ELM frequency and decrease of ELM energy loss, or complete ELM suppression

[11][12][13][14], i.e. no ELMs. The key physics component that allows and defines

the existence of those two operational states is still an active area of research. However,

recent experimental and theoretical analysis, points towards a role for the degradation

of the local and global stability of the tokamak plasma. In particular, the imposed 3D

fields lead to local changes of plasma equilibrium parameters, that play a crucial role

in determining the stability of the plasma. This leads to the destabilisation of high n ‡

ideal ballooning modes, where n is the toroidal mode number of the perturbation, which

is localised about the most unstable magnetic field lines [15][16][17]. Such a feature is

computationally and experimentally observed in ASDEX-Upgrade (AUG) discharges,

when ELM mitigation occurs [18].

Additional numerical investigation of the PB stability of ELM mitigated discharges

in AUG, showed that those discharges should be stable against global PB modes [19][20].

However, this analysis is based on stability codes for axisymmetric equilibria, where

coupling of the toroidal normal modes is prohibited, i.e. the toroidal mode number

remains a “good” quantum number. To improve our understanding it is important to

consider the local and global stability of the 3D plasma equilibrium. An additional

indication of the degradation of the global MHD stability boundary in such cases is

related to experimental observations, where ELM suppression occurs below a pressure

contour [14], of lower pressure compared to the stability boundary of the axisymmetric

case. As such, the difference between ELM mitigation and suppression is postulated in

Ref.[20] and Ref.[21] to be a competition between density pump-out that reduces the

plasma pressure, i.e. global PB modes become more stable, and the degradation of the

global ideal MHD stability boundary due to the presence of the 3D MPs.

The axisymmetric equilibrium geometry of the tokamak plasma provides a set

of eigenmodes with discrete toroidal Fourier modes that can be studied individually.

Therefore, the numerical complexity of the global plasma stability is reduced and

is routinely and efficiently calculated with codes like ELITE [22] or MISHKA [23].

However, if a non-axisymmetric equilibrium is established, different Fourier harmonics

of a particular toroidal mode number are coupled together satisfying the condition

n±n′ = λN , where n, n′ are the toroidal mode numbers of the perturbation and N is the

primary toroidal mode number of the non-axisymmetric equilibrium, with λ an integer.

For a fixed n, a set of toroidal modes n′ are coupled to form a “supermode” [24] of the nth

family. This feature significantly increases the numerical complexity for the stability of

the system. This is especially true for edge localised perturbations, where large poloidal

‡ We will typically refer to low n ∼ 1 − 5 which are global modes spanning the full minor radius,

intermediate n ∼ 5− 20 which are radially localised and tap into the kink drive, and high n which are

highly localised pressure driven ballooning modes with negligible kink drive.
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and toroidal mode numbers must be considered, and then this feature significantly

limits the radial resolution. As a result, the examination of unstable intermediate to

high n perturbations that drive the onset of ELMs becomes truly challenging in non-

axisymmetric geometry.

In order to minimise the numerical complexity of the non-axisymmetric system,

a perturbation theory was introduced [25][26][27], considering an applied 3D magnetic

field, BN , which is several orders of magnitude lower than the confining axisymmetric

magnetic field B0; typically BN/B0 ∼ 10−5− 10−3. The perturbative approach assumes

weak coupling, restricting consideration to λ = [0,±1], and leading to the formation

of triplets of toroidal Fourier harmonics {n − N, n, n + N}. To leading order the

spatial structure of the three toroidal normal modes that couple is provided by the

axisymmetric system. Such a perturbative approach requires weak coupling of toroidal

normal modes, which is observed to be violated for strongly shaped, high βN plasmas. In

addition, the perturbative method does not allow freedom for the 3D field to adjust the

relative size of the poloidal harmonics that couple to form each toroidal normal mode

of the axisymmetric system. The above restrictions can be overcome by considering

a variational formulation of the non-axisymmetric energy functional that uses the

poloidal Fourier harmonics of the toroidal normal modes of the axisymmetric system

as basis functions. The energy can be minimised with respect to the poloidal coupling

coefficients that are introduced to vary the relative amplitude of these poloidal and

toroidal harmonics.

Such an approach can be physically motivated as follows. In an axisymmetric

tokamak plasma, intermediate to high toroidal mode number, n, peeling-ballooning

modes involve a single toroidal Fourier harmonic, but couple a number of poloidal

Fourier harmonics. For the ballooning component, each poloidal harmonic, m, has

the same shape, and each is centred on its corresponding rational surface where m = nq

(q being the safety factor). The relative amplitude of these Fourier modes is determined

by to the radial variation of the equilibrium. With the application of a 3D MP there

is an additional coupling of the toroidal Fourier harmonics and, in addition, this can

influence the relative amplitude of the poloidal Fourier harmonics. However, the radial

shape of each poloidal harmonic is not expected to be modified by the applied MP.

Guided by this physics understanding, we employ a new variational approach where

the trial function is the set of axisymmetric poloidal Fourier harmonics (each with a

radial dependence corresponding to that for the axisymmetric plasma) and treat the

coefficients that scale each as a set of variational parameters, obtained by minimising

the energy functional.

The paper is set as follows. Section 2 presents our new variational formulation of

the non-axisymmetric energy functional, which is composed of an axisymmetric and

non-axisymmetric component, that leads to a generalised eigenvalue problem to be

solved numerically. Section 3 presents results from the application of this technique

to applied MPs for different plasma βN and cross-section shapes, in an attempt to

understand the underlying difference between the stability of an axisymmetric and non-
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axisymmetric system. Finally, Section 4 discusses the obtained results and their relation

to experimental observations.

2. Variational 3D MHD Stability

In this section, the non-axisymmetric tokamak plasma stability theory is described

using a new variational approach. The general numerical framework for a perturbative

approach, i.e. calculation of non-axisymmetric plasma response and stability, based on

the axisymmetric stability code ELITE, was presented in Ref.[27]. Here, we extend that

formalism to develop a new variational approach to stability that is valid for a wide range

of 3D magnetic fields. ELITE provides a particularly efficient and accurate approach to

calculate the radial dependence of each axisymmetric Fourier mode, providing our set

of basis functions for the variational method.

The ideal MHD stability of tokamak plasmas under the application of external

non-axisymmetric MPs of single toroidal mode number N is considered. The stability

problem results in a generalised eigenvalue problem of the force operator F and the

stability of the system will depend on the eigenvalues of this operator. The variational

approach employs a set of orthogonal basis functions for the representation of a non-zero

plasma displacement δξ 6= 0 and provides a method that determines an appropriate

superposition of these basis functions that minimises the potential δW and kinetic

δK energy change of the non-axisymmetric equilibrium state. This provides the most

unstable mode that can be produced from the particular basis set. Considering that

the applied 3D fields are much smaller than the axisymmetric equilibrium fields, the

poloidal Fourier coefficients derived from the axisymmetric equilibrium are adopted

as appropriate trial functions for energy minimisation. The radial dependence of the

poloidal Fourier harmonics is taken to be the same as for the axisymmetric system, each

weighted by a “coupling coefficient” to adjust their relative size. Coupling of different

toroidal Fourier harmonics is also accommodated in our approach. The minimisation of

the energy functional determines the coupling coefficients.

2.1. Potential and Kinetic Energy Terms

The coordinate system is based on the axisymmetric normal n̂ = ∇ψ0/|∇ψ0|, binormal

t̂ = (B0 × ∇ψ0)/(B0|∇ψ0|) and parallel b̂ = B0/B0 components. Here ψ0 labels the

flux surfaces and B0 is the magnetic field of the axisymmetric equilibrium, i.e. before

application of the 3D MP. The parallel component of the displacement δξ‖ contributes

only to the kinetic energy δK and fluid compression ∇ · δξ. Therefore, at marginal

stability minimisation of the potential energy δW with respect to δξ‖ requires∇·δξ = 0.

For most magnetic configurations, the minimisation of fluid compression is achieved by

setting an appropriate form for the parallel displacement δξ‖ [28]. This is the so-

called incompressible limit, and neglects the contribution of δξ‖ to inertia, leading to

an overestimate for the growth rate. Although, its contribution can in principle be
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accounted for by scaling the growth rate by 1/
√

1 + 2q2 [29]. We shall adopt this

incompressible model, and as such, only the perpendicular dynamics are considered.

The displacement is then reduced to the two components perpendicular to b̂, which we

denote X and U,

δξ → δξ⊥ =
X

|∇ψ0|
n̂+ U

|∇ψ0|

B0

t̂ (1a)

Minimisation of the axisymmetric magnetic compression, relates the two components,

[
f

B2
0

(B0 · ∇)− ∂φ]U = [∂ψ + ∂ψ(lnJ0B
2
0) +

2µ0∂ψp0
B2

0

]X (1b)

where f(ψ) = RB0t, B0t is the toroidal magnetic field, J0 is the Jacobian of the

orthogonal coordinate system and p0 is the plasma pressure. Therefore, the displacement

δξ becomes a function of X.

Considering an ideal and incompressible limit for the stability, a displacement δξ

(i.e. the peeling-ballooning mode) of the plasma equilibrium (i.e. axisymmetric + non-

axisymmetric) will result in a force,

F = J × δB + δJ ×B +∇(δξ · ∇p) (2)

where (δξ, δB, δJ) represent the perturbed displacement, magnetic field and current

density associated with the instability. In order to express F in an ordered way, the

plasma equilibrium can be split into an axisymmetric and non-axisymmetric part, i.e.

B = B0+BN , J = J0+JN and p = p0+pN . The perturbed quantities, that arise from

the displacement δξ, are linear with respect to equilibrium quantities and similarly,

δB = δBn +
∑

±

δBn±N (3a)

δJ = δJn +
∑

±

δJn±N (3b)

δp = δpn +
∑

±

δpn±N (3c)

where the subscript indicates the toroidal mode number of the perturbation.

Substituting Eqn.(3) into the linearised force naturally results in ordered

axisymmetric and non-axisymmetric contributions. Specifically, writing F = F0 +F1 +

F2, we have:

F0 = J0 × δBn + δJn ×B0 +∇(δξn · ∇p0) (4)

F1 =
∑

±

[J0×δBn±N +J±N ×δBn+δJn×B±N +δJn±N ×B0+∇(δξn ·∇p±N)] (5)

F2 =
∑

±

J±N × δBn±N + δJn±N ×B±N (6)

where δBn = ∇× (δξn×B0) and δBn±N = ∇× (δξn×B±N). The zeroth order force,

F0, is due to the original axisymmetric equilibrium and the first order, F1, arises due
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to the non-axisymmetric equilibrium that provides the coupling between the toroidal

axisymmetric modes. The second order force, F2, is dropped from the calculation, as

it is assumed that F2 ≪ F1. This is justified by the fact that F2 ∝ (BN/B0)
2, while

F1 ∝ (BN/B0) and BN ≪ B0. Considering Eqn.(5) and taking the inner product with

the complex conjugate perturbed displacement δξ∗n, after some algebraic manipulation,

we derive the following contribution to the perturbed energy. The kinetic energy,

δK(δξ∗n, δξn) =
1

2

∫

δξ∗n · δξn J0dψdθ
∗dφ (7)

the part of the potential energy associated with perturbations about the axisymmetric

part of the equilibrium,

δW (δξ∗n, δξn) =
1

2

∫

{|δBn⊥|
2 −

J0 ·B0

B2
(δξ∗n⊥ ×B0) · δBn⊥

− 2(δξn⊥ · ∇p0)(δξ
∗
n⊥ · κ0)} J0dψdθ

∗dφ

(8)

the part of the potential energy associated with perturbations about the 3D part of the

equilibrium,

δY (δξ∗n, δξn′) = −
1

2

∫

{[δξ∗n · (JN × δBn′ + δJn′ ×BN)]

+ [∇× (δξ∗n × J0)] · (δξn′ ×BN)

− δJ∗
n · (δξn′ ×BN)} J0dψdθ

∗dφ

(9)

and a surface contribution due to the 3D part of the equilibrium,

δS(δξ∗n, δξn′) = −
1

2

∫

{(δξ∗n · n)[(δξn′ ×BN) · J0 − δBn′±N ·B0]

+ δB∗
n · [BN(δξn′ · n)− δξn′(BN · n)]

+ (δξ∗n · n)(δξn′ · ∇pN)} J0dθ
∗dφ

(10)

where n 6= n′ are the toroidal mode numbers of the displacement δξ and θ∗ is straight

field-line poloidal angle.

2.2. Variational Formulation of Energy Functional

The ideal MHD system defines a Hermitian stability problem, so that δWn,n′ = δWn′,n,

where δWn,n′ = δW (δξ∗n, δξn′). Thus, it can efficiently be solved by expanding in a set

of discrete normal modes. Considering the stability of the axisymmetric system and

non-degenerate eigenvalues ω2
n′ 6= ω2

n for n′ 6= n,

(ω2
n′ − ω2

n)(δKn′,n − δKn,n′) = (δWn′,n − δWn,n′) = 0 (11)

and leads to δKn,n′ = δn,n′ , where δKn,n′ = δK(δξ∗n, δξn′). As a result, the axisymmetric

normal modes δξ
(0)
n are orthogonal and can be used to define a basis set, through which
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any perturbation can be expressed as a superposition of these modes. Let us now

define δξ
(0)
n to be the displacement eigenfunction associated with the axisymmetric

system. This displacement δξ
(0)
n can be expressed as a sum of terms each linear

in the radial displacement Xn(ψ, θ
∗) [28]. Expanding in poloidal Fourier modes,

Xn(ψ, θ
∗) =

∑

mXn,m(ψ) exp[−imθ
∗], where the radially dependent function Xn,m(ψ)

can be provided by ELITE. Note that for any constant dn, δξ(dnXn) = dnδξ(Xn).

Furthermore, the linearised force is linear with respect to the displacement, and therefore

Xn; thus F (dnXn) = dnF (Xn) and similarly δW (d∗n′X∗
n′ , dnXn) = d∗n′dnδW (X∗

n′ , Xn).

The same applies to δK, δY and δS.

In order to create orthogonal normal modes, the toroidal dependence of the

displacement is expressed through Fourier harmonics. As such, a displacement can

be expressed as a linear superposition of axisymmetric normal modes δξn,

δξn(ψ, θ
∗, φ) =

∑

n′

dn′δξ
(0)
n′ (ψ, θ

∗)ein
′φ =

∑

n′

dn′δξ
(0)
n′ (Xn′)ein

′φ (12)

In the case where the plasma equilibrium is axisymmetric, the energy functional results

in a toroidally decoupled system and dn′ = δn,n′ for a specific n. This simplifies the

problem and allows the ψ-dependence and relative size of all Fourier coefficients Xn,m(ψ)

(see above) to be calculated in a code like ELITE. If non-axisymmetric fields are present,

toroidal modes become coupled through the non-axisymmetric potential energy δY and

δS and the resulting energy principle becomes,

∑

n

|dn|
2ω2

nδKn,n =
∑

n

|dn|
2δWn,n

+
∑

n,n′

d∗ndn′δYn,n′δn,n′±N

+
∑

n,n′

d∗ndn′δSn,n′δn,n′±N

(13)

where δYn,n′ = δY (δξ∗n, δξn′), δSn,n′ = δS(δξ∗n, δξn′) and N is the toroidal mode number

associated with 3D equilibrium quantities in the energy terms. This approach will later

be referred to as “Variational Toroidal Mode Coupling”.

If the δYn,n′ and δSn,n′ coefficients are small, weak coupling occurs and it is expected

that the above variational method is equivalent to the perturbative method presented

in Ref.[27]. An advantage of the variational method is that it is not restricted to weak

coupling as larger values of δYn,n′ and δSn,n′ can accommodate strong or broadband

coupling of toroidal modes. However, in both approaches the trial function forces the

mix of poloidal Fourier harmonics to equal that of the axisymmetric normal modes

δξ
(0)
n (ψ, θ∗, φ). As a result, any influence of the applied 3D field on the coupling of the

individual poloidal harmonics cannot be captured by this approach and the structure

of the non-axisymmetric normal mode is likely overly constrained.

In order to resolve this issue, we adopt a trial function that expands in both poloidal
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and toroidal Fourier harmonics of the axisymmetric system δξ
(0)
n,m(ψ),

δξn(ψ, θ
∗, φ) =

∑

n′,m′

cn′,m′δξ
(0)
n′,m′(ψ)e

−(im′θ∗−n′φ) =
∑

n′,m′

cn′,m′δξ
(0)
n′,m′(Xn′,m′)e−i(m

′θ∗−n′φ)

(14)

where Xn′,m′(ψ) are the Fourier coefficients derived from the axisymmetric system. For

the axisymmetric system, such a representation results in a system of normal modes,

where each has a single toroidal Fourier mode, but is a superposition of many poloidal

Fourier modes due to poloidal inhomogeneity of the axisymmetric equilibrium. Thus, for

the axisymmetric system cn′,m′ = 1. It is straight forward to derive an energy principle

for the non-axisymmetric system, which becomes

∑

n,m,m′,m′′

c∗n,mcn,m′ω2
nδK

m,m′

n,n δm,m
′+m′′

=
∑

n,m,m′,m′′

c∗n,mcn,m′δWm,m′

n,n δm,m
′+m′′

+
∑

n,n′,m,m′,m′′

c∗n,mcn′,m′δY m,m′

n,n′ δm,m
′+m′′

n,n′±N

+
∑

n,n′,m,m′,m′′

c∗n,mcn′,m′δSm,m
′

n,n′ δ
m,m′+m′′

n,n′±N

(15)

where δKm,m′

n,n = δK(δξ
(0)
n,m, δξ

(0)
n,m′), δWm,m′′

n,n = δW (δξ
(0)
n,m, δξ

(0)
n,m′), δY m,m′

n,n′ =

δY (δξ
(0)
n,m, δξ

(0)
n′,m′), δS

m,m′

n,n′ = δS(δξ
(0)
n,m, δξ

(0)
n′,m′), m′′ is the poloidal mode number and N

the toroidal mode number associated with equilibrium quantities in the energy terms.

Taking the coefficients cn′,m′ as variational parameters, and minimising the energy with

respect to c∗n,m, provides a set of equations for the numerical coefficient cn′,m′ . These

equations depend on the matrix elements δKm,m′

n,n , δWm,m′

n,n , δY m,m′

n,n′ and δSm,m
′

n,n′ , which

can all be derived from axisymmetric ELITE calculations for a given toroidal mode

number (n or n ± N). This approach will later be referred to as “Variational Poloidal

& Toroidal Mode Coupling”.

It can be observed from Eqn.(15) that this minimisation will adjust the coupling

of poloidal harmonics for each toroidal normal mode and this can be significant when

strong coupling occurs providing greater flexibility in the trial function to optimise the

poloidal mode structure. In this case, the structure of each toroidal normal mode in the

presence of a 3D MP can differ significantly from the axisymmetric modes. In principle,

such a feature can allow the 3D MP to adjust the coupling between external kink/peeling

modes and core ballooning modes, as the corresponding poloidal harmonics can change

independently. In addition, in a tokamak plasma, elongation and triangularity lead to

coupling of {m,m ± 1,m ± 2} poloidal modes, whereas in a non-axisymmetric plasma

additional shaping effects can significantly increase the number of coupled poloidal

harmonics, indicating the importance of allowing freedom in their coupling. Together

with our physics understanding of ballooning modes in an axisymmetric plasma, i.e.

that the Xn,m(ψ) are all very similar for a given n for all m, only the relative coupling

adjusts; this gives us confidence that our trial function will accurately capture the effect

of MPs on the PB stability.
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(a)
(b)

(c)
(d)

Figure 1: The flux dependence of the equilibrium pressure p [10 · kPa] and parallel

current density J|| [MAm−2] as well as the q-profile for the (a) circular (cbm18) and

(c) D-shaped (dbm9) equilibria. The growth rate spectrum of the unstable peeling-

ballooning modes as a function of toroidal mode number n for the (b) circular (cbm18)

and (d) D-shaped (dbm9) axisymmetric equilibria.

3. Application to External MPs

3.1. Linear Plasma Response to Applied MPs

The ELITE code has been extended, and used at marginal stability to obtain the linear,

ideal MHD plasma response for a given non-axisymmetric magnetic flux perturbation of

toroidal mode number, N , at the plasma-vacuum interface, as described in Ref.[27]. Due

to the low N applied field the low-n version of ELITE [30] is used. Two plasma shapes

are considered, one for a large aspect ratio circular plasma cross-section based on the
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(a)

(b)

ξ m

(c)
(d)

Figure 2: Linear, ideal MHD plasma response to an applied N = 3 even MP. The radial

dependence of the straight field line poloidal harmonics of the normal displacement

functional ξN · ∇ψ [m] for the (a) circular (cbm18 dens6) and (c) D-shaped (dbm9)

equilibrium. The reconstruction in the poloidal cross-section of the normal magnetic

field BN ·n̂ [T] for the (b) circular (cbm18 dens6) and (d) D-shaped (dbm9) equilibrium.

circular cross-section (cbm18) equilibrium configurations and a second for a D-shaped

(dbm9) equilibrium configuration created using the TOQ fixed boundary equilibrium

code [31]. In both cases, an even N = 3 MP field is applied.

Considering first the circular (cbm18 dens6, cbm18 dens7 and cbm18 dens8)

equilibrium configurations, the inverse aspect ratio ǫ = 0.3, βN = [1.06, 1.31, 1.54]

and qa = [2.97, 3.01, 3.04] respectively. Those axisymmetric plasma equilibria are

ballooning unstable for n > [7, 5, 3] for the three cases respectively. For the D-shaped

(dbm9) equilibrium configuration, the inverse aspect ratio is ǫ = 0.3, βN = 2.83 and

qa = 2.65. This axisymmetric plasma equilibrium is unstable to low to intermediate n

kink-ballooning modes, while the standard ballooning modes occur for high n > 30−40.

In addition, to examine the impact of the applied MP on shaped high βN plasmas where
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the kink modes are suppressed (due to shaping or a conducting wall), for the D-shaped

(dbm9) equilibrium an ideal conducting wall is introduced close to the plasma surface.

The ideal wall is introduced by coupling ELITE with the VACUUM code [32]. The ideal

wall has the same shape as the plasma boundary at a distance (aw − a)/a = 2%, where

aw and a are the wall and plasma minor radius respectively.

The axisymmetric equilibrium profiles of the circular (cbm18) and D-shaped (dbm9)

cases, as well as the associated growth rate spectrum of the unstable peeling-ballooning

modes, are shown in Fig.1. The linear plasma response for an even (up/down symmetric)

N = 3 MP field is shown in Fig.2. Both responses are characterised by an external

kink/peeling response.

3.2. Comparison of Perturbative and Variational Toroidal Mode Coupling

In this section we employ the variational approach which fixes the poloidal spectrum

(equal to the axisymmetric spectrum), and use variational theory to determine the

coupling of different n ballooning modes. The matrix elements Fnn′ for the perturbative

approach described in Ref.[27] and the variational approach described in this work, come

from a similar set of equations and the only difference occurs in normalisation of the

individual basis set. A straightforward relation exists between the two methods, if the

relative poloidal coupling of the axisymmetric normal modes remains unchanged for a

given n, such that

F
(1)
nn′ =

δYn,n′±N + δSn,n′±N
√

δKn,nδKn′,n′

(16)

As a result, a direct comparison of the two approaches becomes possible. In addition, we

can define a quantity, called the coupling coefficient Vnn′ = ||dn|| = ||F
(1)
nn′/(ω2

0n−ω2
0n′)||,

that measures the contribution of sideband harmonics n±N to the displacement.

3.2.1. Circular cbm18 Case Initially the circular cbm18 dens6 equilibrium with the

lowest βN = 1.06 is considered, and only nearest neighbour coupling is taken into

account, i.e. coupling of n with n±N . For applied field strength BN/B0 < 10−3, where

weak coupling occurs, the “variational toroidal coupling” method results in the same

outcome as the perturbative method. Fig.3c illustrates a comparison for the growth

rate between the two approaches considering a triplet mode with primary toroidal mode

number n = 21. As can be observed up to BN/B0 ∼ 10−3 the two approaches agree very

well, but as the field strength is increased a disagreement starts to build up and the two

approaches diverge. The growth rate of the triplet in the variational case is observed

to increase slower with the applied field since the coupling to the destabilising lower

n modes becomes weaker in this case. In addition, in the perturbative analysis, the

assumption of weak toroidal coupling means that the coupling coefficient of the primary

mode n is unity, i.e. ||dn|| = 1. In the variational approach this assumption is relaxed

and ||dn|| 6= 1, such that the perturbative method results in unphysical behaviour as

BN/B0 increases.
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(a) (b)

(c)

Figure 3: The coupling coefficients of a primary n = 21 mode for the circular

cbm18 dens6 equilibrium of a nonuplet {n, n ± N, n ± 2N, n ± 3N, n ± 4N} mode, (a)

as a function of the toroidal mode number and (b) applied field strength BN/B0 using

the “variational toroidal coupling” method. (c) Illustrates a comparison between the

perturbative and “variational toroidal coupling” methods for a triplet {n, n ± N} and

nonuplet {n, n±N, n± 2N, n± 3N, n± 4N} mode.

Furthermore, the variational method allows the coupling of multiple toroidal normal

modes. Since perturbation theory deviates at BN/B0 ∼ 10−3, it is expected that

strong coupling occurs requiring more toroidal normal modes to be retained. As can

be observed from Fig.3, with increasing applied field, multi-mode coupling takes place

and in this case for BN/B0 ∼ 2.25 · 10−3 even 3rd neighbouring coupling is required,

and further destabilisation is observed due to the inclusion of additional degrees of

freedom. The n = 21 mode couples strongly to lower n neighbours, as indicated from the

perturbative method considering only first neighbour coupling, with the 3rd neighbour

contributing ∼ 10%. In addition, the stronger coupling to lower n modes leads to
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(a) (b)

(c)

Figure 4: The coupling coefficients of a primary n = 18 mode for the D-shaped dbm9

equilibrium of a septuplet {n, n ± N, n ± 2N, n ± 3N} mode, (a) as a function of

the toroidal mode number and (b) applied field strength BN/B0 using the variational

method. (c) Illustrates a comparison between the perturbative and variational methods

for a triplet {n, n±N} and septuplet {n, n±N, n± 2N, n± 3N} mode.

further destabilisation, as can be observed from Fig.3. In addition, it can be observed

that with increasing field strength BN/B0 the weak coupling assumption ||dn|| = 1 is

indeed violated and for that reason the perturbative approach becomes inaccurate.

3.2.2. D-shaped dbm9 Case Finally, the non-axisymmetric stability of the D-shaped

dbm9 equilibrium is studied. In this case a n = 18 primary toroidal mode is examined

with multi-mode toroidal coupling of 7 toroidal normal modes. As can be observed

from Fig.4, a similar outcome in comparison to the cbm18 dens6 equilibrium is drawn.

However, in this case an order of magnitude lower applied field results in similar relative

coupling due to stronger plasma response, which is possibly a consequence of the

larger βN . Therefore, the stronger coupling leads to a break down of the perturbative
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Growth Rate Balloon Kink Bending

n=12

ELITE 0.1096 -2.858E-02 -3.838E-03 2.905E-02

Reconstruct 0.1134 -2.907E-02 -3.615E-03 2.974E-02

n=15

ELITE 0.1550 -4.325E-02 -4.648E-03 4.095E-02

Reconstruct 0.1582 -4.404E-02 -4.451E-03 4.204E-02

n=18

ELITE 0.1876 -7.308E-02 -6.514E-03 6.536E-02

Reconstruct 0.1869 -7.448E-02 -6.298E-03 6.731E-02

Table 1: Comparison of growth rates and contributions to δW in terms of destabilising

ballooning and kink/peeling terms and stabilising field line bending between the ELITE

result and the reconstructed result for the cbm18 dens6 equilibrium case.

assumptions at much lower applied field strength BN/B0. In addition, the stronger

coupling affects the variational result in the case of a triplet mode, as multiple toroidal

normal modes need to be coupled for convergence to be achieved.

3.3. Variational Poloidal & Toroidal Mode Coupling

We now turn into the full variational approach, which allows the poloidal Fourier

spectrum to adjust in addition to coupling of toroidal Fourier modes. Neither the

perturbative method nor the “variational toroidal coupling” method discussed in

Section3.2, allows changes in the coupling of the poloidal harmonics in response to

the 3D MP. Since the applied field is composed of a wide range of poloidal harmonics,

and strong coupling takes place at experimentally relevant applied fields, it is expected

that the poloidal coupling within each toroidal normal mode will be affected. To test

this hypothesis, we allow the coupling between the poloidal harmonics to change in this

more general variational approach. However, in this case the axisymmetric potential and

kinetic energy matrices need to be reconstructed. The reconstruction of those matrices

is performed in two ways. In the first way, those matrices are input variables and taken

from ELITE, provided the plasma is up-down symmetric or the low n version is not

used. In the second way, those matrices are calculated considering the axisymmetric

δW and δK for the displacement ELITE provides and so the low n modes or up-down

asymmetric plasmas configurations can be considered.

To begin with, the circular cbm18 dens6 equilibrium is used in order to verify that

the calculation of the axisymmetric and non-axiisymmetric matrices is correct. As can

be observed from Table.1, where a comparison of the growth rate and the axisymmetric

destabilising/stabilising energy contributions are listed, the reconstruction agrees with

the ELITE result. At this stage, where the axisymmetric energies can be computed

accurately, the impact of the applied field on the coupling of poloidal and toroidal

harmonics can be examined.
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(a) (b)

(c) (d)

Figure 5: (a) The growth rate of the 3D triplet modes as a function of primary

toroidal mode number n and applied field strength BN/B0 for a resonant N=3 MP. (b)

Comparison between the different perturbative and variational methods for a n = 21

triplet mode as a function of BN/B0. (c) The 3D reconstruction of the structure of a

n = 12 mode for the axisymmetric equilibrium geometry. (d) The 3D reconstruction

of the structure of a triplet n = 12 mode for the non-axisymmetric equilibrium

geometry, which is scaled by a factor of 15 such that the non-axisymmetric equilibrium

displacement is visible. The black line indicates the (c) axisymmetric and (d) scaled

non-axisymmetric equilibrium plasma boundary for BN/B0 = 1.5 · 10−3.

3.3.1. Circular cbm18 Case The circular cbm18 dens6 is considered for the even

N = 3 MP used previously. Fig.5 illustrates the growth rate of 3D peeling-ballooning

modes as a function of primary toroidal mode number n and applied field strength

BN/B0. Initially, only first neighbour toroidal coupling is considered, i.e. triplet modes

{n−N, n, n+N}, retaining all the constituent poloidal harmonics and allowing freedom

in the poloidal coupling. From Fig.5a and Fig.5b it becomes apparent that the freedom

in the poloidal coupling results in strong destabilisation of the ballooning mode, and

for an applied field of BN/B0 ∼ 2 · 10−3 the growth rate increased by ∼ 60% in

comparison to the previous methods where only a difference of ∼ 5% occurred. The

applied field interacts strongly with specific poloidal harmonics in such a way that

field line bending is minimised and the driving terms are maximised. However, from

Fig.5d it can be concluded that the resulting mode structure is in good qualitative
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Figure 6: A comparison between the axisymmetric modes and the 3D triplet mode for

the relative amplitude of the constituent poloidal harmonics for each toroidal normal

mode of the n = 12 triplet for N = 3 and BN/B0 = 1.5 · 10−3.

agreement with the perturbative method as calculated in Ref.[27]. Direct comparison

of the coupling coefficients is not possible, as the toroidal coefficients are replaced

by a set of toroidal/poloidal coefficients. Nevertheless, the difference in the poloidal

spectrum of the axisymmetric normal mode compared to the 3D mode can be studied.

Fig.6 illustrates the relative amplitude of the poloidal coupling coefficients for each

axisymmetric toroidal normal mode compared to the poloidal coupling coefficients of

the 3D mode. The (independent) toroidal modes of the axisymmetric system have been

normalised to the same maximum amplitude as the 3D calculation. Each toroidal mode

has an increasing poloidal mode number in the left direction. As can be observed, the

poloidal coupling is affected by the 3D field; in this case we find that the 3D field pushes

the ballooning mode outwards in the radial direction, since the poloidal harmonics that

resonate with edge of the plasma and the vacuum region are amplified. In addition,

the variation with respect to poloidal coupling leads to a different relative coupling

in comparison to the perturbative method since the higher sideband n′ = n + N is

observed to be larger than the lower sideband n′ = n − N . Within the perturbative

method stabilisation would be expected for stronger coupling to the higher sideband, but

the observed destabilisation in the variational approach is attributed to the difference

in the poloidal coupling. Specifically, the greater coupling to vacuum modes could drive

the external kink mode more.

Furthermore, the impact of MPs is examined with respect to βN and ∆φ

variations, where ∆φ is the phase difference between the upper and lower 3D coils

that sets the parity of the applied MP field. The circular cbm18 dens6, cbm18 dens7

and cbm18 dens8 equilibria are considered for βN = [1.06, 1.31, 1.54] with qa =

[2.97, 3.01, 3.04]. Fig.7 illustrates the dependence on βN for a n = 15 triplet mode
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(a) (b)

(c)

Figure 7: (a) The normalised growth rate and (b) the change in the normalised growth

rate of the n = 15 triplet as a function of the applied field strength BN/B0 for different

βN for the cbm18 set of axisymmetric circular cross-section equilibria. (c) The non-

axisymmetric equilibrium normal displacement δξN · n̂ as a function of normalised ψ

for applied field strength BN/B0 = 10−4.

considering the even N = 3 MP. As can be observed, further destabilisation due to the

applied MP is observed in all three cases. In addition, it can be observed that for a

certain βN the growth rate is almost linear with BN/B0. The stronger destabilisation

occurs for the higher βN = 1.54 case. For a fixed normal magnetic field at the plasma

boundary a larger plasma response, i.e. normal flux surface displacement, is expected

with increasing βN . However, this will largely depend on the poloidal spectrum of

the applied field. The maximum response within the pedestal region occurs for the

βN = 1.54 case and significant destabilisation is observed with increasing BN/B0. The

lowest response within the pedestal is observed in the βN = 1.31 (although the largest at

the plasma boundary) and it can be observed that the fractional change in growth rate
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(a) (b)

(c) (d)

Figure 8: (a) The dependence of the growth rate of a n = 15 triplet on the phase ∆φ

of the imposed MP for the βN = 1.54 cbm18 dens8 axisymmetric circular cross-section

equilibrium case. (b) The non-axisymmetric equilibrium normal displacement ξN · n̂

[cm] as a function of normalised ψ for applied field strength BN/B0 = 10−4. The radial

dependence of the straight field-line angle mode structure of BN · n̂ 10−4 [T] for (c) the

even and (d) odd MP field.

with increasing BN/B0 is smaller in comparison to βN = 1.54 and similar to βN = 1.06.

Therefore, since the relation is not linear with βN it can be concluded that the poloidal

mode structure of the applied MP itself is a crucial factor for the plasma stability.

Fig.8 illustrates the dependence of the n = 15 triplet for the βN = 1.54 case on

the applied MP phase, where ∆φ = 0 is the even MP and ∆φ = π is the odd MP, with

BN/B0 = 5 · 10−4. As can be observed, a small variation of the growth rate occurs with

∆φ, with the odd MP configuration resulting in the most unstable case. From Fig.8 it

is clear that although the odd MP has a smaller edge displacement in comparison to the

even MP indicating a less resonant response (presumably a peeling physics effect), the

overall displacement in the pedestal region is larger. The additional non-axisymmetric
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(a) (b)

Figure 9: Growth rate of the 3D triplet modes as a function of the primary toroidal

mode number n and applied field strength BN/B0 for the dbm9 equilibrium case and a

N = 3 resonant applied MP for (a) the case with no wall and (b) the case with an ideal

conducting wall at aw/a = 2%.

displacement of the flux surfaces seems to further destabilise the ballooning mode, as

kink/peeling modes are stable for this equilibrium. The even and odd configuration of

the non-axisymmetric MP had very different poloidal spectra and this indicates once

again the importance of the poloidal spectrum in the penetration of its constituent

poloidal harmonics.

3.3.2. D-shaped dbm9 Case The D-shaped dbm9 equilibrium case has also been

examined as it represents a more experimentally relevant case, and again the resonant

N = 3 MP field is considered. Fig.9a illustrates the growth rate of the triplets as a

function of primary toroidal mode number n and applied field strength BN/B0. For the

case without an ideal conducting wall, the growth rate of triplets around the peak of the

growth rate spectrum of the axisymmetric system (n ∼ 8−10), which mainly correspond

to unstable kink modes, are significantly destabilised by a factor of ∼ 2.8. The rest

of the triplets are also observed to be further destabilised but at lower levels and this

provides an indication that kink modes become more unstable with the applied MP field.

This observation is similar to the perturbative method, where strong destabilisation is

expected at modes around the peak of the growth rate spectrum, due to destabilising

coupling from both lower and higher sidebands. Fig.9b illustrates the growth rate when

an ideal conducting wall surrounds the plasma. In this case the wall is placed close

to the plasma surface (aw − a)/a = 2% to fully minimise the kink component of the

instability. As can be observed, the strong destabilisation of the kink modes is absent

(as they are stable in the first place) and strong destabilisation of ballooning modes is

observed especially for n ∼ 20.

A comparison between the mode structure of the the n = 9 triplet in the case

with and without an ideal conducting wall shows the absence of the kink instability.
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(a) (b)

(c) (d)

Figure 10: The 3D reconstruction of the n = 9 triplet mode (a) without and (b) with

an ideal conducting wall. A comparison between the axisymmetric modes and the 3D

triplet mode for the relative amplitude of the constituent poloidal harmonics for each

toroidal normal mode (c) without and (d) with an ideal conducting wall; BN/B0 = 10−3

for an even N = 3 MP.

Fig.10 illustrates the cases with/without an ideal conducting wall and demonstrates

that the case without a wall has an external kink/peeling-ballooning structure where

the displacement from the instability peaks at the very edge of the plasma surface. It

can also be observed that the mode structure of the constituent toroidal harmonics is

similar to their axisymmetric structure. On the other hand, the case with an ideal

conducting wall has a ballooning like structure where the displacement peaks within

the pedestal. In this case, it can be observed that the mode structure of the constituent

toroidal modes is significantly different from their axisymmetric structure, and the

mode moves radially inwards. An additional interesting feature that occurs in the case

without an ideal conducting wall, is the complete reorganisation of modes away from

the kink peak of the growth rate spectrum. Fig.11 illustrates the n = 18 triplet for
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(a) (b)

(c) (d)

Figure 11: (a,b) The 3D reconstruction of the n = 18 triplet mode and (c,d) the

comparison between the volume average amplitude of the axisymmetric modes and the

3D triplet mode for the constituent poloidal harmonics for each toroidal normal mode;

BN/B0 = 10−4 (left) and BN/B0 = 10−3 (right) for an even N = 3 MP.

BN/B0 ∼ 10−4 and BN/B0 ∼ 10−3. The individual toroidal modes are reorganised with

the external kink/peeling poloidal harmonics being minimised and the 3D mode moves

radially inwards at sufficiently high BN/B0 ∼ 10−3. This feature is not observed for

kink modes close to the peak of the growth rate spectrum n ∼ 9, which retain their kink

like structure, in the case without an ideal conducting wall (see Fig.10).

Finally, especially for the D-shaped dbm9 equilibrium case where strong toroidal

coupling is observed even for small BN/B0, the impact of multi-mode coupling of

the toroidal normal modes is examined, including freedom in the relative poloidal

coupling. The n = 18 mode is considered as the primary harmonic of a triplet

{n − N, n, n + N}, a quintuplet {n − 2N, n − N, n, n + N, n + 2N} and a septuplet

{n − 3N, n − 2N, n − N, n, n + N, n + 2N, n + 3N} 3D mode for BN/B0 ∼ 10−3. As

can be observed from Fig.12a, strong coupling occurs between the individual toroidal
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(a)

(b)

Figure 12: (a) The 3D reconstruction of the n = 18 septuplet mode and (b) the

comparison between the volume average amplitude of the axisymmetric modes and

the 3D modes for the constituent poloidal harmonics for each toroidal normal mode;

BN/B0 = 10−3 (right) for an even N = 3 MP.

normal modes even considering a septuplet mode. The relative shape of the poloidal

spectrum of the individual normal modes is not significantly altered by considering more

normal modes in the coupling, but their relative amplitude changes. This results in a

significantly more poloidally localised 3D mode minimising field line bending, such that

the growth rate of the mode increases further, from γ/ωA = 0.55 for the triplet to

γ/ωA = 0.62 for the septuplet.
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4. Conclusion

The linear stability of non-axisymmetric tokamak plasmas has been examined within a

new numerical framework based on a variational approach that builds on the eigenvalue

axisymmetric stability code ELITE. The framework first computes the linear plasma

response, i.e. the new 3D equilibrium component as a result of the application of an

external MP field, and the axisymmetric peeling-ballooning eigenfunctions. Considering

a variational formulation of the energy principle, all this information is used to construct

the linear non-axisymmetric stability of global ideal MHD modes.

The coupling of toroidal harmonics by MPs can significantly influence the

ballooning instability for D-shaped high βN plasmas, for experimentally relevant MP

field strength of BN/B0 ∼ 10−5 − 10−3. This then raises questions about the use of

perturbation theory to couple toroidal normal modes for realistic 3D field amplitudes.

In addition, the perturbative approach does not take into account the influence of the

MP field on the relative coupling in the poloidal mode structure of the triplet. In

order to resolve this issue, a new more general variational approach, has been developed

in this paper. This uses the individual poloidal and toroidal Fourier modes from the

normal modes of the axisymmetric system, as a basis for trial functions with coefficients

to be determined by minimisation of the energy functional. This is shown to provide

significantly more degrees of freedom, allowing the MP field to influence the peeling-

ballooning structure of each constituent toroidal Fourier mode used in the basis.

The variational method revealed the impact of the MP field in the poloidal coupling

of the individual axisymmetric normal modes. The change in the poloidal coupling of the

basis functions resulted in further destabilisation of ballooning modes. This is especially

apparent in cases where strong toroidal coupling is observed; for example in the D-

shaped dbm9 equilibrium case, the peeling-ballooning mode was completely reorganised

and it was observed that the peeling component of the instability, i.e. poloidal harmonics

that resonate in the vacuum region, were suppressed for sufficiently high applied field

BN/B0 and toroidal mode number n. However, for kink unstable modes close to the

peak of the growth rate spectrum, the external kink-like structure was retained, and

those modes were highly destabilised by the 3D field. Such a feature could be relevant

for experimental high βN plasmas, where unstable internal or external kink modes are

expected for low to intermediate n modes. The significant increase in the growth rate

of the most unstable kink mode potentially indicates a faster ELM crash of similar

mode number n; a feature which is observed experimentally in ELM mitigation [33]. In

addition, since plasma shaping and wall position are important for the stabilisation of

low to intermediate n kink modes, ELM suppression could be a manifestation of the

absence of a strong kink peak, that results in more unstable high n ballooning modes

that can be suppressed by diamagnetic effects, leading to softer transport properties and

relaxation of the pedestal, i.e. no ELM crash. In any case, global plasma stability seems

to be degraded by the applied MP field and could provide an insight in experimental

observation that suggests unstable plasmas in regions where the axisymmetric J|| − p′



Peeling-Ballooning Stability of Tokamak Plasmas With Applied 3D Magnetic Fields 24

diagram indicates stable operation [20]. Therefore, differences between mitigation and

suppression could be due to the competition between the stabilising relaxation of the

pedestal due to density pump out and the potential degradation of the stability boundary

due to the 3D effects.

Finally, due to strong coupling of toroidal modes, the notion of a triplet mode might

be insufficient and more toroidal modes may be needed for an accurate representation

of the 3D mode. The variational approach allows the inclusion of a whole set of toroidal

normal modes. Such a case was examined retaining only toroidal coupling for the

circular cbm18 dens6 equilibrium case and significant contribution from the ±2N and

±3N sidebands was observed leading to further destabilisation. A similar analysis

was performed for the D-shaped dbm9 equilibrium case, but allowing freedom in the

poloidal coupling of the toroidal basis functions, and a similar outcome could be drawn.

The inclusion of more toroidal modes resulted in further destabilisation and stronger

poloidal localisation of the peeling-ballooning mode. The strong poloidal and field-line

localisation in 3D geometry is a feature that is observed experimentally in AUG in cases

of ELM mitigation [18], and was successfully reproduced by theory based on a local

ballooning analysis [17]. In those cases the 3D ballooning mode was localised around

specific field lines, that coincided with locations where the plasma response crosses zero,

i.e. ξN ∼ 0. A numerical investigation in MAST using MPs, revealed similar behaviour

for the 3D local ballooning mode [16]. It was shown that for those field lines, changes in

local torsion lead to further destabilisation. The perturbative and variational methods

for experimentally relevant BN/B0 provided similar results for the localisation of the

mode for the circular cbm18 and D-shaped dbm9 cases. Although, the 3D mode seemed

to be shifted between the region of ξN ∼ 0 and ξN ∼ ξmin. This could indicate the

contribution of the global and kink effects in the mode structure. However, due to

the complex interplay of local shear/torsion, curvature and pressure gradient, a more

rigorous examination is needed with respect to the non-axisymmetric energy terms in

order to understand the localisation of the 3D mode. In our current formulation, it

is not clear whether the different terms of the non-axisymmetric potential energy are

positive (stabilising) or negative (destabilising). In general, further destabilisation is

observed in all cases examined. Future work will focus on further understanding the

non-axisymmetric structure and field-line localisation of the 3D global mode.
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