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An approximation is developed that lends itself to

accurate description of the physics of fluid motions

and motional induction on short time scales (e.g.

decades), appropriate for planetary cores and in the

geophysically relevant limit of very rapid rotation.

Adopting a representation of the flow to be columnar

(horizontal motions are invariant along the rotation

axis), our characterisation of the equations leads

to the approximation we call plesio-geostrophy,

which arises from dedicated forms of integration

along the rotation axis of the equations of motion

and of motional induction. Neglecting magnetic

diffusion, our self-consistent equations collapse all

3-D quantities into 2-D scalars in an exact manner.

For the isothermal magnetic case, a series of fifteen

partial differential equations is developed that fully

characterises the evolution of the system. In the case of

no forcing and absent viscous damping, we solve for

the normal modes of the system, called inertial modes.

A comparison with a subset of the known 3-D modes

that are of the least complexity along the rotation axis

shows that the approximation accurately captures the

eigenfunctions and associated eigenfrequencies.

1. Introduction

Convection in the Earth’s core is believed to be

responsible for the generation of the planet’s magnetic

field. Unravelling the details of this process has been

thwarted by the extremity of the dynamical environment:

the combination of rapid rotation with low viscosity

leads to a parameter regime that is impossible to

simulate numerically, and, as such, demands that suitable

approximations be made in order for realistic calculations

to be carried out.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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The purpose of this paper is to present a new theoretical basis for representing the short-

timescale dynamics of the core that takes into account at zeroth order the overwhelming effect

of the rapid rotation of the planet. In gearing our theory towards short timescales, we neglect

the effects of finite electrical conductivity and adopt an ideal theory of the secular variation, as

championed by [1].

We build on the foundations laid down by Hough [2], Taylor [3] and Proudman [4] who

showed, both theoretically and experimentally, the tendency for slow inviscid motions of a

rapidly-rotating fluid to be invariant along the rotation axis. The physics of this approximation,

which has been central to much development in oceanography and meteorology, is admirably

summarised in [5,6]. This tendency for two-dimensionality is the starting point of a theoretical

treatment that allows us to collapse the three-dimensional motions into compact forms such that

they can be represented by scalars in two-dimensions (2-D), some of which arise from vertical

integrations along the rotation axis. Although the ansatz of columnar flow may appear to be

strong, a series of comparisons have proven its applicability and accuracy over the last years [7–9].

Theories that take into account the tendency for two-dimensionality have their beginnings in [10],

and have proven their utility in many areas of oceanography.

Unlike in non-conducting fluids, the presence of electrical currents and magnetic fields B in the

Earth’s core give rise to Lorentz forces that play a potentially important role in the force balance

represented by the Navier-Stokes equation. Additionally, a vital difference between planetary

cores and Earth’s oceans is the depth of the fluid: existing shallow water theories that have

proved so effective in the oceanic realm are inapplicable to the dynamics of the deep Earth. It

is these features that necessitate the development of a theory that can self-consistently represent

the dynamics and inductive effects in a deep conducting fluid, which we term plesio-geostrophy,

hereinafter PG.

As adumbrated by [11], "Nearly all theoretical work in geophysical fluid dynamics is based

on approximate forms of the equations of motion, but the best ground-rules for deriving such

approximate forms are not clear". We agree with this sentiment, and our work in developing a new

form of the PG equations is based on an axial integration of the equations of motion that collapses

all quantities of interest into 2-D. We also perform axial integration of the induction equation,

and find a system of equations that is closed. In cylindrical coordinates (s, φ, z) the magnetic

forces are represented in terms of certain "moments", an example of which is B2
φ, the vertically

integrated squared azimuthal magnetic field component, cross-moments such as BφBs, together

with specific values of B evaluated on the equatorial plane. In total thirteen interior magnetic

quantities are required to characterise the system, along with a stream-function for the flow and a

representation of the magnetic field at the core-mantle boundary that is “stirred” by the velocity

field and which serves as a link between the fluid motions and the behaviour of the magnetic

field in the vacuum exterior. Two further scalar fields represent the effects of buoyancy through

the temperature T . All of these fields have their own evolution equation, and are self-consistent,

requiring no other knowledge.

Our work is heavily influenced by the innovative work instigated by Canet and collaborators

[12] and summarised in §8.09.2 of [13] (though see the discussion in [14, p1775]). Central to the

methodology we implement is the idea that the Coriolis force provides a strong rigidity to fluid

motions in the axial direction [10]. The central premise is a representation of horizontal fluid

motions that are independent of the z coordinate, complemented by a vertical flow which, in the

presence of boundaries that deviate only slightly from horizontal, is weak. Such a model was

described in an oceanographic context by [15] and in a geomagnetic context by [16]. Despite the

strict inapplicability of the model in the presence of steep slopes, evidence shows [17] that such

an approximation works remarkably well.

We have so-far deferred from attaching specific names to theories, to avoid confusion. We

find, for example, the term “quasi-geostrophic” may be interpreted differently by different

practitioners, and for that reason we avoid its use. In the asymptotic theory of planar convection

it represents a specific theory [18], whereas conversely §5.3 of [6] attaches the moniker to
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a shallow-water oceanographic setting. The geomagnetic context tends to attach the name

to a representation of the fluid flow, but even this representation is not unique, existing in

both divergenceless and non-divergenceless forms. In our work we follow the incompressible

representation first introduced by Schaeffer & Cardin [16], and will often refer to it as the

columnar representation.

Despite its novelty, the work of [12] has seen little use. An application of the theory that is

specialised to magnetic fields that are invariant along the rotation axis and which vanish at the

core-mantle boundary has been used to good effect by [19]. The original general equations are

approximate in the sense that certain boundary terms must be neglected, and a study of this

system of equations by [20] highlighted the danger of neglecting these terms. The present work

is exact in the sense of having no terms that cannot be evaluated self-consistently, and allows for

general magnetic fields on the core surface.

A crucial facet of theory for the present purposes was the discovery by [21,22] that the

columnar representation remains a good approximation even in the presence of strong magnetic

fields of amplitude B, provided that the Lehnert number (Le) remains small. Denoting the Alfvén

speed by VA =B/√µ0ρ where µ0 is the permeability of free space and ρ is the density, the Lehnert

number is

Le=
VA
Ωl

, (1.1)

where l is a length scale and Ω is the rotation rate. Note that the Lehnert number is equivalent to

a conventional Rossby number based on an Alfvén speed rather than a fluid velocity. Jault [21]

found that when Le< 10−2 the columnar assumption remains an accurate representation of fluid

behaviour on short time scales. In the interior of the Earth’s core r≤ ro we believe B ∼ 3mT

and, taking l= ro ∼3000km , the Lehnert number is O(10−4). The observable secular variation

at the core surface might be resolvable to spherical harmonic degree 20, for which the Lehnert

number is still comfortably in the columnar dynamics range. However, the theory we present is a

diffusionless theory, and therefore can only apply on time scales for which magnetic diffusion can

be neglected. The fundamental decay time for a length scale of the size of the core is approximately

100 000 years, and so at a length scale of 1
20ro, the decay time is roughly 250 years, placing a limit

on the validity of the columnar assumption.

One of the ultimate aims of the present development is to put in place a theoretical framework

that can be used specifically for the purposes of geomagnetic data assimilation. The short time

scale dynamics of the core, as exhibited through the secular variation (SV) of the magnetic

field, offers a way of deducing key properties of the internal structure of the Earth’s fluid

core. Ingredients that can plausibly be detected in the core include interior field strengths and

geometries, and possibly features of the buoyancy field that drives the flow. The lofty goal of

deducing these properties can most plausibly be pursued using data assimilation, that is by

using observed changes in the geomagnetic field, as recorded at the Earth’s surface and above by

observatories, surveys and satellites, together with a model of the interior dynamics of the core;

such a model of the dynamics in meteorology is traditionally called a dynamical core (where

“core” has a sense of “heart” in this context). Initial studies using both sequential [23–26] and

variational [27,28] formulations have given reason for optimism, though the attendant proviso

concerns the appropriateness of the dynamical regime that is represented by the “dynamical core”

of such schemes.

A notable implementation of a data assimilation scheme in a very specific context has already

taken place through the work of [29], who detected the SV signal of a class of waves in the core

called torsional oscillations. These oscillations, whose signature lies in the period range around 5

years, are the only class of fluid motions for which a calculable prognostic dynamical evolution

equation exists. Because the motions are purely axisymmetric, their evolution equation (in the

absence of viscosity) is known [30]. The motions experience a restoring force due to the stretching

of magnetic field lines, which act as elastic strings. The analysis of such waves was able to deliver

a measurement of the interior field strength in the Earth’s core in terms of a cylindrically averaged

quantity, namely the squared s-component of the magnetic field Bs. To be specific, the quantity
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recovered was the equatorially-symmetric average <B2
s > /(4πH) where

< · > =

∫H
−H

∫2π
0

· dφ dz (1.2)

in a cylindrical coordinate system (s, φ, z) with origin at the center of the Earth and s being the

distance from the rotation axis. The height of the cylinder over which the average takes place

is H =
√

r2o − s2 with ro the radius of the core-mantle boundary. Gillet and co-workers [29,31]

deduced that this moment constrained the interior magnetic field to minimum values of ∼ 2− 3

mT, the first determination of an interior field strength, and of interest for dynamo theories in that

it constraints the interior field to be at least ten times the surface value. It is the ultimate goal of

the geomagnetic community to complement such estimates with other estimates that are derived

from non-axisymmetric components of the field.

Although the complexity of the system we derive is daunting, we suspect that the data

assimilation problem may be reasonably well-constrained. The overall goal for these equations

will be to use them over several decades, such as the post-1980 satellite era of geomagnetism

during which changes in the Earth’s magnetic field are tightly constrained through vector

measurements in space. We note that the present era of geomagnetism is particularly well served

through the presence of three ESA Swarm satellites in low Earth orbit, measuring the magnetic

field to unprecedented accuracy [32]. The prospect of the mission lasting into the late 2020s is

particularly welcome, and will be valuable for the types of data assimilation activities envisaged

here.

The paper is structured as follows. In §2 we present a new version of the z-integrated equations

of fluid motion in the presence of strong Lorentz forces. In §3 we use the theory to solve the normal

mode problem for the class of inertial waves with the least complexity along the z axis, and

compare the solutions to existing theories. The magnetic effects and their self-consistent evolution

equations are presented in §4. §5 summarises the model. Details on the implementation of non-

linear terms and viscous terms are presented in the Appendices, along with a short discussion of

possible avenues through which magnetic diffusion can be re-introduced into the problem.

2. The fundamental axially-integrated equations

We work in the whole sphere of radius ro, denoted V . The motivation for this originates with

the canonical nature of the whole sphere problem, and because we are particularly interested in

applications to both the viscous and the inviscid scenarios. In the latter case there is an absence

of definitive interior boundary conditions that must apply on the so-called tangent cylinder in

the case of a spherical shell, defined as the cylinder coaxial with the rotation axis that divides

the core into three regions: the possibility of discontinuities on the tangent cylinder is an open

question. Despite the interest in the case of no viscosity, we develop the viscous terms that can

be used in the application of the equations to the case of thermal convection [9]. When an inner

core is present, the projection of the tangent cylinder onto the boundary of the core covers an

area of a few percent of the core surface at each pole, and we believe that our approximation is

probably quite appropriate; however, future applications may well be able to take the inner core

into account.

The sphere is surrounded by an electrically-insulating exterior, V̂ , and magnetic diffusion is

neglected at the outset. We shall return to the question of magnetic diffusion in the Appendix.

The boundary between V and V̂ is ∂V on which

[B] = 0, (2.1)

where [] signifies the jump across ∂V . We use cylindrical coordinates (s, φ, z) with origin at the

center of the unit sphere V and vertical unit vector ẑ parallel to the rotation axis.

Before deriving our version of the z-integrated equations we note that there are at least three

options available in order to introduce the columnar ansatz. The common method is to take the

z-component of the vorticity equation before vertical integration [12,16]. A second idea has been
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implemented in [19], who use a projection method whereby the equations of motion are projected

onto the columnar representation. This methodology shows a slight advantage over the vertical

vorticity equation in recovering the slow 3-D inertial modes in a sphere [19,33], probably because

the projection involves all components of the flow whereas the vertical vorticity method rests on

only the horizontal components. Here we suggest the use of a third approach: vertical integration

before taking the vertical vorticity. This approach allows for full control of the surface terms

arising from the integration of the Lorentz force in the momentum equation.

We begin with some notation. Any function φ(z)∈ [−H,H] can be split into symmetric (even)

and anti-symmetric (odd) parts:

φ= φs + φa, (2.2)

where

φs(z) = φs(−z) ; φa(z) =−φa(−z).

Then the even part contributes to the symmetric integral

φ=

∫H
−H

φ dz =

∫H
−H

φs dz (2.3)

whereas its odd part affects only the antisymmetric integral

φ̃=

∫H
−H

sgn(z)φ dz =

∫H
0

φa dz −
∫0
−H

φa dz = 2

∫H
0

φa dz. (2.4)

We consider that the sphere is filled with a Boussinesq, electrically conducting fluid with

constant values of thermal expansion coefficient α, kinematic viscosity ν, magnetic diffusivity

η, thermal diffusivity κ and reference density ρ0. We consider a gravitational field g =−γr,

where γ is a positive constant, and a reference state characterized by a conducting temperature

profile of the form ∇Ts =−χr. We choose units of Ω−1 for time, sphere radius ro for length,

ρ0roΩ
2 for pressure, roΩ

√
ρ0µ0 for magnetic fields and T = χr2oν/κ for temperature. Then the

non-dimensional governing equations are

∂u

∂t
+ (u · ∇)u+ 2ẑ× u=−∇p+L+

RaE2

Pr
Tr+ E∇2

u, (2.5)

∂B

∂t
=∇× (u×B) +

E

Pm
∇2

B, (2.6)

∂T

∂t
+ u · ∇T =

1

Pr
u · r+ E

Pr
∇2T, (2.7)

∇ · u=∇ ·B= 0, (2.8)

where L= (∇× B)× B is the non-dimensional Lorentz force, Ra= γαT r4o/(νκ) is the traditional

Rayleigh number, E = ν/(r2oΩ) is the Ekman number, Pr= ν/κ is the Prandtl number and Pm=

ν/η is the magnetic Prandtl number.

An alternative non-dimensionalisation that is common in columnar-flow studies is obtained

introducing a characteristic magnetic field intensity B0 and measuring velocities in units of

the Alfvén velocity Va =B0/
√
µ0ρ. This non-dimensionalisation is appropriate, for example,

to study hydromagnetic wave propagation in the presence of an externally imposed magnetic

field [12,14,19,34–37]. It is however inconvenient if the governing equations are to be tested in

non-magnetic contexts to reproduce results from purely thermal columnar convection [38] and

inertial wave propagation [33] studies. Equations (2.5)-(2.8) are of more general character, as non-

magnetic cases can be considered by simply ignoring the Lorentz term L, without affecting the

dimensional temporal units. Under this approximation the system of equations considered in [39]

are recovered. The choice of magnetic field intensity units (which is commonplace in dynamo

studies [16,40]) is a consequence of our desire to keep the derivation presented below of general

nature, without making a-priori assumptions on the intensity of the magnetic field inside the core,

and without assuming the presence of an externally imposed magnetic field. It is trivial, however,
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to specialise our calculations for this latter case as will be done in future studies focusing on

hydromagnetic normal-modes calculations.

In the derivation below we write the Lorentz and buoyancy forces on the right hand side of

(2.5) as

f =L+
RaE2

Pr
T r. (2.9)

At this point we introduce the most important constraint on the class of flows that we permit,

namely the columnar flows of [16]. The columnar approximation is invoked by assuming

u(s, φ, z) =
1

H
∇× (Ψ ẑ)− sz

H2
usẑ=

1

sH

∂Ψ

∂φ
ŝ− 1

H

∂Ψ

∂s
φ̂− z

H3

∂Ψ

∂φ
ẑ, (2.10)

where Ψ(s, φ) is a pseudo stream-function and H =
√
1− s2 [16]. We emphasise that (2.10) is

an approximation; in the absence of any rigorous asymptotic derivation of this representation,

only comparisons with 3-D calculations can serve to convince the reader of the reasonableness of

this ansatz. A comparison between 3-D convection calculations and calculations employing (2.10)

was carried out by [9]. At an Ekman number E = 10−8, Rayleigh number Ra= 2× 1010 and

Prandtl number Pr= 10−2, it was found that 99.8% of the kinetic energy of the 3-D calculation

was contained in columnar modes of the form of (2.10). Very few comparisons of this type have

been carried out, but we find this result to be an important cornerstone in building confidence in

the veracity of (2.10). We refer the reader also to [17].

From the z-component of (2.10) we anticipate, and indeed verify (see §3 and [33]), that Ψ

will be H3f(s) (with f regular) in order that u remain regular as s→ 1. The above formulation

automatically satisfies the incompressibility condition ∇ · u= 0 and, together with the condition

Ψ |s=1 = 0, (2.11)

non-penetration at the spherical boundary

u · r̂|r=1 = 0, (2.12)

where r̂ is the normal to the spherical boundary.

We turn our attention to the Navier-Stokes equation. In our development we temporarily drop

the nonlinear advection terms as these pose no conceptual difficulties and are treated in Appendix

A. We begin by considering the components perpendicular to the rotation axis (denoted by

subscript e for “equatorial”) and which we integrate over z from (−H,H) to extract the symmetric

component. We make extensive use of Leibniz’s rule:

∫b(s)
a(s)

∂

∂s
ζ(s, z) dz =

∂

∂s

∫b(s)
a(s)

ζ(s, z) dz − ζ(s, b(s))
∂b

∂s
+ ζ(s, a(s))

∂a

∂s
. (2.13)

Since the columnar ansatz has its equatorial component ue =H−1∇× (Ψ ẑ) independent of z we

find

2H∂tue + 2ẑ× (2Hue) =−∇eΠ +
dH

ds
(p(H) + p(−H)) ŝ+ fe + E(∇2u)e, (2.14)

where Π is now a 2-D pressure field, derived from the vertical integral of p, and p(±H)≡ p(z =

±H). Note the presence of the original pressure, a result of the use of Leibniz’ theorem. Our

notation has

dH

ds
=− s

H
(2.15)

as the decrease in northern hemisphere boundary height with radius; the southern hemisphere

has an oppositely-signed derivative.
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To remove the absolute pressure from (2.14) we need to consider the vertical component of

(2.5). Taking the antisymmetric integral over z gives

∂tũz =−∇̃zp+ f̃z + E ˜(∇2u)z . (2.16)

We use the form of the vertical velocity to find the required pressure:

− s̃z

H2
∂tus =− (p(H) + p(−H)) + 2p(0) + f̃z + E ˜(∇2u)z (2.17)

or namely

− s∂tus =− (p(H) + p(−H)) + 2p(0) + f̃z + E(̃∇2uz), (2.18)

where p(0)≡ p(z = 0) and the form of the viscous friction will be derived in Appendix B.

Finally we use the azimuthal component of (2.5) on the equator:

2sus + ∂t(suφ) =−∂φp(0) + sfφ(0) + sE(∇2
u)φ(0). (2.19)

We now look at the vertical vorticity equation, obtained as the vertical component of the curl

of (2.14):

− 2∇2
e∂tΨ =−1

s

∂

∂φ

[
dH

ds

(
s∂t(us) + f̃z + E(̃∇2

euz) + 2p(0)

)]
+ ẑ · ∇ × fe, (2.20)

where ∇2
e is the component of the Laplacian perpendicular to the rotation axis; we note that the

contribution from the Coriolis force in (2.14) vanishes identically. We made use of (2.18) to treat

the term (p(H) + p(−H)). The term ∂φp(0) can be treated via (2.19). This then leads to

−2∇2
e∂tΨ =− 1

s

∂

∂φ

[
dH

ds

(
s∂t(us) + f̃z + E(̃∇2uz)

)]

+
∂H

∂s

(
4us + 2∂tuφ − 2fφ(0)− 2E(∇2

u)φ(0)
)
+ ẑ · ∇ × [fe + E(∇2u)e].

(2.21)

Rearranging, we have the final form

− 2∇2
e∂tΨ =

∂H

∂s

[
4us + 2∂tuφ − 1

s

∂

∂φ
s∂t(us)

]
+ F, (2.22)

where

F =
dH

ds

[
−2fφ(0)−

1

s

∂

∂φ
f̃z − 1

s

∂

∂φ
E(̃∇2uz)− 2E(∇2

u)φ(0)

]

+ ẑ · ∇ × [fe + E(∇2u)e]. (2.23)

This completes the derivation of the velocity part of the PG equations.

3. Inertial modes

In the non-magnetic, isothermal, inviscid case L=E =Ra= 0 we consider the infinitesimal

disturbances that can be supported as normal modes. To do so, we write the contributions of

the velocity in terms of Ψ . Also, to remain entirely general, so that the formulae can be applied to

any axisymmetric shape of container, we define

β =
1

H

dH

ds
. (3.1)

We assume that all azimuthal variations can be described by Ψ ∼ eimφ so that, in terms of Ψ , the

differential equation is

− 2
1

s

∂

∂s

[
s
∂

∂s
∂tΨ

]
+

2m2

s2
∂tΨ − β

m2

s
∂tΨ + 2β

∂

∂s
∂tΨ =

4

s
β

∂

∂φ
Ψ + F. (3.2)
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We put the equation into Sturm-Liouville self-adjoint form so that the orthogonality of the

eigenfunctions in the case F = 0 can be determined [33] using an integrating factor exp
∫
−βds, to

find
[
∂

∂s

(
s

H

∂

∂s

)
+

m2

H

(
β

2
− 1

s

)]
∂tΨ =− 2

H
β

∂

∂φ
Ψ − sF

2H
. (3.3)

For the case of no forcing/dissipation (F = 0) and a spherical domain (so that β =−s/H2),

under the ansatz Ψ ∼ eiωt we have

∂

∂s

[
s

H

∂Ψ

∂s

]
− m2

sH
Ψ − m2s

2H3
Ψ =

2s

H3
λΨ, (3.4)

where λ=m/ω. Using the results of [33], we can see that this equation has eigenfunctions Ψ =

smH3J
(3/2,m)
n−1 (2s2 − 1), where J

(α,β)
n is a Jacobi polynomial, with associated eigenfrequencies

ω=− m

n(2n+ 2m+ 1) +m/2 +m2/4
. (3.5)

A plot of these eigenfunctions, fortuitously coincident with a previous theoretical formulation,

along with a comparison to true 3-D modes, can be found in Figures 3 and 4 of [33].

A completely different test-function method was developed by [19], which was used to

numerically calculate the frequencies of inertial eigenmodes under the columnar ansatz. These

eigenmodes were shown to have analytic forms and associated eigenfrequencies by [33], the latter

being of the form

ω=− m

n(2n+ 2m+ 1) +m/2 +m2/6
, (3.6)

which one can see is very close in form to that of (3.5). The generality of the present approach

will allow magnetohydromagnetic modes supported by a general background magnetic field to

be calculated in the future.

The 3-D modes inertial mode frequencies are known from the work of [41–44]. The subset of

modes with the longest periods are known to have frequencies

ω3D =− 2

m+ 2

(√
m(m+ 2)

n(2m+ 2n+ 1)
+ 1− 1

)
, (3.7)

where n is the radial complexity and m is the azimuthal wavenumber. Figure 1 compares the

periods T = 2π/ω from (3.5) with the exact periods (3.7) for the gravest non-axisymmetric inertial

modes from [45]. The agreement is excellent for large n with some significant deviation for the

simplest n= 1 mode as m increases, a behaviour seen previously in [19,33,36].

4. Evolution equations for the magnetic field

We now turn to the more complex problem of the evolution equations in the presence of a

magnetic field, but absent buoyancy force. Evolution equations for Lφ(0),Le and L̃z lead to a

closed system.

(a) Vertically integrated quantities

To derive the form of the magnetic terms in the Navier-Stokes equation we need the form of the

Lorentz force, which is most easily stated as the divergence of the Maxwell stress tensor:
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Figure 1. The periods of the PG inertial modes from [45] (solid) and from equation (3.5) (dashed) as a function of the

azimuthal wave number m, for different modes n.

L=∇ ·M=

(
1

s

∂

∂s
(s Mss) +

1

s

∂

∂φ
Msφ − Mφφ

s
+

∂

∂z
Msz

)
ŝ

+

(
1

s

∂

∂s
(s Msφ) +

1

s

∂

∂φ
Mφφ +

Msφ

s
+

∂

∂z
Mφz

)
φ̂

+

(
1

s

∂

∂s
(s Msz) +

1

s

∂

∂φ
Mφz +

∂

∂z
Mzz

)
ẑ,

(4.1)

where Mij =Mji =BiBj − 1
2B

2δij . We consider Le, and integrate from −H to H , making use

of (2.13):

Le =
(
1

s

∂

∂s
(sMss) +

1

s

∂

∂φ
Msφ +

Mφφ

s
− dH

ds
(Mss(H) +Mss(−H)) +Msz(H)−Msz(−H)

)
ŝ

+

(
1

s

∂

∂s
(sMsφ) +

1

s

∂

∂φ
Mφφ − Msφ

s
− dH

ds
(Msφ(H) +Msφ(−H)) +Mφz(H)−Mφz(−H)

)
φ̂.

(4.2)

We shall need to evaluate three quadratic moments of the magnetic field, an example of which is

Mφφ =

∫H
−H

B2
φ dz, (4.3)

which are reminiscent of the quadratic quantities originally presented in [12]. In addition we

need to control the values of the boundary terms, and these will be given by the exterior potential

magnetic field. This matching requires an understanding of the continuity of B across the viscous

boundary layer in the ideal limit, which was provided by [46] and [1] (see also the clear discussion

in [13]). We can thus be confident that all components of B are continuous between mantle and

core. Terms such as

Mss(H) = (Bs(H))2 = (sin θBr + cos θBθ)
2 (4.4)
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can be evaluated in spherical coordinates on ∂V . It is worth returning to (2.22) and noting that

the vertical vorticity of Le, namely ẑ · ∇ ×Le, contains s and φ derivatives of Le. All required

derivatives can be determined since

∂

∂s
= cos θ

∂

∂θ
on ∂V . (4.5)

Turning to Lz we have

L̃z =
1

s

∂

∂s
(sM̃sz) +

1

s

∂

∂φ
M̃φz − dH

ds
(Msz(H)−Msz(−H)) +Mzz(H) +Mzz(−H)− 2Mzz(0)

(4.6)

and thus two further antisymmetric quadratic moments of the magnetic field must be evaluated.

The evolution of the magnetic field in the core can be derived from the induction equation in a

fashion analogous to that used in [14]. Written in cylindrical coordinates, taking into account the

fact that ∂z(us, uφ) = 0, the diffusion free version of these equations reads as follows1:

∂Bs

∂t
=Bs

∂us
∂s

+
Bφ

s

∂us
∂φ

− us
∂Bs

∂s
− uφ

s

∂Bs

∂φ
− uz

∂Bs

∂z
, (4.7)

∂Bφ

∂t
=Bs

(
∂uφ
∂s

− uφ
s

)
+Bφ

(
us
s

+
1

s

∂uφ
∂φ

)
− us

∂Bφ

∂s
− uφ

s

∂Bφ

∂φ
− uz

∂Bφ

∂z
, (4.8)

∂Bz

∂t
=Bs

∂uz
∂s

+
Bφ

s

∂uz
∂φ

+Bz
∂uz
∂z

− us
∂Bz

∂s
− uφ

s

∂Bz

∂φ
− uz

∂Bz

∂z
. (4.9)

Following [12,14] we derive evolution equations for B2
s , B2

φ, BsBφ, B̃sBz , and B̃φBz by

integrating in the vertical the following quantities:

∂B2
s

∂t
= 2Bs

∂Bs

∂t
, (4.10)

∂B2
φ

∂t
= 2Bφ

∂Bφ

∂t
, (4.11)

∂BsBφ

∂t
=Bs

∂Bφ

∂t
+Bφ

∂Bs

∂t
, (4.12)

∂BsBz

∂t
=Bs

∂Bz

∂t
+Bz

∂Bs

∂t
, (4.13)

∂BφBz

∂t
=Bφ

∂Bz

∂t
+Bz

∂Bφ

∂t
. (4.14)

The derivation involves the use of the following result

−
∫b
a
usz

n ∂X

∂s
dz −

∫b
a
uzz

n ∂X

∂z
dz =−us

∂

∂s

∫b
a
znXdz + (n+ 1)

∂uz
∂z

∫b
a
znXdz, (4.15)

valid for X =X(s, φ, z) a generic function of all cylindrical coordinates and when the integration

limits (a, b) are either (−H,H), (−H, 0) or (0, H). (4.15) is thus applicable to all integrals of

interest. To prove this result we apply Leibniz’ integration rule to the first integral on the left-hand

1Formulae for the material derivative in cylindrical coordinates, needed in the derivation can be found in, for example, [47].
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side of (4.15) and integration by parts on the second:

−
∫b
a
usz

n ∂X

∂s
dz −

∫b
a
uzz

n ∂X

∂z
dz

=− us

[
∂

∂s

∫b
a
znXdz − ∂b

∂s
znX

∣∣
z=b

+
∂a

∂s
znX

∣∣
z=a

]
−
[
uzz

nX
]b
z=a

+

∫b
a
X

∂

∂z
(znuz)dz

=− us
∂

∂s

∫b
a
znXdz + (n+ 1)

∂uz
∂z

∫b
a
znXdz

+ us




(
−∂a

∂s
znX

∣∣
z=a

+
1

H

∂H

∂s
zn+1X

∣∣∣
z=a

)

︸ ︷︷ ︸
Sa

+

(
∂b

∂s
znX

∣∣
z=b

− 1

H

∂H

∂s
zn+1X

∣∣∣
z=b

)

︸ ︷︷ ︸
Sb


 .

(4.16)

The surface terms Sa and Sb vanish in the cases of interest since it can be shown that Sa(a=

0), Sa(a=−H), Sb(b= 0) and Sb(b=H) all vanish. The final form of the second integral on the

right-hand side of (4.15) and (4.16) follows from

∂

∂z
(znuz) =− s

H2
us

∂zn+1

∂z
=−(n+ 1)

s

H2
usz

n = (n+ 1)
∂uz
∂z

zn (4.17)

and from the fact that ∂zuz is independent of z.

Evolution equations for B2
s , B2

φ, BsBφ in this formalism are presented in [14] and are derived

by integrating respectively (4.10), (4.11) and (4.12) between z =−H and z =H , substituting ∂tBs

and ∂tBφ with the formulae (4.7) and (4.8) and making use of (4.15) with n= 0, a=−H , b=H

and X =B2
s , X =B2

φ and X =BsBφ. The derivation of ∂tB̃sBz and ∂tB̃φBz proceeds in a similar

fashion. For example:

∂

∂t
B̃sBz =− us

∂

∂s
B̃sBz − uφ

s

∂

∂φ
B̃sBz + B̃sBz

(
2
∂uz
∂z

+
∂us
∂s

)

+ B̃zBφ
1

s

∂us
∂φ

+ B2
s
∂uz
∂s̃

+BsBφ
1

s

∂uz
∂φ̃

,

(4.18)

where we made use of (4.15) with n= 0, a= 0, b=H and X =BsBz . However, this procedure

introduced the last two terms on the right-hand side of (4.18) that involve horizontal derivatives

of uz , linear in z. Therefore (4.18) contains z̃B2
s and z̃BsBφ and, similarly, an evolution equation

for B̃φBz contains z̃B2
φ and z̃BsBφ. To close the system of equations we need evolution equations

for these new terms. They can be derived in much the same way as the previous ones, considering

∂(zB2
s )

∂t
= 2zBs

∂Bs

∂t
, (4.19)

∂(zB2
φ)

∂t
= 2zBφ

∂Bφ

∂t
, (4.20)

∂(zBsBφ)

∂t
= zBs

∂Bφ

∂t
+ zBφ

∂Bs

∂t
. (4.21)

Taking the integrals of these quantities, employing (4.15) with n= 1, a= 0, b=H and X = zB2
s ,

X = zB2
φ, X = zBsBφ we finally obtain a closed system of equations for the magnetic moments:

∂B2
s

∂t
=−H (u · ∇e)

(
B2
s

H

)
+ 2

∂us
∂s

B2
s +

2

s

∂us
∂φ

BsBφ, (4.22)

∂B2
φ

∂t
=− 1

H
(u · ∇e)

(
HB2

φ

)
+ 2sBsBφ

∂

∂s

(uφ
s

)
− 2B2

φ

∂us
∂s

, (4.23)
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∂BsBφ

∂t
=− (u · ∇e)BsBφ + sB2

s
∂

∂s

(uφ
s

)
+

B2
φ

s

∂us
∂φ

, (4.24)

∂B̃sBz

∂t
=− (u · ∇e) B̃sBz − ∂

∂s

(sus
H2

)
(̃zB2

s )−
1

H2

∂us
∂φ

˜(zBsBφ)

+

(
2
∂uz
∂z

+
∂us
∂s

)
B̃sBz +

1

s

∂us
∂φ

B̃φBz ,

(4.25)

∂B̃φBz

∂t
=− (u · ∇e) B̃φBz − ∂

∂s

(sus
H2

)
˜(zBsBφ)−

1

H2

∂us
∂φ

(̃zB2
φ)

+

(
∂uz
∂z

− ∂us
∂s

)
B̃φBz + s

∂

∂s

(uφ
s

)
B̃sBz ,

(4.26)

∂(̃zB2
s )

∂t
=− (u · ∇e) (̃zB2

s ) + 2

(
∂us
∂s

+
∂uz
∂z

)
(̃zB2

s ) + 2
1

s

∂us
∂φ

˜(zBsBφ), (4.27)

∂(̃zB2
φ)

∂t
=− (u · ∇e) (̃zB2

φ) + 2s
∂

∂s

(uφ
s

)
˜(zBsBφ)− 2

∂us
∂s

(̃zB2
φ), (4.28)

∂ ˜(zBsBφ)

∂t
=− (u · ∇e) ˜(zBsBφ) + s(̃zB2

s )
∂

∂s

(uφ
s

)
+

(̃zB2
φ)

s

∂us
∂φ

+ ˜(zBsBφ)
∂uz
∂z

. (4.29)

(b) Evolution equations in the equatorial plane

To complete the forcing of the Navier-Stokes equation, we need to be able to evaluate Lφ(0) and

Mzz(0) (which arises in (4.6)). We have

Lφ =
1

s
∂s(s Msφ) +

1

s
∂φMφφ +

Msφ

s
+ ∂zMφz (4.30)

and therefore evolution equations are required for Bs|z=0, Bφ|z=0, Bz |z=0 and ∂zBφ|z=0. For

brevity, we indicate these (and other) quantities simply by Bs(0), Bφ(0), Bz(0)and ∂zBφ(0). The

induction equations evaluated on the equatorial plane are greatly simplified since uz(0) = 0. In

compact notation, this allows us to write the following:

∂B(0)

∂t
= (Be(0) · ∇e)ue − (ue · ∇e)B(0) + ezBz(0)

∂uz
∂z

, (4.31)

∂

∂t

∂Be(0)

∂z
=

(
∂Be

∂z
(0) · ∇e

)
ue − (ue · ∇e)

∂Be

∂z
(0)− ∂uz

∂z

∂Be

∂z
(0). (4.32)

Note that the horizontal gradient operators need to be applied to the unit vectors as well as

to the component of the vectors they are applied to. The above system is closed in Bs(0), Bφ(0),

Bz(0), ∂zBφ(0) and ∂zBs(0), the latter being required by the evolution equation of ∂zBφ(0).

(c) Boundary values and secular variation

Equations (4.2) and (4.6) involve quantities evaluated in cylindrical coordinates at z =±H ; these

are boundary values and we alluded to their treatment in (4.4). On the surface of the sphere ∂V

the induction equation reads
∂Br

∂t
=−∇h · (uhBr) (4.33)

and this equation governs the stirring of the radial field by the flow scalar Ψ . The subscript h

indicates an horizontal component, tangential to ∂V . Since the radial field determines the exterior
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potential, all components of B are known at the surface of the sphere, and [B] = 0 means all

components are known inside ∂V . The scalar quantity Br is the only quantity that is expressed in

spherical coordinates [θ, φ]∈ [0, π]× [0, 2π]. The link between Ψ , which is expressed in cylindrical

coordinates, and Br has been studied by [48], and exact band-limited relations can be found there.

(d) Summary of the evolution equations

A closed system of equations involves the eight moment equations (4.22)–(4.29), the five equations

in the equatorial plane (4.31) –(4.32) , and the radial induction equation (4.33) on ∂V , augmented

by the evolution equation for Ψ . These 15 equations would be augmented by two further

equations for the odd and even integrals of the buoyancy field if thermal effects were to be

considered.

(e) The energy equations

The total magnetic energy of the system is

EM =
1

2

∫ ∫ (
B2
s +B2

φ +B2
z

)
s ds dφ, (4.34)

and we have expressions for the first two terms. Although B2
z does not enter the dynamical

equations, we can keep track of its evolution from the initial conditions as follows.

∂B2
z

∂t
=− (u · ∇e) (B2

z ) + 3B2
z
∂uz
∂z

+ 2zBsBz
∂

∂s

∂uz
∂z

+
2

s
zBφBz

∂

∂φ

∂uz
∂z

, (4.35)

which requires:

∂zBsBz

∂t
=− (u · ∇e) zBsBz +

∂

∂s

∂uz
∂z

(z2B2
s ) +

1

s

∂

∂φ

∂uz
∂z

(z2BsBφ)

+

(
3
∂uz
∂z

+
∂us
∂s

)
zBsBz +

1

s

∂us
∂φ

zBφBz ,

(4.36)

∂zBφBz

∂t
=− (u · ∇e) zBφBz +

∂

∂s

∂uz
∂z

(z2BsBφ) +
1

s

∂

∂φ

∂uz
∂z

(z2B2
φ)

+

(
2
∂uz
∂z

− ∂us
∂s

)
zBφBz + s

∂

∂s

(uφ
s

)
zBsBz ,

(4.37)

∂

∂t
(z2B2

s ) =− (u · ∇e) (z2B2
s ) +

(
2
∂us
∂s

+ 3
∂uz
∂z

)
(z2B2

s ) + 2
1

s

∂us
∂φ

(z2BsBφ), (4.38)

∂

∂t
(z2B2

φ) =− (u · ∇e) (z2B2
φ) +

∂uz
∂z

(z2B2
φ) + 2s

∂

∂s

(uφ
s

)
(z2BsBφ)− 2

∂us
∂s

(z2B2
φ), (4.39)

∂(z2BsBφ)

∂t
=− (u · ∇e) (z2BsBφ) + s(z2B2

s )
∂

∂s

(uφ
s

)
+

(z2B2
φ)

s

∂us
∂φ

+ 2(z2BsBφ)
∂uz
∂z

.

(4.40)

We emphasise that these equations are not relevant for determining the dynamics of the

system, but only for calculating prognostic quantities that can give insight into the energy

evolution of the system.

(f) Geometric equality constraints

The geometry of the problem leads to duplication of the values at s= 1 on the equatorial disc and

θ= π/2 on the unit sphere (the equator). In other words, the same points are represented twice,
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once by the spherical coordinate system on the boundary and once by the cylindrical coordinate

system in the equatorial plane. We write down for completeness the equalities that must apply.

Let B=−∇Φ in the exterior where Φ(r, θ, φ) is the magnetic potential, determined uniquely

from Br on ∂V as a solution to Laplace’s equation with Neumann boundary conditions.

At s= 1 we have

Bs(0)|s=1 = −∂rΦ(1, π/2, φ), (4.41)

Bφ(0)|s=1 = −1

s
∂φΦ(1, π/2, φ), (4.42)

Bz(0)|s=1 = +
1

s
∂θΦ(1, π/2, φ), (4.43)

∂zBs(0)|s=1 = +
1

s
∂θ∂rΦ(1, π/2, φ), (4.44)

∂zBφ(0)|s=1 = +
1

s2
∂θ∂φΦ(1, π/2, φ), (4.45)

where the shorthand is

∂rΦ(1, π/2, φ) = lim
r→1

∂rΦ(r, π/2, φ). (4.46)

Such equality constraints can be implemented gracefully by using a tailored expansion for the

equatorial quantities.

5. Conclusion

The problem of deriving a suitable dynamical core for geomagnetic data assimilation on

timescales of decades has remained in abeyance as a result of the difficulties attendant to

inexactness of the initial theory. This obstacle is now removed with the theory of plesio-

geostrophy described herein. In the case of unforced infinitesimal inertial waves the comparison

between the PG modes and the true 3D modes is very good. This simple exercise provided the

first validity test for the newly developed PG equations.

For the magnetic case all of the quadratic quantities required for the Lorentz force term in the

equation of motion can be calculated exactly by monitoring the evolution of thirteen separate

partial differential equations. A separate system of six partial differential equations computes the

vertical magnetic energy that is needed to discover the evolution of the full magnetic energy. The

resulting system may seem daunting, but we wish to remark that the mathematical obstacles that

have hindered previous efforts and pointed out in previous work [20], have now been completely

removed and physically acceptable solutions are within reach.

It is our aspiration to apply the equations to the study of thermal convection at very small

Ekman number (cf. [9]), and principally to the problem of geomagnetic data assimilation. The

equations lend themselves to a variational formulation, which has shown some promise on highly

viscous version of the full 3D equations [27,28], and we foresee no obstacles in the derivation of

the adjoint system of equations required for the calculation of derivatives. These developments

will be presented in future publications.
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A. The nonlinear advection terms

The contribution of the nonlinear terms to the evolution equation for Ψ (2.22) can be accounted

for by adding −(u · ∇)u to the forcing term f (2.9). The columnar version of (u · ∇)u is:

(u · ∇)u=

(
us

∂us
∂s

+
uφ
s

∂us
∂φ

−
u2φ
s

)
ŝ

+

(
us

∂uφ
∂s

+
uφ
s

∂uφ
∂φ

+
usuφ
s

)
φ̂

+

(
us

∂uz
∂s

+
uφ
s

∂uz
∂φ

+ uz
∂uz
∂z

)
ẑ,

which can succinctly be decomposed as (u · ∇)u= (ue · ∇)ue + (ue · ∇)uz ẑ+ (uz∂z)uz ẑ. The

following integral terms are needed:

a) From the horizontal momentum equation:

∫H
−H

(ue · ∇)ue dz = 2H(ue · ∇)ue, (A 1)

whereas (uz∂z)ue = 0.

b) From the vertical NS equation, the integral in the upper half of V :

∫H
0
(ue · ∇)uz dz = (ue · ∇)

(
−sus

2

)
, (A 2)

and a similar term in the lower half of V , whereas

∫H
0

(
uz

∂

∂z

)
uz dz =

∂

∂z

(
u2z
2

)
=

s2u2s
2H2

. (A 3)

All of the above terms can all be written in terms of the pseudo stream-function Ψ . The details are

omitted.

B. The viscous terms

Let

A=−∇
(

1

H

)
× Ψ ẑ=−

( s

H3
ŝ

)
× Ψ ẑ=+

s

H3
Ψ φ̂≡Aφ̂. (B 1)

Then we write the columnar velocity as

u=∇×
(
Ψ

H
ẑ

)
+Aφ̂+ uz ẑ, (B 2)

which we call, respectively, u1, u2 and uz ẑ (obviously).

Three terms are needed:

(a) Symmetric integral

The relevant viscous contribution can then be written as

ẑ · ∇ ×∇2
ue =−ẑ · (∇×∇×∇× u).

Then

ẑ · (−∇×∇×∇× u1) =−∇2
e∇2

(
Ψ

H

)
=−∇4

e

(
Ψ

H

)
. (B 3)
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The second contribution is

ẑ · (−∇×∇×∇× u2) = ẑ ·
(
−∇×∇×

[
1

s

∂

∂s
(sA)ẑ

])
=∇2

e

[
1

s

∂

∂s
(sA)

]
ẑ. (B 4)

The third contribution

ẑ · (−∇×∇×∇× uz ẑ) = 0. (B 5)

Finally taking the symmetric integral contributes a factor 2H .

(b) Antisymmetric integral

Only the z−component of ∇̃2u is needed. Neither u1 nor u2 contribute. Then:

∇̃2uz =−H2∇2
e
sus
H2

=−H2∇2
e

1

H3

∂Ψ

∂φ
. (B 6)

(c) Azimuthal equatorial value

The azimuthal equatorial component can be written as:

(∇2
u)φ(0) =−(∇×∇× u1)φ(0)− (∇×∇× u2)φ(0)− (∇×∇× (uz ẑ))φ(0),

where each term can be evaluated as:

− (∇×∇× u1)φ(0) =−
(
∇×∇×∇×

(
Ψ

H
ẑ

))

φ

=− ∂

∂s

[
∇2
(
Ψ

H

)]
=− ∂

∂s

[
∇2

e

(
Ψ

H

)]
,

(B 7)

− (∇×∇× u2)φ(0) =∇2A− A

s2
− 1

s2
∂2A

∂φ2
=

1

s

∂

∂s

[
s
∂A

∂s

]
− A

s2
, (B 8)

− (∇×∇× (uz ẑ))φ(0) =−1

s

∂

∂φ

∂uz
∂z

=
1

sH3

∂2Ψ

∂φ2
. (B 9)

C. Re-introduction of magnetic diffusion

We have introduced an ideal theory of fluid motion valid on time scales of years to decades. The

neglect of diffusion is motivated by the fact that the longest free-decay timescale in the Earth’s

core is τη ∼ 100 000 years. Nevertheless, lengthscales l short compared to the radius of the core

ro decay on time scales of l2/r2oτη and for l/ro ∼ 0.01 diffusion will be important. The theory

described does not allow for an exact treatment of diffusion, however an approximate theory can

be developed that we believe may be useful for capturing the basic physics.

Two length scales present themselves in the velocity field in the PG theory, away from the

equatorial region: the long lengthscale L∼ ro parallel to the rotation axis, and l∼ ro/m (or ro/n)

perpendicular to this axis. As is well known, the magnetic field responds to this velocity field

by arranging itself in similar structures. This motivates the neglect of vertical derivatives, while

retaining horizontal derivatives. Thus in our own work we propose to replace ∇2 by ∇2
e in the

induction equation. With this approximation the evolution equations remain closed.

A shortcoming is an inability to represent the diffusion in the boundary layer that may form

close to the core-mantle boundary. The diffusion in the radial induction equation takes the form

1

r
∇2(rBr) =∇2(sBs + zBz) (C 1)

and the neglect of vertical (radial) derivatives in polar regions seems less sound. Ultimately we

must drop the unknown radial second derivatives in the diffusion term, and retain the other

calculable terms. A similar device was used in [49].
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