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Variable Step-Size Widely Linear Complex-Valued

Affine Projection Algorithm and Performance

Analysis
Long Shi, Student Member, IEEE, Haiquan Zhao, Senior Member, IEEE, Yuriy Zakharov, Senior Member, IEEE

Badong Chen, Senior Member, IEEE and Yaoru Yang

Abstract—In this paper, a variable step-size widely linear
complex-valued affine projection algorithm (VSS-WLCAPA) is
proposed for processing noncircular signals. The variable step-
size (VSS) is derived by minimizing the power of the augmented
noise-free a posteriori error vector, which speeds up the conver-
gence and reduces the steady-state misalignment. By exploiting
the evolution of the covariance matrix of the weight error vector,
we provide insight into the theoretical behavior of the VSS-
WLCAPA algorithm. In the analysis, we take into account the
dependency between the weight error vector and the noise vector,
which is useful for accuracy of the theoretical prediction. To
evaluate the mean step-size, the probability density function of the
magnitude of the error is derived by employing polar coordinate
transformation. Moreover, a special case when the projection or-
der reduces to one is analysed in detail. The presented theoretical
analysis is different from existing methodologies for analyzing
affine projection algorithms due to the use of the Kronecker
product. Simulation results for system identification scenarios
demonstrate the merits of the proposed algorithm and verify the
accuracy of the theoretical analysis. Wind prediction experiments
support the superiority of the proposed VSS-WLCAPA as well.

Index Terms—adaptive filter, a posteriori error, affine projec-
tion, covariance matrix, polar coordinate transformation, prob-
ability density function, variable step-size, widely linear

I. INTRODUCTION

IN the field of adaptive filtering, the least-mean-square

(LMS) algorithm is widely considered as the fundamen-

tal algorithm owing to its simplicity [1], [2]. However, the

conventional LMS algorithm experiences a gradient noise

amplification problem. To overcome this shortcoming, the nor-

malized LMS (NLMS) algorithm was introduced, which uses

the squared Euclidean norm of input vector to normalize the

step-size [3]. In real-world scenarios, e.g., the acoustic echo

cancellation [4], [5], the input signals are highly correlated,

which slows down the convergence of the LMS and NLMS

algorithms [6].

To address the aforementioned problem, the affine projec-

tion algorithm (APA) has been proposed [7], [8]. Compared to
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the NLMS algorithm only relying on the current input vector,

the APA updates the weight vector using current and past input

vectors. To achieve fast convgence as well as low steady-state

misalignment, the variable step-size (VSS) APA (VSS-APA)

was proposed [9], where the VSS is derived by making the

mean-square deviation (MSD) undergo the largest decrease

from current iteration to next iteration. Thereafter, few more

VSS strategies using distinct criterions were developed [10],

[11]. Aimed at coping with other issues, several improved

algorithms have been investigated [9], [12]–[16]. For example,

the APA with evolving order (APA-EO) proposed in [16]

is able to adaptively adjust the projection order to obtain

better performance. Apart from the development of improved

algorithms, the theoretical performance analysis of the APA

family has also been given much attention [17]–[22]. In [17],

the mean-square transient and steady-state performance of the

APA was analyzed by using energy conservation arguments.

For this analysis, the assumption of independence between

the weight error vector and the noise vector was adopted to

simplify the complicated derivation. It was reported in [19]

that the weight error vector does depend on the noise vector.

Taking into account this dependency, Kim et al. presented

an improved mean-square error (MSE) analysis based on

energy conservation arguments [20], which provides more

accurate theoretical prediction of the algorithm performance.

In [21], a novel analysis using the propagation model of

the error covariance was put forward, which considers the

cross-correlation between the weight error vector and the

noise vector. Following the propagation model of the error

covariance, the periodic APA (P-APA) [23] and the distributed

filtered-x APA (DFxAPA) [24] were analyzed in detail.

In many practical applications, e.g., the frequency estima-

tion in power systems [25], beamforming in communications

[26], and wind prediction [27], the signals are complex-valued.

Therefore, the research on the complex-valued adaptive filter-

ing is of great interest. As an expansion of the LMS algorithm

to the complex domain, the complex-valued LMS (CLMS)

algorithm was proposed for circular signals whose second-

order statistics are only described by the covariance matrix,

while it is not applicable to noncircular signals which have

non-zero pseudo-covariance matrice [28], [29]. To exploit

the full information of noncircular signals, the widely linear

CLMS (WL-CLMS) algorithm using the augmented complex-

valued input vector has been proposed, achieving significant

performance gain over the CLMS algorithm [30], [31]. To
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circumvent the tradeoff caused by a fixed step-size in the WL-

CLMS, the shrinkage WL-CLMS (SWL-CLMS) algorithm

with VSS was proposed, which guarantees fast convergence

and low steady-state misalignment [32]. With the widely linear

model, the augmented complex-valued least-mean kurtosis

(ACLMK) algorithm was designed to improve robustness

against a wide range of noises [33]. In [34], Xia et al.

proposed the augmented APA (AAPA), as well as presented

the steady-state MSE analysis, where the dependency between

the weight error vector and the noise vector was ignored for

tractable analysis. However, this dependency can be important,

as argued in [22]. The augmented complex-valued normalized

subband adaptive filter (ACNSAF) algorithm was recently put

forward in [35], which achieves performance improvement for

colored input signals.

In this paper, we propose the VSS widely linear complex-

valued APA (VSS-WLCAPA) algorithm to address the con-

flicting requirement between fast convergence and low steady-

state misalignment. We investigate its performance via the-

oretical analysis, numerical simulations and wind prediction

experiments. Owing to the use of the Kronecker product,

the presented theoretical analysis is different from traditional

methodologies used for analyzing the APA family. The main

contributions of our work are summarized as follows:

1) The VSS is derived by minimizing the power of the

augmented noise-free a posteriori error vector.

2) By considering the dependency between the weight

error vector and the noise vector and applying some

widely used assumptions, we arrive at the recursion

of the covariance matrix of the weight error vector,

which serves to perform the steady-state theoretical MSE

prediction.

3) Since the variances of the real and imaginary parts of the

error signal can be different, the magnitude of the error

signal may not follow the Rayleigh distribution used in

[36]. By employing polar coordinate transformation, we

first derive the probability density function (PDF) of the

magnitude of the error signal, which is then utilized to

calculate the mean step-size.

4) The transient and steady-state performance for the

VSS widely linear complex-valued NLMS (VSS-

WLCNLMS) algorithm has been studied, which is a

special case of the VSS-WLCAPA when the projection

order reduces to one.

Simulations results for system identification scenarios show

that the proposed VSS-WLCAPA outperforms the AAPA and

ACNSAF for correlated input signals. The accuracy of the

theoretical analysis is confirmed by simulation experiments

implemented for white and correlated input signals. In addi-

tion, the wind prediction experiments implemented using the

VSS-WLCAPA show more accurate prediction compared to

using the AAPA.

The rest of this paper is organized as follows. In Section II, a

review of the widely linear model and AAPA is presented, and

then the derivation of the VSS-WLCAPA is given. In Section

III, the theoretical behavior of the VSS-WLCAPA is analyzed

in detail. In Section IV, simulations are carried out to test the

proposed algorithm and verify the theoretical analysis. Finally,

we draw conclusions in Section V.

Notation: Boldface letters denote vectors and matrices.

Superscripts (·)∗, (·)T , (·)H , and (·)−1 are complex conjugate,

transpose, Hermitian transpose, and matrix inverse, respec-

tively. Symbols ⊗, max(·), | · |, and ‖ · ‖2 stand for the

Kronecker product, maximum, absolute operator for a scalar,

and Euclidean norm of a vector, respectively. Operator vec(·)
stacks the matrix into a column. Symbols E(·), Tr(·), det(·),
exp(·) and erf(·) denote the mathematical expectation, trace

of a matrix, determinant of a matrix, exponential and error

functions, respectively. Symbols CM×1 and IM denote M×1
complex vector and identity matrix, respectively.

II. WIDELY LINEAR MODEL, AAPA AND PROPOSED

VSS-WLCAPA

A. Widely Linear Model

For a noncircular signal, its second-order statistics are

described by the non-zero covariance matrix R and pseudo-

covariance matrix P [29]. Considering a noncircular input

vector x ∈ C
M×1, R and P are defined as [29]

R = E
[

xxH
]

, P = E
[

xxT
]

. (1)

In order to exploit full second-order statistical information of

x, a widely linear model containing both x and x∗ is given

by [31]

y = hHx+ gHx∗, (2)

where y is the filter output, h and g are complex-valued

coefficient vectors. Using the augmented complex-valued input

vector u = [xT , xH ]T ∈ C
2M×1, the second-order statistics

R and P are integrated into an augmented input covariance

matrix

Ru = E
[

uuH
]

=

[

R P

P∗ R∗

]

. (3)

In particular, the widely linear model reduces to the con-

ventional linear model when the input signal is circular, i.e.,

P = 0.

B. AAPA

Since the VSS-WLCAPA is developed based on the AAPA,

we briefly introduce the AAPA. Consider the desired signal

d(k) originated from a widely linear model

d(k) = hHo x(k) + gHo x∗(k) + v(k), (4)

where ho ∈ C
M×1 and go ∈ C

M×1 are the unknown weight

vectors, x(k) = [x(k), · · · , x(k−M +1)]T denotes the input

vector, and v(k) is the background noise with variance σ2
v at

time instant k. The update equations of the AAPA are given

by [34]

h(k + 1) = h(k)

+ µX∗(k)
[

XH(k)X(k) +XT (k)X∗(k) + δIP
]−1

e(k),
(5)

g(k + 1) = g(k)

+ µX(k)
[

XH(k)X(k) +XT (k)X∗(k) + δIP
]−1

e(k),
(6)
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where h(k) and g(k) are weight vectors of the adaptive filter,

µ is the step-size, X(k) = [x(k), · · · ,x(k − P + 1)] denotes

the M × P input matrix, P is the projection order, δ is a

small positive constant to avoid numerical instability, d(k) =
[d(k), · · · , d(k − P + 1)]T is the desired vector, and e(k) =
[e(k), · · · , e(k−P+1)]T represents the error vector calculated

by

e(k) = d(k)−XT (k)h(k)−XH(k)g(k). (7)

C. Proposed VSS-WLCAPA

Replacing µ in (5) and (6) with a time-

varying step-size µk and denoting S(k) =
[

XH(k)X(k) +XT (k)X∗(k) + δIP
]−1

, we arrive at

h(k + 1) = h(k) + µkX
∗(k)S(k)e(k), (8)

g(k + 1) = g(k) + µkX(k)S(k)e(k). (9)

By defining the weight error vectors h̃(k) = ho − h(k) and

g̃(k) = go − g(k), (8) and (9) are written as:

h̃(k + 1) =
{

I− µkX
∗(k)S(k)XT (k)

}

h̃(k)

− µkX
∗(k)S(k)XH(k)g̃(k)− µkX

∗(k)S(k)v(k),
(10)

g̃(k + 1) =
{

I− µkX(k)S(k)XH(k)
}

g̃(k)

− µkX(k)S(k)XT (k)h̃(k)− µkX(k)S(k)v(k).
(11)

Combining (10) and (11) results in

[

h̃(k + 1)
g̃(k + 1)

]

=

[

I− µkX
∗(k)S(k)XT (k)

−µkX∗(k)S(k)XH(k)

− µkX(k)S(k)XT (k)
I− µkX(k)S(k)XH(k)

] [

h̃(k)
g̃(k)

]

− µk

[

X∗(k)S(k)
X(k)S(k)

]

v(k),

(12)

where v(k) = [v(k), · · · , v(k−P +1)]. Pre-multiplying (12)

by the augmented input matrix U(k) =
[

XH(k),XT (k)
]T

and ignoring the regularization term δIP in S(k), we obtain

ep(k) = (1− µk)ea(k)− µkv(k), (13)

where ep(k) = [ep(k), · · · , ep(k − P + 1)]T is the noise-free

a posteriori error vector given by

ep(k) = XT (k)h̃(k + 1) +XH(k)g̃(k + 1), (14)

and ea(k) = [ea(k), · · · , ea(k − P + 1)]T is the noise-free a

priori error vector given by

ea(k) = XT (k)h̃(k) +XH(k)g̃(k). (15)

The Euclidean norm of (13) is then

‖ep(k)‖2 = (1− µk)
2‖ea(k)‖2 − µk(1− µk)e

H
a (k)v(k)

− µk(1− µk)v
H(k)ea(k) + µ2

k‖v(k)‖2.
(16)

Invoking the widely used assumption of independence between

ea(k) and v(k) [17], it is easy to obtain E‖e(k)‖2 =
E‖ea(k)‖2 +E‖v(k)‖2. Then, taking the expectation in (16)

yields

E‖ep(k)‖2 = (1− µk)
2E‖ea(k)‖2 + µ2

kE‖v(k)‖2

= (1− 2µk)E‖ea(k)‖2 + µ2
kE‖e(k)‖2.

(17)

The VSS is obtained by setting the derivative of (17) with

respect to µk to 0. Thus, we arrive at

µk =
σ2
ea
(k)

σ2
e
(k)

, (18)

where σ2
e
(k) and σ2

ea
(k) are estimates of E‖e(k)‖2 and

E‖ea(k)‖2, respectively, which can be updated as:

σ2
e
(k) = ασ2

e
(k − 1) + (1− α)‖e(k)‖2, (19)

σ2
ea
(k) = ασ2

ea
(k − 1) + (1− α)‖êa(k)‖2, (20)

where

êa(k) = sign[e(k)]⊙ ê(k), (21)

α is a forgetting factor (0 < α ≤ 1), sign[e(k)] is a vector

whose ith element is given by
e(i)
|e(i)| , ⊙ denotes the element-

wise product, ê(k) is a vector whose ith element is calculated

as max(|e(i)| − t, 0), and t =
√

θσ2
v is a threshold with θ

being a constant, typically chosen in the interval 0 < θ < 4
[37]. We assume that the variance σ2

v of the background noise

is known; if the noise variance is unknown, one can find its

estimate using a recursive estimation method from [38], [39].

Practical consideration: In some practical applications,

adaptive filtering algorithms adopt a small step-size to update

their weight vectors [25], [27]. Since at the start of iterations,

for our proposed algorithm, the power of noise-free a priori

error σ2
ea
(k) is close to the power of error σ2

e
(k), then from

(18) it is found that the VSS starts from a large value (close

to 1), which may lead to the algorithm divergence. Taking

this into account, we assign a scale factor for the step-size to

control its initial value, given by µk = γs
σ2

ea
(k)

σ2
e
(k) , where γs is

the scale factor chosen within (0, 1].

III. PERFORMANCE ANALYSIS

In this section, we present the theoretical analysis of the

VSS-WLCAPA performance. The scale factor γs for control-

ling the step-size is assumed to be 1. For compactness, the

update equations (8) and (9) of the VSS-WLCAPA are written

in the augmented form

w(k + 1) = w(k) + µkU(k)S(k)e(k), (22)

where w(k) =
[

hT (k),gT (k)
]T

is the augmented weight

vector. In the subsequent analysis, the regularization term δIP
in S(k) is omitted.

To keep the analysis tractable, we make the following

assumptions:

Assumption 1: The background noise v(k) is a zero-mean

noncircular white Gaussian sequence, which is independent of

the input vector x(k) [1], [2].
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Assumption 2: The step-size µk is independent of the input

vector x(k) and the weight vector w(k) [3], [9], [40].

Assumption 3: The weight vector w(k) is independent of

U(k)S(k)UH(k) [8], [16].

Assumption 4: The noise-free a priori error ea(k) follows

the zero-mean Gaussian distribution [37], [41]–[43].

Assumption 2 is commonly applied to analyze the VSS

adaptive filtering algorithms by considering that the step-size

varies slowly (α is close to 1). Assumption 3 is widely used in

the APA family analysis [8]. Assumption 4 is approximately

true when the filter length is large [37], [42].

Define the augmented weight error vector w̃(k) = wo −
w(k), where wo =

[

hTo ,g
T
o

]T
is the augmented unknown

system vector. From (22), we obtain

w̃(k + 1) = w̃(k)− µkU(k)S(k)e(k)

= {I− µkU(k)S(k)U(k)}w̃(k)− µkU(k)S(k)v(k).
(23)

Post-multiplying (23) by wH(k + 1), we arrive at

Q(k + 1) = Q(k)− µkQ(k)U(k)S(k)UH(k)

− µkU(k)S(k)UH(k)Q(k)

+ µ2
kU(k)S(k)UH(k)Q(k)U(k)S(k)UH(k)

+ µ2
kU(k)S(k)v(k)vH(k)S(k)UH(k)

− µkw̃(k)vH(k)S(k)UH(k)

− µkU(k)S(k)v(k)w̃H(k)

+ µ2
kU(k)S(k)UH(k)w̃(k)vH(k)S(k)UH(k)

+ µ2
kU(k)S(k)v(k)w̃H(k)U(k)S(k)UH(k),

(24)

where Q(k) = w̃(k)w̃H(k).

For arbitrary matrices A,B,C of compatible dimensions,

vec(ABC) = (CT ⊗ A)vec(B) [1], [44]. Applying this

operation to (24) gives rise to

vec(Q(k + 1)) = vec(Q(k))

− µk[(U(k)S(k)UH(k))T ⊗ I]vec(Q(k))

− µk[I⊗ (U(k)S(k)UH(k))]vec(Q(k))

+µ2
k[(U(k)S(k)UH(k))T ⊗ (U(k)S(k)UH(k))]vec(Q(k))

+ µ2
kvec[U(k)S(k)v(k)vH(k)S(k)UH(k)]

− µkvec[w̃(k)vH(k)S(k)UH(k)]

− µkvec[U(k)S(k)v(k)w̃H(k)]

+ µ2
kvec[U(k)S(k)UH(k)w̃(k)vH(k)S(k)UH(k)]

+ µ2
kvec[U(k)S(k)v(k)w̃H(k)U(k)S(k)UH(k)].

(25)

By taking the expectation of (25) and invoking Assumptions

1 and 3, we obtain

vec[E(Q(k + 1))] = vec[E(Q(k))]

− E{µk[(U(k)S(k)UH(k))T ⊗ I]}vec[E(Q(k))]

− E{µk[I⊗ (U(k)S(k)UH(k))]}vec[E(Q(k))]

+ E{µ2
k[(U(k)S(k)UH(k))T ⊗ (U(k)S(k)UH(k))]}

× vec[E(Q(k))]

+ σ2
vE{µ2

kvec[U(k)S2(k)UH(k)]}
− E{µkvec[w̃(k)vH(k)S(k)UH(k)]}
− E{µkvec[U(k)S(k)v(k)w̃H(k)]}
+ E{µ2

kvec[U(k)S(k)UH(k)w̃(k)vH(k)S(k)UH(k)]}
+ E{µ2

kvec[U(k)S(k)v(k)w̃H(k)U(k)S(k)UH(k)]}.
(26)

E{µk[(U(k)S(k)UH(k))T ⊗ I]} in (26) can be written as:

E{µk[(U(k)S(k)UH(k))T ⊗ I]}
= E(µk)E[(U(k)S(k)UH(k))T ⊗ I]

+ E{[µk − E(µk)][(U(k)S(k)UH(k))T ⊗ I]}.
(27)

With Assumption 2, the last term in (27) is zero, which means

µk−E(µk) ≈ 0. In other words, the step-size µk is very close

to the mean step-size E(µk) [43], [45], [46], Furthermore,

based on this fact, its variance can be considered small, thus

E(µ2
k) ≈ [E(µk)]

2. (28)

Applying Assumption 2 and (28) to (26) results in

vec[E(Q(k + 1))] =vec[E(Q(k))]− E(µk)Φ1vec[E(Q(k))]

+[E(µk)]
2Φ2vec[E(Q(k))] + [E(µk)]

2σ2
vvec(Φ3)

−E(µk)vec(Φ4)− E(µk)vec(Φ
H
4 )

+[E(µk)]
2vec(Φ5) + [E(µk)]

2vec(ΦH
5 ),

(29)

where

Φ1 = E[U(k)S(k)UH(k)]T ⊗ I+ I⊗ E[U(k)S(k)UH(k)],
(30)

Φ2 = E
{

[U(k)S(k)UH(k)]T ⊗ [U(k)S(k)UH(k)]
}

, (31)

Φ3 = E[U(k)S2(k)UH(k)], (32)

Φ4 = E[w̃(k)vH(k)S(k)UH(k)], (33)

and

Φ5 = E[U(k)S(k)UH(k)w̃(k)vH(k)S(k)UH(k)]. (34)

In the traditional analysis of the APA family, the assumption

of independence between the weight error vector w̃(k) and

the noise vector v(k) is used to simplify the analysis [12],

[17]. However, in reality, w̃(k) is dependent on the past noise

vectors v(k − 1),v(k − 2), · · · ,v(k − P ) [19], [21]. We

have found that if this is not taken into account, the analysis

may result in incorrect prediction. In this paper, we take into

account their dependency so that the quantities Φ4 and Φ5 are
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not neglected. From (23), the relationship between the weight

error vector w̃(k) and the past noise vectors is given by

w̃(k) =

P
∏

j=1

[

I− µk−jU(k − j)S(k − j)UH(k − j)
]

× w̃(k − P )

−
P
∑

j=1

(

j
∏

p=1

[

I− µk−p+1U(k − p+ 1)S(k − p+ 1)

UH(k − p+ 1)
]

)

µk−jU(k − j)S(k − j)v(k − j).

(35)

Using (35) in (33) and (34), Φ4 and Φ5 are calculated. The

detailed computation is shown in Appendix A.

A. Steady-state Performance of the VSS-WLCAPA

We now consider the steady-state performance obtained

from (29). As k → ∞, vec[E(Q(k + 1))] = vec[E(Q(k))]
holds. Thus, (29) is rearranged as

vec[E(Q(∞))] = E(µ∞)σ2
v [Φ1 − E(µ∞)Φ2]

−1vec[Φ3]

− [Φ1 − E(µ∞)Φ2]
−1vec[Φ4 +ΦH

4 ]

+ E(µ∞)[Φ1 − E(µ∞)Φ2]
−1vec[Φ5 +ΦH

5 ].
(36)

To compute vec[E(Q(∞))], we need to find E(µ∞). For our

further steps, the following approximations are required:

Approximation 1: In the steady-state, the excess mean-

square error (EMSE) is much smaller than the noise variance

σ2
v , so that E|e(k)|2 ≈ σ2

v [2], [42].

Approximation 2: For the VSS in the form µk = δ1
δ2

, the

expectation of the ratio can be approximated by the ratio of

their expectations, i.e., E
{

δ1
δ2

}

≈ E(δ1)
E(δ2)

[45], [47].

Approximation 3: In the steady-state,
E‖êa(k)‖

2

E‖e(k)‖2 ≈ E|êa(k)|
2

E|e(k)|2

holds.

Approximation 1 is widely used for analyzing the steady-

state behavior of adaptive filtering algorithms. Approximation

2 has been successfully employed to analyze the VSS algo-

rithms. We also illustrate the validity of this approximation in

Appendix B. Approximation 3 is valid because in the steady-

state E|êa(k)|2 = E|êa(k − 1)|2 = · · · = E|êa(k − P + 1)|2
and E|e(k)|2 = E|e(k − 1)|2 = · · · = E|e(k − P + 1)|2.

Recalling (18)-(20) and using Approximation 2, the steady-

state mean step-size E(µ∞) is given by

E(µ∞) =
E‖êa(∞)‖2
E‖e(∞)‖2 . (37)

Furthermore, applying Approximation 3 to (37), we arrive at

E(µ∞) =
E|êa(∞)|2
E|e(∞)|2 . (38)

In (38), E|e(∞)|2 ≈ σ2
v according to Approximation 1,

whereas the difficulty is in the calculation of E|êa(∞)|2. From

(21), êa(k) is expressed as

êa(k) = sign[e(k)]max(|e(k)| − t, 0). (39)

From (39), we obtain

E|êa(k)|2 = E{[max(|e(k)| − t)]2}. (40)

To evaluate the expectation in (40), we need to know the PDF

of |e(k)|. With Assumption 1 and Assumption 4, considering

e(k) = ea(k) + v(k), it is apparent that e(k) obeys the zero-

mean Gaussian distribution. However, the variances of the real

and imaginary parts can be different. Therefore, we cannot

use results from [36], and we need to find the PDF of |e(k)|
in the following. Using polar coordinate transformation, the

distribution of magnitude |e(k)| is derived in Appendix C.

Let r = |e(k)|, the quantity E|êa(k)|2 is then calculated as:

E|êa(k)|2 =

∫ ∞

t

(r − t)2
2r

σ2
exp

(

− r2

σ2

)

dr. (41)

By taking the integral in (41), we obtain

E|êa(k)|2 =
2

σ2
[Ω1 − Ω2 +Ω3], (42)

where

Ω1 =

∫ ∞

t

r3 exp

(

− r2

σ2

)

dr

=
σ2

2

[

t2 exp

(

− t2

σ2

)

+ σ2 exp

(

− t2

σ2

)]

,

(43)

Ω2 = 2t

∫ ∞

t

r2 exp

(

− r2

σ2

)

dr

= tσ2

[

t exp

(

− t2

σ2

)

−
√
πσ
(

erf
(

t
σ

)

− 1
)

2

]

,

(44)

and

Ω3 = t2
∫ ∞

t

r exp

(

− r2

σ2

)

dr

=
t2σ2

2
exp

(

− t2

σ2

)

.

(45)

In the steady-state, using Approximation 1, we have σ2 =
σ2
v . From (38)-(45), we can now obtain E(µ∞). Eventually,

we calculate the steady-state MSE as:

MSE(∞) = σ2
v +Tr

(

R2M
u E[Q(∞)]

)

, (46)

where R2M
u = E[u(k)uH(k)] denotes the 2M th-order aug-

mented input covariance matrix with u(k) being the first

column vector of the augmented input matrix U(k).
Furthermore, applying the property Tr(XY) =

vec(XT )T vec(Y) [44] to (46) leads to

MSE(∞) = σ2
v + vec

[

(R2M
u )T

]T
vec (E[Q(∞)]) . (47)

Remark 1: If the real and imaginary parts of the error have

the same variances, the PDF of the magnitude |e(k)| in (C.8)

turns into the form given in our previous work [36]. Therefore,

the PDF of |e(k)| derived in this paper can be regarded as a

generalized expression for a complex-valued error signal.

Remark 2: In the steady-state, replacing σ2 in (42)-(45) with

σ2
v , after some algebra, we have

E|êa(∞)|2 = σ2
v

(

exp(−θ) +
√
πθ
[

erf(
√
θ)− 1

])

. (48)
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Then, E(µ∞) in (38) becomes

E(µ∞) = exp(−θ) +
√
πθ
[

erf(
√
θ)− 1

]

. (49)

It is seen from (49) that the expectation of the steady-state

step-size E(µ∞) only depends on the parameter θ; it does not

depend on the input signal and noise variances.

Remark 3: With (49), we can obtain the steady-state

step-size E(µ∞), which is then used to (36) to obtain

vec[E(Q(∞))]. The steady-state MSE is finally calculated

using (47).

B. Transient and Steady-state Performance of the VSS-

WLCNLMS

We next present a special case for the analysis: P = 1. Now,

the proposed algorithm transforms into the VSS-WLCNLMS

algorithm. In this case, Φ1, Φ2 and Φ3 reduce to

Φ1 = E[u(k)s(k)uH(k)]T⊗I+I⊗E[u(k)s(k)uH(k)], (50)

Φ2 = E
{

[u(k)s(k)uH(k)]T ⊗ [u(k)s(k)uH(k)]
}

, (51)

Φ3 = E[u(k)s2(k)uH(k)], (52)

where

s(k) = [xH(k)x(k) + xT (k)x∗(k)]−1. (53)

The quantities Φ4 and Φ5 are zeros due to the independency

between the weight error vector w̃(k) and the noise v(k) [43],

[45]. Therefore, (29) takes the form

vec[E(Q(k + 1))] =vec[E(Q(k))]− E(µk)Φ1vec[E(Q(k))]

+[E(µk)]
2Φ2vec[E(Q(k))] + [E(µk)]

2σ2
vvec(Φ3).

(54)

When P = 1, the VSS in (18) becomes

µk =
σ2
ea
(k)

σ2
e(k)

, (55)

where

σ2
e(k) = ασ2

e(k − 1) + (1− α)|e(k)|2, (56)

σ2
ea
(k) = ασ2

ea
(k − 1) + (1− α)|êa(k)|2, (57)

and êa(k) is given in (39).

Following the procedures in (41)-(45), we can calculate the

mean step-size E(µk) for (55), which is then used to predict

the transient behavior of the algorithm. When calculating the

quantity E|êa(k)|2 in (41), σ2 = σ2
v + Tr

(

R2M
u E[Q(k)]

)

is

used. From (54), we obtain the steady-state formula given by

vec[E(Q(∞))] = E(µ∞)σ2
v [Φ1 − E(µ∞)Φ2]

−1vec[Φ3].
(58)

We will also be using the following relationship:

E[uH(k)u(k)] = E[xH(k)x(k) + xT (k)x∗(k)]

= Tr(R2M
u ).

(59)

If the length M is large enough, it can be shown that [19]

xH(k)x(k) + xT (k)x∗(k) ≈ Tr(R2M
u ). (60)

Applying (59) in (53), we obtain

s(k) = [Tr(R2M
u )]−1. (61)

Particularly, when the white input signal is considered,

the quantities Φ1, Φ2 and Φ3 in (50)-(52) can be further

simplified. Since

R2M
u =

[

(RM
x )∗ (PM

x )∗

PM
x RM

x

]

=

[

σ2
xIM σ̃2

xIM
σ̃2
xIM σ2

xIM

]

, (62)

it is straightforward to see that s(k) = 1
2Mσ2

x

and Φ1 can be

written as

Φ1 =
1

2Mσ2
x

{

[

σ2
xIM σ̃2

xIM
σ̃2
xIM σ2

xIM

]T

⊗ I+ I⊗
[

σ2
xIM σ̃2

xIM
σ̃2
xIM σ2

xIM

]

}

,

(63)

where RM
x = σ2

xIM denotes the M th-order input covariance

matrix with variance σ2
x = E[x(k)x∗(k)], and PM

x = σ̃2
xIM is

the M th-order pseudo-covariance matrix with complementary

variance σ̃2
x = E[x2(k)]. Again, substituting s(k) to (51)

results in

Φ2 =
1

[2Mσ2
x]

2
E
{

[u(k)uH(k)]T ⊗ [u(k)uH(k)]
}

. (64)

By invoking the Gaussian moment factorizing theorem [43],

[46] for the fourth order moment in (64), we obtain

Φ2 =
1

[2Mσ2
x]

2

{

(R2M
u )T ⊗R2M

u + (P2M
u )H ⊗P2M

u

+vec(R2M
u )(vec[(R2M

u )T ])T
}

,

(65)

where

P2M
u = E[u(k)uT (k)] =

[

(PM
x )∗ (RM

x )∗

RM
x PM

x

]

=

[

σ̃2
xIM σ2

xIM
σ2
xIM σ̃2

xIM

] (66)

is the 2M th-order augmented pseudo-covariance matrix.

Similarly, Φ3 is reformulated as

Φ3 =
1

[2Mσ2
x]

2

[

σ2
xIM σ̃2

xIM
σ̃2
xIM σ2

xIM

]

. (67)

Remark 4: Based on (50)-(52) and the mean step-size

E(µk), vec (E[Q(k)]) in (54) can be recursively calcu-

lated. Then, the transient behavior of the VSS-WLCNLMS

algorithm is predicted by using MSE(k) = σ2
v +

vec
[

(R2M
u )T

]T
vec (E[Q(k)]). Combining (58) and (47), the

steady-state MSE is obtained. When considering the case of

white input signal, in (58) we use (63), (65) and (67) to

calculate Φ1, Φ2 and Φ3, respectively.

IV. SIMULATION

In this section, we will show the performance results

of the proposed algorithm, and verify the accuracy of the

theoretical prediction by numerical simulation. The MSD

curves, i.e., 10log10‖wo − w(k)‖2, and the MSE curves,

i.e., 10log10|e(k)|2, are plotted to measure the algorithm

performance and validate the theoretical analysis, respectively.
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A. System Identification Scenarios

The unknown system vectors ho and go are randomly

generated from a zero-mean Gaussian distribution with unit

norm, respectively. When evaluating the algorithm tracking

capability, the unknown system vectors ho and go change to

−ho and −go in the middle of iterations. The initial weights of

the adaptive filter are set to zeros. The correlated input signal

is an autoregressive first order (AR1) Gaussian process. The

white Gaussian input is zero-mean non-circular with variance

σ2
x = 1 and complementary variance σ̃2

x = 0.5. When inves-

tigating the proposed algorithm, the highly correlated input

is considered for the VSS-WLCAPA with projection order

higher than one, while the weakly correlated or white Gaussian

input is considered for the VSS-WLCNLMS. The background

noise is zero-mean white Gaussian. The reguarization δ is set

to 10−6, and the scale factor γs is set to 1. All results are

obtained by averaging over 100 independent trials.

We first plot the MSD curves of the proposed VSS-

WLCAPA with different θ and α, as shown in Figs. 1 and

2. As can be seen from Fig. 1, with the increase of θ, the

steady-state misalignment of the VSS-WLCAPA is reduced

until θ = 3, and then increases. In Fig. 2, as α increases,

the convergence of the VSS-WLCAPA slows down. After

sudden change of the system vectors, the proposed algorithm

maintains similar performance for the same θ and α. In the

following experiments, we select α = 0.95 and θ = 3 for the

proposed algorithm.
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)

 = 1

 = 2

 = 3

 = 4

Fig. 1. MSD curves of the proposed algorithm against θ for the AR1(0.95)
input signal. P = 4,M = 8, α = 0.95 and σ2

v = 0.01.

Fig. 3 compares the proposed algorithm with the ACNSAF

and AAPA for different P and M . The proposed VSS-

WLCAPA outperforms the ACNSAF and AAPA; it provides

faster convergence and lower steady-state misalignment. In

addition, the proposed algorithm has better tracking capabil-

ity after the change of the unknown system than the other

algorithms. Fig. 4 shows the evolutions of the step-size of

the proposed VSS-WLCAPA. It is seen that the VSS varies

from a large value, then rapidly reduces to a small value.

This evolution accounts for fast convergence at the start of
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 = 0.9

 = 0.95

 = 0.99

 = 0.995

Fig. 2. MSD curves of the proposed algorithm against α for the AR1(0.95)
input signal. P = 4,M = 8, θ = 3 and σ2

v = 0.01.
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Fig. 3. Comparison of the ACNSAF, AAPA and proposed VSS-WLCAPA
for the AR1(0.95) input signal, σ2

v = 0.01. (a) Nsub = 2, P = 2,M = 8
(b) Nsub = 4, P = 4,M = 8 (c) Nsub = 4, P = 4,M = 16, where Nsub

denotes the number of subbands of the ACNSAF.
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Fig. 4. Evolutions of the VSS of the proposed VSS-WLCAPA for the
AR1(0.95) input signal, α = 0.95, θ = 3 and σ2

v = 0.01.

iterations and low steady-state misalignment in the steady-

state. Moreover, the VSS shows much the same evolutionary

trend after the change of the unknown system.

In Fig. 5, the filter length is increased to M = 128. It is

evident from Fig. 5(a) that the proposed VSS-WLCAPA has

better performance than the ACNSAF and AAPA. The VSS

in Fig. 5(b) follows the trend of evolving from a large value

to a small value.

We next validate the theoretical analysis. As discussed

in Remark 2, the theoretical steady-state step-size E(µ∞)
depends on θ. In Fig.6, we show the accuracy of the theoretical

E(µ∞) calculated using (49) for different θ. It is seen that

there is some deviation between the simulated and theoretical

values when θ ≤ 1, while the prediction is very accurate for

θ > 1.

Fig. 7 shows the steady-state MSE of the proposed VSS-

WLCAPA against θ. The theoretical MSE is calculated ac-

cording to Remark 3. As can be seen in Fig. 7, the theoretical

result has some deviation from the simulated result, and with

the increase of θ, the deviation is reduced. This is because at

higher θ, the theoretical step-size predicts the simulated step-

size more accurately. It is also observed that there exists more

significant deviation between the theoretical and simulated

results for higher P (P = 4,M = 8). This is because of

the limits of the approximation in (28) when the filter length

is not far larger than the projection order.

We now validate the theoretical prediction of the MSE

performance for P = 1. In Fig. 8, we plot the evolutions of

the VSS for different θ and α. As can be seen, the theoretical

step-sizes are in a good agreement with the simulation results.
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Fig. 5. Comparison of the ACNSAF, AAPA and proposed VSS-WLCAPA
for the AR1(0.95) input signal, σ2

v = 0.01, Nsub = 2, P = 2,M = 128 (a)
MSD curves of various algorithms (b) evolutions of the VSS of the proposed
VSS-WLCAPA.
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Fig. 6. Steady-state step-size E{µ∞} against θ in the proposed algorithm
for the AR1(0.95) input signal. P = 2,M = 8, α = 0.95 and σ2

v = 0.01.

Fig. 9 shows the transient MSE performance of the proposed

algorithm for different σ2
v . The theoretical result is calculated

according to Remark 4. When σ2
v = 0.1 and σ2

v = 0.01,

the theoretical results match well with the simulation results.

Only for a low noise variance (σ2
v = 0.001), the theoretical

prediction deviates from the simulation results.

We next verify the theoretical analysis for white input

signal. As can be seen from Fig. 10, when α = 0.99, θ = 3, the

simulated VSS is accurately approximated by the theoretical

VSS, while when α = 0.995, θ = 4, there exists some

deviation between them. This is due to the limited accuracy

of the approximation in (38) and (60). Fig. 11 shows the
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Fig. 7. Steady-state MSE of the proposed algorithm against θ for the
AR1(0.95) input signal, α = 0.95, and σ2

v = 0.01. (a) P = 2,M = 8 (b)
P = 2,M = 16 (c) P = 4,M = 8 .
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Fig. 8. Evolutions of the proposed VSS for the AR1(0.5) input signal,
P = 1,M = 8 and σ2

v = 0.01. (a) α = 0.99 (b) θ = 2. Solid lines:
simulation results; dashed lines: theoretical results.
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Fig. 9. MSE performance of the proposed algorithm against σ2
v for the

AR1(0.5) input signal. P = 1,M = 8, α = 0.95 and θ = 3. Solid lines:
simulation results; dashed lines: theoretical results.
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Fig. 10. Evolutions of the VSS for white input signal. P = 1,M = 16 and
σ2
v = 0.01. Solid lines: simulation results; dashed lines: theoretical results.

transient MSE curves of the VSS-WLCNLMS algorithm. The

theoretical results accurately predict the simulation results.

B. Wind Prediction

The sampled set of 24-h data was recorded at the Institute of

Industrial Science, University of Tokyo [27]. The data set was

collected using an ultrasonic anemometer and sampled at 50

Hz. In the experiments, we utilize the data set from the high

wind speed region. The moving average filter is used to reduce

the effects of high frequency noise. We consider the case of

P = 1 for the proposed algorithm and AAPA to implement

the one step ahead prediction, and the AAPA with P = 1
turns into the normalized version of the WL-CLMS, namely

the WL-CNLMS algorithm.

The data containing north-south (VN ) and east-west (VE)

direction readings of wind speed, is used to create the complex
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Fig. 11. MSE curves of the proposed VSS-WLCNLMS algorithm for white
input signal. P = 1,M = 16 and σ2

v = 0.01. Solid lines: simulation results;
dashed lines: theoretical results.
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Fig. 12. Complex wind signal magnitude.
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Fig. 13. Prediction gain of the WL-CNLMS (red line) and VSS-WLCNLMS
(blue line) algorithms.
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Fig. 14. Input and predicted signal using the WL-CNLMS and VSS-
WLCNLMS algorithms.

wind signal Vc as follows:

vmag =
√

V 2
E + V 2

N

ψ = arctan

(

VN

VE

)

Vc = vmage
iψ

(68)

The wind magnitudes are shown in Fig. 12. The first 3000

samples are used as the training set, and the last 2000 samples

are used as the testing set. In this application, the parameters

M = 10, α = 0.95, θ = 3, and γs = 0.01 are used for

the proposed VSS-WLCNLMS. The step-size for the WL-

CNLMS algorithm is set to µ = 0.01.

Performance measure: The prediction gain Rp is used as

the evaluation metric to measure the performance, given by

[27]

Rp = 10log10

(

σ2
vmag

σ̂2
e

)

(69)

where σ2
vmag

denotes the variance of the input signal

{vmag(k)}, and σ̂2
e is the estimated variance of the forward

prediction error {e(k)}. The sequence of {vmag(k + 1) −
vmag(k)} is treated as the noise sequence to obtain the noise

variance used in (21).

Fig. 13 shows the prediction gain of the VSS-WLCNLMS

and WL-CNLMS algorithms with respect to the moving

average window size. It is seen that the VSS-WLCNLMS

algorithm shows better prediction gain than the WL-CNLMS

algorithm. The prediction gain of the algorithms reaches a peak

value for the window size 60. In the following experiment, the

moving average window size is set to 60.

Fig. 14 shows the prediction results. As can be seen, the

prediction using the WL-CNLMS algorithm has noticeable

deviation from the input signal, while the VSS-WLCNLMS

algorithm accurately predicts the input signal.
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V. CONCLUSION

In this paper, we have proposed the VSS widely linear

complex-valued APA (VSS-WLCAPA), which provides both

the fast convergence and low steady-state misalignment. The

VSS is derived based on minimizing the power of the aug-

mented noise-free a posteriori error vector.

By exploiting the recursion for the covariance matrix of

the weight error vector, we perform the theoretical analysis

of the steady-state MSE of the proposed algorithm, where

the dependency between the weight error vector and the

noise vector is taken into account to improve the prediction

accuracy. In the analysis, by employing the polar coordinate

transformation, we derive the probability density function of

the magnitude of the error to calculate the mean step-size.

Furthermore, we have studied the case when the projection

order is set to one. By using the assumption of independence

between the weight error vector and noise, we obtain the

theoretical expressions for the transient and steady-state MSE

of the algorithm. Simulation results for system identification

scenarios have shown that the proposed algorithm outperforms

the ACNSAF and AAPA. The theoretical results have been

confirmed to provide good prediction of the algorithm behav-

ior. Wind prediction experiments demonstrate the superiority

of the proposed algorithm as well.

APPENDIX A

CALCULATION OF Φ4 AND Φ5

Substituting (35) into (33), we have

Φ4 = E[w̃(k)vH(k)S(k)UH(k)] =

− E

{

P
∑

j=1

(

j
∏

p=1

[

I− µk−p+1U(k − p+ 1)S(k − p+ 1)

UH(k − p+ 1)
]

)

µk−jU(k − j)S(k − j)

v(k − j)vH(k)S(k)UH(k)

}

.

(A.1)

Since the background noise v(k) is noncircular white Gaussian

and independent of the input signal, (A.1) can be further

expressed as

Φ4 =

− σ2
v

P
∑

j=1

E

{(

j
∏

p=1

[

I− µk−p+1U(k − p+ 1)S(k − p+ 1)

UH(k − p+ 1)
]

)

µk−jU(k − j)S(k − j)ZjS(k)UH(k)

}

,

(A.2)

where Z is a P × P matrix:

Z =

[

0 I

0 0

]

. (A.3)

Similarly, Φ5 is given by

Φ5 =

− σ2
v

P
∑

j=1

E

{

U(k)S(k)UH(k)

(

j
∏

p=1

[

I− µk−p+1U(k − p+ 1)S(k − p+ 1)

UH(k − p+ 1)
]

)

µk−jU(k − j)S(k − j)ZjS(k)UH(k)

}

.

(A.4)

APPENDIX B

VALIDITY OF APPROXIMATION 2

To find the approximation for E
{

x
y

}

, we first define the

mean values:

µx = E(x), µy = E(y). (B.1)

Using a Taylor series expansion of x
y

around µx, µy gives rise

to

x

y
≈ x

y

∣

∣

∣

µx,µy

+ (x− µx)
∂

∂x

(

x

y

)

∣

∣

∣

µx,µy

+ (y − µy)
∂

∂y

(

x

y

)

∣

∣

∣

µx,µy

+
(x− µx)

2

2

∂2

∂x2

(

x

y

)

∣

∣

∣

µx,µy

+
(y − µy)

2

2

∂2

∂y2

(

x

y

)

∣

∣

∣

µx,µy

+ (x− µx)(y − µy)
∂2

∂x∂y

(

x

y

)

∣

∣

∣

µx,µy

+ o

(

(

(x− µx)
∂

∂x
+ (y − µy)

∂

∂y

)3(
x

y

)

)

.

(B.2)

By taking the expectation in (B.2), we arrive at the second

order approximation (ignoring all terms higher than two)

E

{

x

y

}

≈ µx

µy
− cov(x, y)

µ2
y

+ var(y)
µx

µ3
y

=
µx

µy

[

1− cov(x, y)

µxµy
+

var(y)

µ2
y

]

,

(B.3)

where cov(x, y) = E(xy)−E(x)E(y) denotes the covariance

between x and y, and var(y) = E(y2)−E(y)2 is the variance

of y [48], [49].

The quantities σ2
e
(k) and σ2

ea
(k) in (19) and (20) can be

written into the following recursive forms

σ2
e
(k) =

k
∑

j=0

λj‖e(j)‖2, σ2
ea
(k) =

k
∑

j=0

λj‖êa(j)‖2, (B.4)

where λj = (1− α)αk−j .
Let x = σ2

ea
(k) and y = σ2

e
(k), then taking the expectation

in (18) yields

E(µk) = E

{

∑k
j=0 λj‖êa(j)‖2

∑k
j=0 λj‖e(j)‖2

}

. (B.5)
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In (B.3), if the absolute value of − cov(x,y)
µxµy

+ var(y)
µ2
y

is much

smaller than one, i.e.,

∣

∣

∣
− cov(x,y)

µxµy

+ var(y)
µ2
y

∣

∣

∣
<< 1, we have

E
{

x
y

}

≈ E(x)
E(y) . Since it is difficult to rigorously prove

that

∣

∣

∣
− cov(x,y)

µxµy

+ var(y)
µ2
y

∣

∣

∣
<< 1, we verify this inequality in

simulation, as shown in Fig. 15. With the increase of iter-

ations,

∣

∣

∣
− cov(x,y)

µxµy

+ var(y)
µ2
y

∣

∣

∣
increases slowly, and approaches

a constant in the steady-state. During the whole evolution,
∣

∣

∣
− cov(x,y)

µxµy

+ var(y)
µ2
y

∣

∣

∣
<< 1 always holds. Therefore, the ap-

proximation E
{

x
y

}

≈ E(x)
E(y) can be used in the analysis.
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Fig. 15. Evolution of

∣

∣

∣

∣

−
cov(x,y)
µxµy

+
var(y)

µ2
y

∣

∣

∣

∣

for the AR1(0.95) input signal.

α = 0.95, θ = 1 and σ2
v = 0.01.

APPENDIX C

DISTRIBUTION OF THE MAGNITUDE |e(k)|
A complex-valued Gaussian random variable z = x + iy

can be written in polar coordinates as:

z = r exp(iθp), (C.1)

where r = |z| denotes the magnitude of z, and θp is the phase

of z. Suppose that its mean ρ and variance σ2 are given by

E(z) = ρ = |ρ| exp(iγ), (C.2)

var(z) = E|z − ρ|2 = σ2, (C.3)

where γ is the phase of ρ.

According to the real multivariate Gaussian theory [50],

[51], for an n-dimensional complex random vector z with

mean vector ρ and positive definite covariance matrix Ω, that

is, E(z) = ρ and E(z − ρ)(z − ρ)H = Ω, its probability

density function (PDF) is given by [50]

f(z) =
1

πndetΩ
exp

[

−(z− ρ)HΩ−1(z− ρ)
]

. (C.4)

When n = 1, we have

f(z) =
1

πσ2
exp

(

−|z − ρ|2
σ2

)

. (C.5)

The joint PDF f(r, θp) of r and θp is related to f(z) by

[50]

f(r, θp) = rf(z)

=
r

πσ2
exp

(

−
(

r2 + |ρ|2
)

σ2

)

exp

[

2|ρ|r
σ2

cos(θp − γ)

]

.

(C.6)

Using (C.6), the marginal density function ϕ(r) of r is

calculated as

ϕ(r) =

∫ 2π

0

f(r, θp)dθp

=
r

πσ2
exp

(

−
(

r2 + |ρ|2
)

σ2

)

∫ 2π

0

exp

[

2|ρ|r
σ2

cos(θp − γ)

]

dθp

=







2r
σ2 exp

(

− (r2+|ρ|2)
σ2

)

I0

(

2|ρ|r
σ2

)

, r ≥ 0

0, r < 0
(C.7)

where I0 is the zero-order modified Bessel function of the first

kind.

In particular, if z is zero-mean, then

ϕ(r) =

{

2r
σ2 exp

(

− r2

σ2

)

, r ≥ 0

0, r < 0
(C.8)

Therefore, the magnitude |e(k)| has the PDF given in (C.8).
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