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ABSTRACT   

Here we establish the thermodynamic phase stability condition under mesoscale confinement, 

which is essential in elucidating how the confinement of solutions inside a droplet, cell or 

liposome may influence phase separation. To clarify how phase stability is affected by external 

conditions, a formal analogy between the partially open ensemble and mesoscopic system will be 

exploited, through which the nonnegligible role of the system boundary will be identified as the 

crucial difference from the macroscopic stability condition. The thermodynamic stability 

condition extended for mesoscale is shown to involve several different orders of magnitude that 

are all considered to be O(1) at a macroscopic limit. Phase instability in mesoscale is shown to 

ensue when the difference between self-association (relative self-fluctuation of particle number) 

and mutual association (relative number correlation between different species) reaches the 

mesoscopic order of magnitude, in contrast to the divergence of particle number fluctuation 
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(namely, reaching a macroscopic order of magnitude) required in macroscale. Thus, confinement 

may enhance phase instability.  

 

1. Introduction 

Confinement within a small space affects not only biomolecular conformation and association [1–

3] but also phase stability. Aqueous biomolecular solutions stable in macroscopic bulk, such as the 

ones containing DNA, PEG and NaCl [4] or DNA and alginate [5], undergo phase transition when 

confined in a droplet, and increasingly so as the droplet size decreases [4,5]. Simple solution 

mixtures [6], even ethanol-water[7–11] mixtures, go through phase separation under confinement. 

Thus, confinement may affect phase stability. Such an effect is expected to be at work also in 

droplet protein crystallization [12,13], confined polyelectrolyte solutions [14] and polymer blends 

[15], and compartmentalization in biological cells [16–18].  

 

Such a universal importance of phase stability under confinement, encountered in diverse 

disciplines, necessitates the extension of thermodynamic phase stability, developed so far in 

macroscopic systems [19–23], to solution mixtures confined in small systems. How to deal with 

small (mesoscopic and nanoscale) systems, for which the effect of system boundary is not 

negligible, was pioneered by Hill [24–26], yet the formal nature of the theory has seen few 

applications over the decades [24–26], except, most notably, for the simulation of the Kirkwood-

Buff integrals (KBIs) in finite systems [27–29]. The goal of this paper is twofold: (i) to establish 

the thermodynamic stability condition for a solution mixture under confinement and (ii) to clarify 

the difference between the stability conditions in the macroscopic and mesoscopic systems.   
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Clarifying the phase stability condition to mesoscale and nanoscale confinement is timely, 

considering not only the recent realization on the importance of liquid-liquid phase separation in 

biology [16–18] but also the recent progress that brought the investigation of biomolecular 

stability, aggregation, assembly, and binding in aqueous solution mixtures out of 

phenomenological models onto a  statistical thermodynamic foundation [30–33]. It is now possible 

not only to quantify, from experiments, the competitive (preferential) solvation of water and 

cosolvents as the driving forces of biological processes [30–33] but also to elucidate the origin of 

mesoscale fluctuations in solution mixtures [22,23]. These achievements have been made for 

macroscopic bulk solutions yet can readily be generalized into mesoscale (and nanoscale) 

confinement to clarify and identify similarity and crucial differences between macroscopic and 

mesoscopic systems. 

 

2. Mesoscale thermodynamics and local-bulk thermodynamics  

 

Here we present an alternative derivation of Hill’s “nanothermodynamics” or the thermodynamics 

of small systems [24–26]. To this end, let us consider a binary mixture composed of two 

components (𝑖 = 1 and 2), as well as the component 𝑚 , which constitutes a mesoscopic (or 

nanoscale) boundary object (such as a cellular membrane, micelle, or chaperone). We shall use 

“mesoscale” or “mesoscopic” throughout as the general terms for the small system. Following our 

previous papers [31,32], let us write down the Gibbs-Duhem equation for the mesoscopic 

subsystem, namely the system in the vicinity of component 𝑚:   〈𝑁𝑚〉𝑑𝜇𝑚 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 − 〈𝑁1〉𝑑𝜇1 − 〈𝑁2〉𝑑𝜇2      (1) 

Equating  〈𝑁𝑚〉𝑑𝜇𝑚 as the change of thermodynamic function, 𝑑ℰ, we obtain  
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𝑑ℰ = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 − 〈𝑁1〉𝑑𝜇1 − 〈𝑁2〉𝑑𝜇2       (2) 

Eq. (2) is formally equivalent to Hills’ nanothermodynamics [24–26]. What is crucial here is that 〈𝑁1〉 and 〈𝑁2〉 are much larger in magnitude than 〈𝑁𝑚〉, because of the mesoscopic scale of the 

boundary object 𝑚. Integrating Eq. (2) yields  ℰ = 〈𝑁𝑚〉𝜇𝑚 = −𝑇𝑆 + 𝑃𝑉 − 〈𝑁1〉𝜇1 − 〈𝑁2〉𝜇2      (3) 

 

Hill classified ℰ as the “intensive” thermodynamic quantity. This classification may be justified 

when considering that 𝜇𝑚  is an intensive quantity while 〈𝑁𝑚〉 , representing the number of 

mesoscopic boundary objects, is far smaller than the macroscopic order of magnitude. Strictly 

speaking, however, the order of magnitude of ℰ is either mesoscopic or microscopic, depending 

on the nature of the boundary object. If the boundary object is mesoscopic in scale, 〈𝑁𝑚〉 is smaller 

than 〈𝑁1〉 and 〈𝑁2〉 by orders of magnitude and 𝜇𝑚 is of mesoscopic scale. A mesoscopic object is 

different from a molecular species in terms of the magnitudes of 〈𝑁𝑚〉  and 𝜇𝑚  within the 

framework of Eq. (3).  

 

Comparing Eq. (2) to the inhomogeneous solution-based derivation of the preferential solvation 

theory (i.e., based on a pair of the Gibbs-Duhem equations to link preferential solvation to the 

KBIs) [30,31,34] is insightful in elucidating the nature of the mesoscopic system. The pair of the 

Gibbs-Duhem equations consist of the one for the vicinity of a solute and the other for the bulk 

solution having the same volume as the vicinity [30,31,34]. Here, unlike the case of preferential 

solvation, the second Gibbs-Duhem equation for the bulk does not exist for the mesoscopic system. 

This is due to a fundamental difference between a single solute (fixed at the origin) and the 

mesoscopic boundary object 𝑚 in terms of the degrees of freedom. When two solvent components 
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are involved in a single phase, with a solute molecule fixed at the origin as a source of an external 

field, the Gibbs phase rule shows that there are three degrees of freedom [31,35]. This means that 𝜇1 and 𝜇2 are linked via the Gibbs-Duhem equation for the bulk solution, and only one of them 

can serve as the independent parameter in addition to 𝑇 and 𝑃. In contrast, 𝜇1 and 𝜇2 are both 

independent parameters. This shows that the mesoscopic system forms a separate phase from the 

reservoir with which species 1 and 2 are exchanged. An additional degree of freedom, specific to 

a mesoscopic system, has been introduced by the non-zero ℰ(𝑇, 𝑃, 𝜇1, 𝜇2; 𝑁𝑚), and disappears for 

a system without a boundary, as can be seen from Eq. (1); the more dilute the component 𝑚 

(〈𝑁𝑚〉 → 0) the more negligible the influence therefrom, and Eq. (1) reduces to the (macroscopic) 

Gibbs-Duhem equation for a two-component system. Hence, the effect of the boundary persists 

throughout a small system.  

 

It is useful to interpret Eq. (2) further from a perspective of a solution confined by the boundary 

object (i.e., components 1 and 2), namely, as the breakdown of the Gibbs-Duhem equation, 

because of the presence of 𝑑ℰ, as advocated by Hill [26]. In a bulk system consisting only of 

components 1 and 2, the right-hand side of Eq. (4) is zero. In this sense, the apparent breakdown 

of the Gibbs-Duhem equation is equivalent to the existence of the following semi-grand ensemble, 

open to all the microscopic components (components 1 and 2) but not to the mesoscale components 

(denoted by 𝑚), defined as  ℰ(𝑇, 𝑃, 𝜇1, 𝜇2; 𝑁𝑚) = 𝐺(𝑇, 𝑃, 𝑁1, 𝑁2, 𝑁𝑚) − ∑ 𝑁𝑖𝜇𝑖𝑖=1,2     (4) 

where 𝐺 is the Gibbs free energy of the system comprising not only of components 1 and 2 but 

also of the boundary object (component 𝑚). A shorthand 𝑁𝑖 = 〈𝑁𝑖〉 may be used for simplicity 

from now onwards.  



 6 

 

Another interpretation of Eq. (4) is possible by comparing with the case when the system does 

not have the component 𝑚 and is macroscopic only with regards to components 1 and 2. In this 

case, the Gibbs free energy is simply 𝑁1𝜇1 + 𝑁2 𝜇2, and ℰ is considered to signify the excess of 

the free energy due to the presence of a boundary. This is consistent with the recent insight that 

nanothermodynamics is equivalent also to the Gibbs adsorption isotherm [36]. Indeed, Eq. (1) can 

be shown to be formally equivalent to the Gibbs adsorption isotherm, by averaging out the 

individual molecular effect 〈𝑁𝑚〉𝑑𝜇𝑚 in Eq. (1) to yield 𝐴𝑑𝛾 (where 𝐴 is the surface area and 𝛾 is 

the surface free energy).   

 

Thus, a comparison between a mesoscopic system and the preferential solvation theory has led 

to a practical insight necessary for constructing a statistical thermodynamic stability theory for 

mesoscale confinement; mesoscale confinement is formally equivalent to a semi-open ensemble 

under isobaric condition.  

 

3. Thermodynamic stability condition in mesoscale  

 

3.1. Thermodynamic stability condition for a bulk ternary solution under constant 𝑻 and 𝑷 

 

Before writing down the thermodynamic stability condition for a mesoscopic system, let us revisit 

the stability condition for a macroscopic system, in order to clarify the concepts and tools essential 

for derivation presented in Section 3.2 onwards. Consider a three-component solution mixture 

consisting of species 1, 2 and 𝑚 under constant pressure 𝑃 and temperature 𝑇. The stability of the 
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system is governed by the Gibbs free energy, 𝐺(𝑇, 𝑃, 𝑁1, 𝑁2, 𝑁𝑚). Here we postulate that the same 

thermodynamic stability condition should hold true for the entire system as well as for its 

macroscopic subsystems [37]. This means that the stability condition should be written down using 

intensive variables that represent changes in solution composition [37].  (Note that we are dealing 

with the case when the confined solution is in a single phase, for which we write down the stability 

condition. Hence, we are not considering the case when a strong interaction with, or adsorption 

onto, the boundary makes the confined solution already phase separated.)  

 

When the mixture forms a single phase, the degrees of freedom, according to the Gibbs phase 

rule, is 4 [19]. This means there are 2 remaining degrees of freedom that governs the stability 

condition independent of the system size. Such intensive variables can be defined as 𝑐1 = 𝑁1/𝑁𝑚 

and 𝑐2 = 𝑁2/𝑁𝑚. Consequently, the thermodynamic stability condition,  

𝛿𝐺 = 12 ∑ ( 𝜕2𝐺𝜕𝑁𝑖𝜕𝑁𝑗)𝑇,𝑃,𝑁𝑘 (𝛿𝑁𝑖𝛿𝑁𝑗) 𝑖,𝑗=1,2,𝑚 > 0     (5a)  

where the order of magnitude of the terms in Eq. (5a), being a multiplication of ( 𝜕2𝐺𝜕𝑁𝑖𝜕𝑁𝑗)𝑇,𝑃,𝑁𝑘 =
𝑂 (1𝑉)  and 𝛿𝑁𝑖𝛿𝑁𝑗 = 𝑂(𝑉) , is indeed 𝑂(1) . (Throughout this paper, we employ the Landau 

symbol 𝑂(𝑥) for “the same order of magnitude as 𝑥” and 𝑜(𝑥) for “infinitesimal in comparison to 𝑥”.) Based on the above postulate, we express Eq. (5a) in a size-independent manner using 𝑐𝑖 and �̃�(𝑇, 𝑃, 𝑐1, 𝑐2) = 𝐺/𝑁𝑚, while keeping the left-hand side of Eq. (5a) the same, as  

𝛿𝐺 = 12 ∑ ( 𝜕2�̃�𝜕𝑐𝑖𝜕𝑐𝑗)𝑇,𝑃,𝑐𝑘 (𝑁𝑚𝛿𝑐𝑖𝛿𝑐𝑗) 𝑖,𝑗=1,2 > 0     (5b)  
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so that both the stability matrix ( 𝜕2�̃�𝜕𝑐𝑖𝜕𝑐𝑗)𝑇,𝑃,𝑐𝑘 and fluctuation (i.e., covariance, or the ensemble 

average of  𝑁𝑚𝛿𝑐𝑖𝛿𝑐𝑗) are intensive (𝑂(1)) physical quantities.  It is convenient to rewrite Eq. (5b) 

in terms of the following quadratic form 𝛿𝐺 = 12 𝜹𝒄𝑻𝑮𝜹𝒄         (6) 

with  

𝜹𝒄 = √𝑁𝑚 (𝛿𝑐1𝛿𝑐2)         (7) 

𝑮 = (( 𝜕2�̃�𝜕𝑐𝑖𝜕𝑐𝑗)𝑇,𝑃,𝑐𝑘)        (8) 

and with the transposed vector, 𝜹𝒄𝑻. Note that 𝑮 is a Hessian matrix.  

 

Our goal is to write down a relationship between the stability matrix 𝑮 and the fluctuation 

(covariance) matrix involving 𝛿𝑐𝑖s. To do so, diagonalizing the quadratic form makes it easier 

[38]. Since 𝑮 is a symmetry matrix, i.e., 𝑮𝑻 = 𝑮, it can be diagonalized by an orthogonal matrix, 𝑫 satisfying 𝑫𝑻 = 𝑫−𝟏 [39], such that  

𝑫−𝟏𝑮𝑫 = (𝛼1 0 0⋯ ⋯ ⋯0 0 𝛼𝜈)        (9)  

Eq. (6) can be rewritten as  𝛿𝐺 = 12 (𝜹𝒄𝑻𝑫)(𝑫−𝟏𝑮𝑫)(𝑫−𝟏𝜹𝒄)        (10) 

When we define  𝜹𝒄′ = 𝑫−𝟏𝜹𝒄 = 𝑫𝑻𝜹𝒄        (11) 

due to the orthogonality of 𝑫  𝜹𝒄′𝑻 = 𝜹𝒄𝑻(𝑫−𝟏)𝑇 = 𝜹𝒄𝑻𝑫       (12) 
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Eqs. (11) and (12), therefore, leads to the diagonalization of Eq. (10) as  𝛿𝐺 = 12 𝜹𝒄′𝑻(𝑫−𝟏𝑮𝑫)𝜹𝒄′ = 12 ∑ 𝛼𝑖(𝛿𝑐𝑖′)2𝑖       (13)  

 

The diagonalized stability condition, Eq. (13), in conjunction with the quasi-thermodynamic 

theory of fluctuation [38,40],  𝑤 = exp(−𝛿𝐺) = exp (− 12 ∑ 𝛼𝑖(𝛿𝑐𝑖′)2𝑖 )      (14)  

yields the following relationship between the eigenvalues and fluctuation thanks to the Gaussian 

distribution   〈𝛿𝑐𝑖′𝛿𝑐𝑗′〉 = 𝛼𝑖−1𝛿𝑖𝑗         (15)  

Noting 𝛼𝑖−1 is the diagonal element of (𝑫−𝟏𝑮𝑫)−1, Eq. (15) can be expressed in terms of the 

correlation matrix as   〈𝜹𝒄′𝜹𝒄′𝑻〉 = (𝑫−𝟏𝑮𝑫)−1 = 𝑫𝑻𝑮−𝟏𝑫      (16)  

Converting 𝜹𝒄′ back to 𝜹𝒄 via Eqs. (11) and (12),   〈𝑫𝑻𝜹𝒄𝜹𝒄𝑻𝑫〉 = 𝑫𝑻𝑮−𝟏𝑫        (17)  

which yields   〈𝜹𝒄𝜹𝒄𝑻〉 = 𝑮−𝟏         (18)  

showing an inverse relationship between the correlation matrix and the stability matrix.  

 

Thermodynamic stability condition under isobaric condition is particularly important for 

mesoscale for biological and soft matter systems. The choice of the isobaric condition is 

reasonable, considering that the isothermal compressibility of lipids forming lipid bilayer is 

comparable in magnitude to that of liquid water [41–43]. In addition, the presence of cholesterol 

does not affect the isothermal compressibility significantly [41–43].    
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3.2. Thermodynamic stability for a mesoscopic binary solution under constant 𝑻 and 𝑷 

 

In Section 2, the thermodynamic function ℇ(𝑇, 𝑃, 𝜇1, 𝜇2; 𝑁𝑚) for a mesoscopic two component 

solution was shown to be analogous formally to the thermodynamic function for a partially open 

ensemble (open to components 1  and 2  but is closed to 𝑚 ). Here we write down the 

thermodynamic stability condition for the mesoscopic binary solution under constant temperature 

and pressure. To do so, its formal analogy with the macroscopic ternary solution (Section 3.1) is 

helpful. Since the solution composition must change, we carry out the Legendre transform to 

introduce  𝒢(𝑇, 𝑃, 𝑁1, 𝑁2; 𝑁𝑚) = ℇ(𝑇, 𝑃, 𝜇1, 𝜇2; 𝑁𝑚) + 𝑁1𝜇1 + 𝑁2𝜇2    (19)  

which governs thermodynamic stability. The degree of freedom for this mesoscopic binary 

solution is 4, consistent with the corresponding macroscopic ternary solution. Since 𝒢(𝑇, 𝑃, 𝑁1, 𝑁2; 𝑁𝑚) is convex with respect to 𝑁1 and 𝑁2,   

𝛿𝒢 = 12 ∑ ( 𝜕2𝒢𝜕𝑁𝑖𝜕𝑁𝑗)𝑇,𝑃,𝑁𝑘 𝛿𝑁𝑖𝛿𝑁𝑗  𝑖,𝑗=1,2 > 0      (20)  

is the stability condition for the mesoscale binary solution. See Appendix A for justification.  

 

In the case of the macroscopic ternary solution, the stability condition, postulated to be 

independent of system size, had to be expressed in terms of the intensive variables, namely 

concentrations. Consequently,  a macroscopic subsystem was introduced with a postulate that the 

same thermodynamic stability condition holds true regardless of its size [37]. However, a 

mesoscopic system is fundamentally different from a macroscopic system, because the confined 
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solution is under the influence of the boundary object, hence a subsystem closer to the boundary 

would be different from a subsystem away from the boundary.  

 

However, an ensemble consisting of equivalent, non-interacting mesoscopic systems (which, as 

a whole, obeys the laws of macroscopic thermodynamics) has played a key role in constructing 

the thermodynamics of small systems [25]. In this context, we postulate that the size invariance of 

the stability condition refers to the ensemble of mesosystems as a whole, and the stability condition 

should be size independent in a way that the “subsystem” of the ensemble consists of more than 

one  mesoscopic system(s). Since 𝑇 and 𝑃 are kept constant, the remaining number of intensive 

variables is 2, hence we look for two intensive variables as the descriptors for composition change.  

 

For a macroscopic ensemble consisting of 𝒩 mesoscopic systems, the thermodynamic functions 

scale as  𝒩𝒢(𝑇, 𝑃, 𝑁1, 𝑁2; 𝑁𝑚) = 𝒢(𝑇, 𝑃, 𝒩𝑁1, 𝒩𝑁2; 𝒩𝑁𝑚)     (21) 

However, introducing �̃�(𝑇, 𝑃, 𝑐1, 𝑐2) = 𝒩𝒢𝒩𝑁𝑚 = 𝒢𝑁𝑚 , in a manner analogous to our previous 

discussion for a macroscopic system, Eq. (20) can be rewritten in a form which is invariant under 

a scaling with respect to size, as 

𝛿𝒢 = 12 ∑ ( 𝜕2𝒢𝜕𝑐𝑖𝜕𝑐𝑗)𝑇,𝑃,𝑐𝑘 (𝑁𝑚𝛿𝑐𝑖𝛿𝑐𝑗) 𝑖,𝑗=1,2       (22) 

Eq. (22) is formally analogous to Eq. (5b). However, the difference between the two equations is 

in the order of magnitude. Since, as we emphasised in Section 2, the mesoscopic quantities, 𝑁1, 𝑁2 and 𝑉 have a different order of magnitude from 𝑁𝑚, let us introduce the characteristic volume 

of the mesoscopic system, 𝑣 = 𝑉𝑁𝑚. Consequently, 𝑂(𝑐𝑖) = 𝑂(𝑣) and 𝑂(�̃�) = 𝑂(𝑣), which leads 
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to 𝑂(𝑁𝑚𝛿𝑐𝑖𝛿𝑐𝑗) = 𝑂(𝑣)  and 𝑂 (( 𝜕2𝒢𝜕𝑐𝑖𝜕𝑐𝑗)𝑇,𝑃,𝑐𝑘) = 𝑂 (1𝑣) . This order of magnitude analysis 

reveals a fundamental difference between a mesoscopic system and a macroscopic system. Note 

that for a macroscopic system, since 𝑁𝑚, 𝑁𝑖 and 𝑉 are all in the same order of magnitude,𝑂(𝑣) 

reduces to 𝑂(1), hence both 𝑁𝑚𝛿𝑐𝑖𝛿𝑐𝑗  and ( 𝜕2𝒢𝜕𝑐𝑖𝜕𝑐𝑗)𝑇,𝑃,𝑐𝑘 are also 𝑂(1). The appearance of 𝑂(𝑣) 

is a signature of the mesoscopic thermodynamic stability, which will be clarified further in Section 

4.  

 

Because of the formal analogy between Eq. (22) and Eq. (5b), both containing the two 

concentration variables, 𝑐𝑖  and 𝑐𝑗 , the discussion in Section 3.1 is applicable to the mesoscale 

binary solution, to relate the stability matrix   

�̃� = (( 𝜕2𝒢𝜕𝑐𝑖𝜕𝑐𝑗)𝑇,𝑃,𝑐𝑘)         (23)  

and the correlation matrix, 〈𝜹𝒄𝜹𝒄𝑻〉, as  〈𝜹𝒄𝜹𝒄𝑻〉 = �̃�−𝟏         (24)  

By virtue of Eq. (24), the stability condition for the mesoscale binary solution,  |�̃�| > 0          (25)  

can be interpreted in terms of the fluctuation (covariance) matrix as  1|〈𝜹𝒄𝜹𝒄𝑻〉| > 0          (26)  

 

Note that the rank of the mesoscopic stability matrix (Eq. (23)) is two, which is higher than that 

of the macroscopic binary system by one. Such a difference in rank can be rationalized simply 

from the existence of the additional component for the mesoscopic system, which is the boundary 
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object 3 introduced in Section 2. A macroscopic system, on the other hand, is a system devoid of 

such a boundary object, or whose influence can be neglected. Thus, the fundamental difference 

between a mesoscopic and macroscopic system can be attributed to the existence of a boundary 

object as an additional component, and consequently to the number of components and therefore 

the rank of the stability matrix.  

 

3.3. Thermodynamic stability for a mesoscopic binary solution under constant 𝑻, 𝑷 and 𝝁𝟏 

 

Here we consider a mesoscale binary solution which is open to component 1 but is closed to 

component 2. This corresponds, for example, to an aqueous biopolymer solution in confinement 

where water is in equilibrium with the reservoir and can move in and out of the system. The 

thermodynamic function, therefore, can be obtained via Legendre transform as 𝒥(𝑇, 𝑃, 𝜇1, 𝑁2; 𝑁𝑚) = ℇ(𝑇, 𝑃, 𝜇1, 𝜇2; 𝑁𝑚) + 𝑁2𝜇2     (27)  

The stability condition can be written as  𝛿𝒥 = 12 𝜕2𝒥𝜕𝑁22 (𝛿𝑁2)2 > 0        (28)  

See Appendix A for justification. Here we follow the same set of guiding principles as laid out in 

Section 3.3. Firstly, the thermodynamic stability condition must be independent of system size, 

which should be the same for the mesoscopic system itself and for the grand systems consisting of 

independent (uncorrelated) mesoscale systems. Secondly, the number of variables that fluctuate 

should be subject to the Gibbs phase rule. In this case, the degrees of freedom of a mesoscale 

binary solution is 4, and three intensive variables are already fixed. Hence, there is only one 

intensive variable that fluctuates. Therefore, the choice of the “intensive” variable 𝑐2 = 𝑁2/𝑁𝑚 𝛿ℐ = 12 𝜕2�̃�𝜕𝑐22 (𝑁𝑚𝛿𝑐2)2         (29)  
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satisfies the above two criteria. (Note that 𝑐2 is an 𝑂(𝑣) quantity in mesoscale while being 𝑂(1) 

in macroscale, as has been clarified in Section 3.2). There is no need to diagonalize Eq. (29). 

Application of the quasi-thermodynamic fluctuation theory yields  

 𝑁𝑚〈(𝛿𝑐2)2〉 = 〈(𝛿𝑁2)2〉𝑁𝑚 = (𝜕2�̃�𝜕𝑐22)−1
       (30)  

Therefore,  1〈(𝛿𝑁2)2〉 > 0          (31)  

is the stability condition.  

 

3.4. Thermodynamic stability under constant 𝑻, 𝑷, 𝝁𝟏 and 𝝁𝟐 

 

In this case, all four degrees of freedom for a binary mesoscopic system granted by the Gibbs phase 

rule are already fixed. This means there is no intensive degrees of freedom left for the system that 

can lead to the change of solvent composition. Nevertheless, let us write down a thermodynamic 

stability condition for ℇ(𝑇, 𝑃, 𝜇1, 𝜇2; 𝑁𝑚). The only “variable” related to composition is 𝑁𝑚, which 

is the number of molecules that constitute the boundary object. The thermodynamic function ℇ is 

a concave function with respect to 𝑁𝑚.  𝛿ℇ = 12 𝜕2ℇ𝜕𝑁𝑚2 (𝛿𝑁𝑚)2 > 0         (32) 

It is not straightforward to rewrite this stability condition in terms of the intensive, ℇ/𝑁𝑚. The 

closest way that can be  𝛿ℇ = 12 (𝑁𝑚 𝜕2ℇ𝜕𝑁𝑚2 ) (𝛿𝑁𝑚)2𝑁𝑚 > 0        (33)  

It is easy to see that the stability condition is linked to  〈(𝛿𝑁𝑚)2〉. If the number of independent 

mesoscale systems is 𝜆 in the grand system, the requirement on the independence of mesosystems 
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lead to a linear increase of  〈(𝛿𝑁𝑚)2〉 with respect to 𝜆. However, this information is hardly useful 

for our purpose, because our interest here is chiefly on the behaviour of the confined solutions 

rather than the interactions between boundary objects that have been defined as non-interacting in 

the first place.  

 

4. How system size affects phase separation  

 

4.1. Linking isobaric fluctuation to isochoric fluctuation and the Kirkwood-Buff integrals  

 

What is the effect of system size on phase separation? To answer this question from a perspective 

of the phase stability condition, let us start with the case of constant 𝑇, 𝑃, and 𝜇2 for its simplicity. 

The number fluctuation, 〈(𝛿𝑁2)2〉{𝑇,𝑃,𝜇2}, when converted to grandcanonical ensemble, can be 

interpreted in terms of the Kirkwood-Buff integrals (KBIs) 

(𝜕2�̃�𝜕𝑐22)−1 = 〈(𝛿𝑁2)2〉{𝑇,𝑃,𝑁1,𝜇2}𝑁𝑚 = 1𝑁𝑚 〈(𝛿𝑁2 − 𝐶𝛿𝑁1)2〉{𝑇,𝑉,𝜇1,𝜇2}  

= 〈(𝛿𝑁2)2 〉{𝑇,𝑉,𝜇1,𝜇2}𝑁𝑚 − 2𝐶 〈𝛿𝑁1𝛿𝑁2〉{𝑇,𝑉,𝜇1,𝜇2}𝑁𝑚 + 𝐶2  〈(𝛿𝑁1)2 〉{𝑇,𝑉,𝜇1,𝜇2}𝑁𝑚 + 𝑜(1)  = 𝑐2𝜌2(𝐺11 + 𝐺22 − 2𝐺12) + 𝑐2(1 + 𝐶)     (34) 

where 𝐶 = 𝑐2/𝑐1, and the KBI is defined as  𝐺𝑖𝑗 = 𝑉 〈𝛿𝑁𝑖𝛿𝑁𝑗 〉−𝛿𝑖𝑗〈𝑁𝑗〉〈𝑁𝑖〉〈𝑁𝑗〉         (35a) 

See Appendix B for the derivation of the first line of Eq. (34) (where 𝑁1 was written explicitly for 

clarity), using our novel algebraic approach to ensemble transformation [37]. Rewriting the 

fluctuations in Eq. (35a) in a system-size independent manner, we obtain  
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𝐺𝑖𝑗 = 𝑉𝑁𝑚
〈𝛿𝑁𝑖𝛿𝑁𝑗 〉𝑁𝑚 −𝛿𝑖𝑗〈𝑁𝑗〉𝑁𝑚〈𝑁𝑖〉𝑁𝑚〈𝑁𝑗〉𝑁𝑚 = 𝑣 〈𝛿𝑁𝑖𝛿𝑁𝑗 〉𝑁𝑚 −𝛿𝑖𝑗〈𝑁𝑗〉𝑁𝑚〈𝑁𝑖〉𝑁𝑚〈𝑁𝑗〉𝑁𝑚       (35b) 

where 𝑣 = 𝑉/𝑁𝑚, as has been introduced in Section 3. Eq. (34) can therefore be rewritten as  (𝜕2�̃�𝜕𝑐22) = 1𝑐2𝜌2(𝐺11+𝐺22−2𝐺12)+𝑐2(1+𝐶)       (36)  

 

Let us carry out an order of magnitude analysis of Eq. (34). When the phase stability condition 

is satisfied, the right-most side, (𝜕2�̃�𝜕𝑐22), is 𝑂 (1𝑣) and  
〈(𝛿𝑁2)2〉𝑁𝑚   is 𝑂(𝑣). Rewriting this quantity in 

terms of the KBIs (i.e., the last line of Eq. (34)) is helpful in understanding how the stability 

condition is broken in mesoscale. Eq. (35b) shows that the KBI in the mesoscopic system is still 𝑂(1) when species 𝑖 and 𝑗 are well mixed within the mesoscale object.  

 

It is useful here to consider a limiting case of Eq. (35b) for microscopic solutes for comparison. 

In this case, both 𝑐2 and 𝜌2 are 𝑂(1), hence (𝜕2�̃�𝜕𝑐22) and 
〈𝛿𝑁𝑖𝛿𝑁𝑗 〉𝑁𝑚   both go back to 𝑂(1) when the 

mixture is stable. Because 𝑐2 and 𝜌2 in Eq. (36) are 𝑂(1), in order to break the phase stability 

condition, KBI should become 𝑂(𝑉) so as to make 𝑂 ((𝜕2�̃�𝜕𝑐22)) = 𝑂 (1𝑉) = 𝑜(1), 

 

 For a mesoscopic system, in contrast, the phase stability condition requires (𝜕2�̃�𝜕𝑐22) = 𝑂 (1𝑣) and 

〈(𝛿𝑁2)2〉𝑁𝑚 = 𝑂(𝑣). Since KBIs are 𝑂(1) for a stable mesoscopic mixture, the last line of Eq. (34) 

shows that the 𝑂(𝑣) magnitude of 
〈(𝛿𝑁2)2〉𝑁𝑚  for stability comes entirely from 𝑐2. However, when the 

KBIs reach 𝑂(𝑣), 
〈(𝛿𝑁2)2〉𝑁𝑚 = 𝑂(𝑣2) and (𝜕2�̃�𝜕𝑐22) is 𝑂 ( 1𝑣2).  
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Note that for a macroscopic system it is simply that 𝑂(𝑣) = 𝑂(𝑣2) = 𝑂(1), because 𝑣 = 𝑂(1). 

Only for mesoscopic systems that a distinction between the orders of magnitude, 𝑂(1), 𝑂(𝑣) and 𝑂(𝑣2) does emerge. Indeed, whether 𝑂 ( 1𝑣2) for (𝜕2�̃�𝜕𝑐22) can indeed be considered as 𝑜 (1𝑣), thereby 

breaking the phase stability condition, depends on the interplay between the limitation in precision 

of observation and the magnitude of 𝑣; the phase stability condition is broken at a large but finite 𝑣 with which 𝑂 ( 1𝑣2) is below the detection limit. Thus, unlike the case of bulk solutions, KBIs do 

not need to reach the macroscopic scale 𝑂(𝑉) to break the phase stability. This is how breaking 

the phase stability condition may be easier under mesoscopic confinement.  

 

Here, a comparison to mesoscale fluctuations within a macroscopic system [22,23] is in order, 

for which the left-hand side of Eq. (36) reduces from 𝑂(1) to 𝑂 (1𝑣), where 𝑣 refers to mesoscopic 

scale. This is parallel to the breaking of phase stability condition in a mesoscopic system, in which 

the left-hand side of Eq. (36) reduces from 𝑂 (1𝑣) to 𝑂 ( 1𝑣2). Both reductions are due to the growths 

of KBIs from 𝑂(1) to 𝑂(𝑣), yet the former does not lead to phase separation. In a macroscopic 

system, phase separation means inhomogeneity of concentration (or density) over 𝑂(𝑉) scale, and 

an 𝑂(𝑣) inhomogeneity is too small in scale to be regarded as the emergence of distinct phases. In 

a mesoscopic system, on the other hand, an 𝑂(𝑣) fluctuation already covers the whole system and 

distinct regions are observed within the boundary. 

 

Under constant 𝑇 and 𝑃 (Section 3.2), rewriting isobaric fluctuations in terms of the KBIs leads 

to a complex mathematical relationship, as shown in Appendix C. The most useful insight, 
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however, is that the isobaric fluctuation for a dilute component can be approximated by the 

isochoric fluctuation, thereby expressed easily in terms of the KBIs. In addition, thermodynamic 

stability under isochoric conditions have been derived in Appendix D, in which case there is no 

need for an isobaric to isochoric conversion as presented above.  

 

4.2. Phase separation via preferential adsorption and depletion interaction   

 

Preferential adsorption onto the boundary of one species over another has been observed 

universally, both for alcohol-water mixtures [7–11] and macromolecules [4,5] from experiments 

and theory, and has been recognized as the key towards phase separation. Based on the mesoscale 

stability theory developed above, we aim to clarify (a) the relationship between adsorption and 

phase separation and (b) what constitutes a full set of evidence for the adsorption-induced phase 

separation as a suggestion for experiments and simulation.  

 

To achieve these aims, the stability theory is indispensable, because the study of preferential 

adsorption on its own cannot give a complete insight into phase separation for the following 

reasons. Here, adsorption refers to 〈𝑁𝑚𝑁1〉 and 〈𝑁𝑚𝑁2〉, whereas, from Eq. (26), phase separation 

takes place when  |〈𝜹𝒄𝜹𝒄𝑻〉| = 𝑐1𝑐2 [〈𝑁22〉−〈𝑁2〉2〈𝑁2〉 〈𝑁12〉−〈𝑁1〉2〈𝑁1〉 − (〈𝑁1𝑁2〉−〈𝑁1〉〈𝑁2〉)2〈𝑁1〉〈𝑁2〉 ] = 𝑂(1)   (37)  

is broken. Indeed, a direct evaluation of the self- and mutual-correlation terms, 〈𝑁𝑖2〉 − 〈𝑁𝑖〉2 and (〈𝑁1𝑁2〉 − 〈𝑁1〉〈𝑁2〉)2, requires either a composition dependence of 〈𝑁1〉 and 〈𝑁2〉, rather than 〈𝑁1〉 and 〈𝑁2〉 themselves, or a direct evaluation of number correlations. Unfortunately, at the 
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present stage, there is no experimental data available in the literature that enables us to evaluate 

all the terms of Eq. (37).  

 

Nevertheless, Eq. (37) can be used to clarify the mechanism of macromolecular phase separation 

in mesoscale. The depletion of macromolecules (such as polyethylene glycol, PEG [4], 

polyelectrolytes [5] and actin filaments [44]) has been proposed, based on the Flory-Huggins 

model, to be a driving force for the segregation of DNA-macromolecule mixtures under 

confinement. The depletion of the macromolecules from the surface contribute to their self-

association as well as to DNA-DNA association on the surface. If the self-association exceeds 

mutual association and reaches the mesoscopic order, 𝑂(𝑣), the phase stability condition (Eq. (37)) 

is broken. There was no explicit consideration on the mutual association, yet it is natural to expect 

it to decrease through segregation in the scale of 𝑂(𝑣).  

 

The recent investigations [45,46] on the hydrogen bonding structure of ethanol-water mixtures 

in confinement examine not only self-association but also mutual association.  That water-water 

and ethanol-ethanol H-bonding were enhanced from bulk upon confinement while ethanol-water 

H-bonding was reduced [45] is consistent with the increase of self-correlation 〈𝑁12〉 − 〈𝑁1〉2 and 〈𝑁22〉 − 〈𝑁2〉2  and the decrease of (〈𝑁1𝑁2〉 − 〈𝑁1〉〈𝑁2〉)2  which is the direction for phase 

separation. When the difference between self- and mutual- association reaches the mesoscopic 

order of magnitude, phase separation takes place. This insight is underscored further by a 

systematic analysis of ethanol-water mixtures near different surfaces, which has shown that the 

stronger the water-ethanol hydrogen bond the less separated the two species [46], which is in line 

with the mesoscale stability condition (Eq. (37)).  
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5. Conclusion  

 

Confinement of solutions in mesoscale, such as droplet, cell, liposome or nanofluids, has been 

known to influence phase separation, as has been evidenced in wide-ranging fields. This paper has 

established the stability condition for a solution under mesoscale confinement, facilitated by the 

formal analogy between Hill’s small system thermodynamics [25] and a partially open ensemble. 

 

The thermodynamic stability condition extended to mesoscale is shown to involve several 

different orders of magnitude that are all considered to be 𝑂(1) at a macroscopic limit. Reaching 

phase instability is much easier in the mesoscale compared to the macroscale, which is caused by 

net self-fluctuation (compared to mutual-fluctuation) reaching the mesoscopic order of magnitude 𝑂(𝑣), rather than the macroscopic order 𝑂(𝑉) (which, due to the macroscopic (𝑉 → ∞) system 

size, is commonly referred to as divergence). Hence, a solution mixture in which the individual 

components tend to self-aggregate under confinement can easily break the stability condition, and 

the interaction with the surface, when it enhances self-association, may help satisfy phase 

instability. It should be noted that our arguments were concerned only with the extent of fluctuation 

and the system size. Accordingly, the analyses are valid in general when the system is not too 

small and the specific interactions with the boundary objects play a minor role. 

 

 

Appendix A 
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Here we prove that the convexity of a function is preserved under certain Legendre transformation.  𝒢(𝑇, 𝑃, 𝑁1, 𝑁2; 𝑁𝑚)  is a special case of a three-component macroscopic mixture, 𝐺(𝑇, 𝑃, 𝑁1, 𝑁2, 𝑁3), where 𝑚 was rewritten as 3 for convenience, hence we focus on it throughout 

this Appendix. Since 𝐺 is a convex (and at least twice differentiable) function with respect to 𝑁1, 𝑁2, and 𝑁3,under constant 𝑇 and 𝑃 [47–49],   𝛿𝐺 = 12 ∑ 𝑔𝑖𝑗𝛿𝑁𝑖𝛿𝑁𝑗3𝑖,𝑗=1 > 0        (A1)  

where  

𝑔𝑖𝑗 = ( 𝜕2𝐺𝜕𝑁𝑖𝜕𝑁𝑗)𝑇,𝑃,𝑁𝑘         (A2)  

is positive definite.   

 

Firstly, we prove that if a function is convex function with respect to 𝑁1, 𝑁2 and 𝑁3, then the 

same function is (i) a convex function with respect to 𝑁1 and 𝑁2 under constant 𝑁3, and also (ii) a 

convex function with respect to 𝑁1 under constant 𝑁1 and 𝑁3. Our basis is the condition for the 

positive definiteness of Eq. (A1), which is a simultaneous fulfilment of Eq. (A3)-(A5) [38,39]:    

 𝑔11 > 0          (A3)  |𝑔11 𝑔12𝑔21 𝑔22| > 0         (A4)  

|𝑔11 𝑔12 𝑔13𝑔21 𝑔22 𝑔23𝑔31 𝑔32 𝑔33| > 0         (A5)  

The proof for (i) comes from Eqs. (A3) and (A4) that serve as the condition for the positive 

definiteness of the following quadratic term when 𝑁3 is kept constant:   𝛿𝐺 = 12 ∑ 𝑔𝑖𝑗𝛿𝑁𝑖𝛿𝑁𝑗2𝑖,𝑗=1         (A6)  
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The proof for (ii) follows Eq. (A3) which, on its own, can serve as the condition for the positive 

definiteness, under constant 𝑁1 and 𝑁2, of the following:  𝛿𝐺 = 12 𝑔11𝛿𝑁12         (A7)  

 

We have thus proven that 𝐺 is a convex function with respect to 𝑁1 and 𝑁2 under constant 𝑁3, 

and a convex function with respect to 𝑁1 under constant 𝑁2 and 𝑁3. These results can be applied 

straightforwardly to  𝒢(𝑇, 𝑃, 𝑁1, 𝑁2; 𝑁𝑚) because it is a special case of 𝐺(𝑇, 𝑃, 𝑁1, 𝑁2, 𝑁3).  

 

An alternative proof, which is applicable even for undifferentiable functions, will be presented 

here, in order to facilitate the discussion on convexity under Legendre transformation. This proof 

comes directly from the definition of a convex function, namely for any two vectors inside the 

space where the function 𝐺 is defined, namely 𝑵𝒂 = (𝑁1𝑎, 𝑁2𝑎, 𝑁3𝑎) and 𝑵𝒃 = (𝑁1𝑏 , 𝑁2𝑏 , 𝑁3𝑏), 

for which the following holds true [47–49]:   𝐺(𝜆𝑵𝒂 + (1 − 𝜆)𝑵𝒃) ≤ 𝜆𝐺(𝑵𝒂) + (1 − 𝜆)𝐺(𝑵𝒃)    (A8)  

Rewriting Eq. (A8) for the special case, 𝑵𝒂′ = (𝑁1𝑎, 𝑁2𝑎, 𝑁3) and 𝑵𝒃′ = (𝑁1𝑏, 𝑁2𝑏 , 𝑁3), leads to 

the convexity with respect to (𝑁1, 𝑁2) when 𝑁3 is kept constant. 𝑵𝒂′′ = (𝑁1𝑎, 𝑁2, 𝑁3) and 𝑵𝒃′′ =(𝑁1𝑏, 𝑁2, 𝑁3), leads to the convexity with respect to 𝑁1  when 𝑁2  and 𝑁3  is kept constant. For 

differentiable 𝐺, Eq. (1) can be derived straightforwardly by considering 𝑵 + 𝝐 and 𝑵 − 𝝐 in place 

of 𝑵𝒂 and 𝑵𝒃 at 𝜆 = 12.  

 

Secondly, we shall prove that 𝐽(𝑇, 𝑃, 𝜇1, 𝑁2, 𝑁3) is a convex function with respect to 𝑁2 when 

all other parameters are kept constant. Our starting point is the result above that 𝐺(𝑇, 𝑃, 𝑁1, 𝑁2, 𝑁3) 

is a convex function with respect to 𝑁2 when other parameters are all kept constant. We therefore 
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need to show that the convexity of 𝑁2 is not affected by the Legendre transform of 𝑁1 to 𝜇1. To 

facilitate the proof, we omit all the constants to denote 𝐽(𝜇1, 𝑁2) and 𝐺(𝑁1, 𝑁2), where 𝐽(𝜇1, 𝑁2) = 𝐺(𝑁1, 𝑁2) − 𝜇1𝑁1 under the condition that 𝜇1 = ( 𝜕𝐺𝜕𝑁1)𝑁2  (A9)  

The convexity of 𝐺 with respect to 𝑁2 is defined as the following in terms of the two points, 𝑁2 =𝑁2𝑎 and 𝑁2𝑏 as  𝐺(𝑁1, 𝜆𝑁2𝑎 + (1 − 𝜆)𝑁2𝑏) ≤ 𝜆𝐺(𝑁1, 𝑁2𝑎) + (1 − 𝜆)𝐺(𝑁1, 𝑁2𝑏)   (A10)  

Subtracting both sides by 𝜇1𝑁1, we obtain  𝐺(𝑁1, 𝜆𝑁2𝑎 + (1 − 𝜆)𝑁2𝑏) − 𝜇1𝑁1  ≤ 𝜆[𝐺(𝑁1, 𝑁2𝑎) − 𝜇1𝑁1] + (1 − 𝜆)[𝐺(𝑁1, 𝑁2𝑏) − 𝜇1𝑁1]   (A11)  

Even though 𝜇1 = ( 𝜕𝐺𝜕𝑁1)𝑁2  in all the terms in Eq. (A11) were taken at different 𝑁2 , 𝜇1 s 

nevertheless have the same constant value, because we are considering the convexity of 𝐽(𝜇1, 𝑁2) 

under constant 𝜇1. Consequently, Eq. (A11) leads to  𝐽(𝜇1, 𝜆𝑁2𝑎 + (1 − 𝜆)𝑁2𝑏) ≤ 𝜆𝐽(𝜇1, 𝑁2𝑎) + (1 − 𝜆)𝐽(𝜇1, 𝑁2𝑏)   (A12)  

which is indeed the convexity of 𝐽(𝜇1, 𝑁2) with respect to 𝑁2 under constant 𝜇1. Using the similar 

argument as before, we can obtain (𝜕2𝐽𝜕𝑁22) > 0 when 𝐽 is differentiable.  

 

Appendix B 

 

Here we convert 〈(𝛿𝑁2)2〉{𝑇,𝑃,𝜇2}  to the corresponding expression for fluctuation in the 

grandcanonical ensemble. To do so, we employ our recent algebraic method for ensemble 

conversion based on (i) system size-invariance of concentration (in this case 𝐶) and its fluctuation 

and (ii) invariance of 𝐶 and its fluctuation under ensemble transformation [37]. In Ref [37], we 
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employed isobaric and isochoric subsystems for the re-derivation of the KB theory for macroscopic 

solution mixtures. In contrast, our goal here is to convert  〈(𝛿𝑁2)2〉{𝑇,𝑃,𝜇1,𝜇2} (with full information 

on ensemble) to 〈(𝛿𝑁2)2〉{𝑇,𝑉,𝜇1,𝜇2} ; unlike Ref [37], we need to employ an ensemble of 

independent, non-interacting mesoscopic systems.  

 

The isobaric ensemble can therefore be written as 〈(𝛿𝒩2)2〉{𝑇,𝑃,𝒩1,𝜇2}, with the specified number 

of total 𝒩1, while the isochoric ensemble becomes 〈(𝛿𝒩2)2〉{𝑇,𝒱,𝜇1,𝜇2}. Note that 
𝒩𝑖𝒱  is identical to 

the mean concentration for the small system. With this setup, the change of mole ratio, 𝐶 =𝒩2/𝒩1, can be expressed under isobaric and isochoric conditions as  

 
𝒩2+(𝛿𝒩2)𝑃𝒩1 = 𝒩2+(𝛿𝒩2)𝒱𝒩1+(𝛿𝒩1)𝒱         (B1)  

The Maclaurin expansion of the right-hand side of Eq. (B1) yields  

𝒩2+(𝛿𝒩2)𝑃𝒩1 = (𝒩2+(𝛿𝒩2)𝒱)(1−(𝛿𝒩1)𝒱𝒩1 +𝑂(1𝒱)) 𝒩1       (B2)  

Comparing both sides of Eq. (B2) yields  (𝛿𝒩2)𝑃 = (𝛿𝒩2)𝒱 − 𝒩2𝒩1 (𝛿𝒩1)𝒱 + 𝑂(1)      (B3)  

An expression analogous to Eq. (34) can be derived from Eq. (B3) as  

〈(𝛿𝒩2)2〉{𝑇,𝑃,𝒩1,𝜇2}𝒩𝑚 = 1𝒩𝑚 〈(𝛿𝒩2 − 𝐶𝛿𝒩1)2〉{𝑇,𝒱,𝜇1,𝜇2} + 𝑜(1)    (B4)  

 

The next step is to convert Eq. (B4) to an expression in a small system. To do so, let us first note 

that the small systems, that comprise the ensemble thereof, are all independent. Under this 

condition, the denominator and numerator in the both side of Eq. (B4) scale with the number of 

subsystems in an ensemble. Hence, we recover 〈(𝛿𝑁2)2〉{𝑇,𝑃,𝑁1,𝜇2}. Noting that the size information 



 25 

is implicit in the small system in terms of 𝑁𝑚, which is the hidden extensive quantity; instead of 

the mean of 𝑁1/𝑁𝑚, being an intensive quantity, 𝜇1 can be adopted. Thus, using the constancy of 

mean concentrations, we obtain the first step in Eq. (34). This constitute the generalization of the 

“intensive nature of relative fluctuation” [37] to small systems.  

 

Appendix C 

 

Here we convert the fluctuation in number of species 𝑖, (𝛿𝑁𝑖)𝑃 in a  𝑇, 𝑃, 𝜇1, 𝜇2, 𝑁𝑚 ensemble to 

that in a 𝑇, 𝑉, 𝜇1, 𝜇2, 𝑁𝑚 ensemble, (𝛿𝑁𝑖)𝑉. Note that only pressure and volume have been denoted 

in the variances for simplicity. Here we extend our recently proposed method without 

thermodynamic variable conversion [37]. Let us consider an ensemble of independent, non-

interacting mesoscopic systems with volume 𝒱, which contains 𝒩𝑖 molecules of species 𝑖. The 

change of number density, 𝒩𝑖/𝒱, can be expressed under isobaric and isochoric conditions as  

 
𝒩𝑖+(𝛿𝒩𝑖)𝒱𝒱 = 𝒩𝑖+(𝛿𝒩𝑖)𝑃𝒱+(𝛿𝒱)𝑃          (C1)  

The Maclaurin expansion of the right-hand side of Eq. (C1) yields  

𝒩𝑖+(𝛿𝒩𝑖)𝒱𝒱 = (𝒩𝑖+(𝛿𝒩𝑖)𝑃)(1−(𝛿𝒱)𝑃𝒱 +𝑂(1𝒱)) 𝒱       (C2)  

Comparing both sides of Eq. (C2) yields  (𝛿𝒩𝑖)𝒱 = (𝛿𝒩𝑖)𝑃 − 𝒩𝑖𝒱 (𝛿𝒱)𝑃 + 𝑂(1)      (C3)  

Therefore, the elements of the correlation matrix, because they are system size independent, can 

be transformed as  

〈𝛿𝒩𝑖𝛿𝒩𝑗〉𝒱𝒩𝑚 = 1𝒩𝑚 [〈𝛿𝒩𝑖𝛿𝒩𝑗〉𝑃 − 𝒩𝑖𝒱 〈𝛿𝒱𝛿𝒩𝑗〉𝑃 − 𝒩𝑗𝒱 〈𝛿𝒱𝛿𝒩𝑖〉𝑃  + 𝒩𝑖𝒩𝑗𝒱2 〈𝛿𝒱𝛿𝒱〉𝑃] (C4)  

Since Eq. (C4) is independent of system size, it can be rewritten for a mesoscopic system, as 



 26 

〈𝛿𝑁𝑖𝛿𝑁𝑗〉𝑉𝑁𝑚 = 1𝑁𝑚 [〈𝛿𝑁𝑖𝛿𝑁𝑗〉𝑃 − 𝑁𝑖𝑉 〈𝛿𝑉𝛿𝑁𝑗〉𝑃 − 𝑁𝑗𝑉 〈𝛿𝑉𝛿𝑁𝑖〉𝑃  + 𝑁𝑖𝑁𝑗𝑉2 〈𝛿𝑉𝛿𝑉〉𝑃] (C5)  

 

It is well-known that the last term of Eq. (C5) is related to the isothermal compressibility, 𝜅𝑇, 

via 𝑅𝑇𝜅𝑇 = 〈𝛿𝑉𝛿𝑉〉𝑃𝑉 . Isothermal compressibility makes a negligibly small contribution compared 

to number fluctuation, hence is neglected.  〈𝛿𝑉𝛿𝑁𝑖〉𝑃 in the second and third terms can be linked 

to  

1〈𝑉〉𝑃 (𝜕〈𝑉〉𝑃𝜕𝜇𝑖 )𝑇,𝜇𝑗,𝑁𝑚 = 1𝑅𝑇 〈𝛿𝑉𝛿𝑁𝑖〉𝑃〈𝑉〉𝑃        (C6)  

When one of the components (say, 𝑖) is dilute, Eq. (C5) can be simplified further, by neglecting  

1𝑁𝑚 [− 𝑁𝑖𝑉 〈𝛿𝑉𝛿𝑁𝑗〉𝑃 − 𝑁𝑗𝑉 〈𝛿𝑉𝛿𝑁𝑖〉𝑃] = − 𝑁𝑖𝑉 𝑁𝑗𝑁𝑚 〈𝛿𝑉𝛿𝑁𝑗〉𝑃𝑁𝑗 − 𝑁𝑖𝑉 𝑁𝑗𝑁𝑚 〈𝛿𝑉𝛿𝑁𝑖〉𝑃𝑁𝑖   (C7)  

because 
𝑁𝑖𝑉  is small. Eq. (C5) can then be simplified as  

〈𝛿𝑁𝑖𝛿𝑁𝑗〉𝑃𝑁𝑚 = 〈𝛿𝑁𝑖𝛿𝑁𝑗〉𝑉𝑁𝑚          (C8)  

 

Appendix D  

 

Here we summarise briefly the two most interesting cases regarding thermodynamic stability under 

an isochoric condition for a mesoscopic binary solution. In the following, we use the result from 

Appendix A, namely, the convexity of thermodynamic functions with respect to unconstrained 

variables. For understanding how the stability condition is broken in mesoscale, the same order-

of-magnitude consideration with respect to the system size scale (as in Section 4.1) is valid for 

these cases.  
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(i) The (𝑻, 𝑽, 𝑵𝟏, 𝑵𝟐; 𝑵𝒎)  ensemble. Starting from Eq. (19), we carry out the Legendre 

transform to introduce 𝒢′(𝑇, 𝑉, 𝑁1, 𝑁2; 𝑁𝑚) = 𝒢(𝑇, 𝑃, 𝑁1, 𝑁2; 𝑁𝑚) − 𝑃𝑉     (D1)   

which governs thermodynamic stability. When we constraint the system volume as constant.  𝒢′(𝑇, 𝑉, 𝑁1, 𝑁2; 𝑁𝑚) is still convex with respect to 𝑁1 and 𝑁2, hence  

𝛿𝒢′ = 12 ∑ ( 𝜕2𝒢′𝜕𝑁𝑖𝜕𝑁𝑗)𝑇,𝑉,𝑁𝑘 𝛿𝑁𝑖𝛿𝑁𝑗  𝑖,𝑗=1,2 > 0     (D2)  

is the stability condition for the mesoscale binary solution. Parallel to Section 3.2, the size-

invariance of the stability through the use of an ensemble consisting of equivalent, non-interacting 

mesoscopic systems transforms Eq. (D2) into the following form:  

𝛿𝒢′ = 12 ∑ ( 𝜕2𝒢 ′̃𝜕𝑐𝑖𝜕𝑐𝑗)𝑇,𝑉,𝑐𝑘 (𝑁𝑚𝛿𝑐𝑖𝛿𝑐𝑗) 𝑖,𝑗=1,2       (D3) 

where 𝒢 ′̃(𝑇, 𝑉, 𝑐1, 𝑐2) = 𝒩𝒢′𝒩𝑁𝑚 = 𝒢′𝑁𝑚. An argument parallel to Section 3.2 leads to the following 

expression of the stability condition in terms of the covariance matrix:  1|〈𝜹𝒄𝜹𝒄𝑻〉| > 0          (D4)  

Note that the covariance in Eq. (D4) was taken under an isochoric condition rather than the isobaric 

condition in Eq. (26). This quantity is analogous to the KB theory for macroscopic solutions except 

for the presence of the boundary object.  

 

(ii) The (𝑻, 𝑽, 𝝁𝟏, 𝑵𝟐; 𝑵𝒎) ensemble. Starting from Eq. (27), a Legendre transformation yields 

an isochoric thermodynamic function  𝒥′(𝑇, 𝑉, 𝜇1, 𝑁2; 𝑁𝑚) = 𝒥(𝑇, 𝑃, 𝜇1, 𝑁2; 𝑁𝑚) − 𝑃𝑉     (D5)  

The stability condition can be written as  
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𝛿𝒥′ = 12 𝜕2𝒥′𝜕𝑁22 (𝛿𝑁2)2 > 0        (D4)  

Following an argument parallel to Section 3.3, the stability condition is expressed in terms of 𝒥′̃ =
ℐ′𝑁𝑚 and the “intensive” variable 𝑐2 = 𝑁2/𝑁𝑚,  

𝛿ℐ′ = 12 𝜕2𝒥′̃𝜕𝑐22 (𝑁𝑚𝛿𝑐2)2        (D5)  

from which the isochoric stability condition,  1〈(𝛿𝑁2)2〉 > 0          (D6)  

analogous to the isobaric counterpart (Eq. (31)) can be derived.  
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