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Abstract— A decentralized voltage control scheme to achieve robust stability and robust performance of islanded 

direct current (DC) microgrids is presented in this paper. The investigated microgrid consists of multiple distributed 

generation (DG) units with a general topology, each one comprising a local uncertain ZIP (constant impedance (Z), 

constant current (I), and constant power (P)) load. The proposed controller confers the following main advantages: 

1) the design procedure is scalable, 2) it has a completely decentralized structure, 3) it prepares stability and 

desirable performance of the nominal closed-loop microgrid, 4) it preserves robust stability as well as robust 

performance of microgrid system under different sources of uncertainty, including plug-and-play (PnP) 

functionalities of DGs, microgrid topology changes, uncertain ZIP load, and unmodeled load dynamics, 5) every 

local controller is the solution of a unique convex optimization problem, resulting in the optimal performance and 

robustness to several different successive changes. First, a linear time-invariant (LTI) state-space model is developed 

for each DG subsystem with capturing disturbances, and different uncertainty sources are modeled as a new single 

polytope. Then, all control objectives are converted into a robust dynamic output-feedback-based controller for an 

LTI polytopic system with 𝐻∞ performance criterion. Finally, the obtained nonconvex problem is reduced to a linear 

matrix inequality (LMI) based optimization problem. Several simulation case studies are carried out in MATLAB to 

demonstrate the effectiveness of the proposed controller. 

Keywords: DC microgrids, decentralized control, linear matrix inequality (LMI), polytopic system, robust 

performance, robust stability. 
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1. Introduction 

In the last few decades, the increasing utilization of electrical energy, the restriction of fossil fuel sources, and 

their adverse environmental effects have led to a propensity towards distributed generations that contain renewable 

energy sources (RES), energy storage systems (ESS), and different types of loads. The integrated and reliable 

junction of DG units to the main power network was gained through microgrids [1].  

Microgrids can operate in autonomous (islanded) or grid-connected mode, and based on the voltage type at the 

point of common coupling (PCC), AC and DC microgrids can be discerned [2]. While considerable development has 

been made to improve the performance of AC microgrids within the past years, for different uses DC microgrids 

have received more attention due to, 1) their higher efficiency, 2) more natural interface to many types of RES and 

ESS, 3) not requiring the control of the frequency, power quality, and reactive power, resulting in a remarkably less 

intricate control system, and 4) vast application in electrical vehicles, aircrafts, submarines, naval ships, telecom 

systems, etc. [3, 4]. 

The connection of DGs to a DC microgrid is maintained via a controllable power electronic converter, and the 

main control objective is the adjustment of the voltage of the DC bus. In grid-connected mode, the main network 

imposes the voltage of the PCC. In contrast, in islanded mode, the microgrid needs a different control mechanism to 

regulate the load voltage of each DG unit and maintain the stability of the system. Droop control is a prevalent 

method to attain this utilizing decentralized proportional voltage control of several converters without digital 

communication links [4-9]. This approach is based on augmentation of a so-called virtual resistance (VR) control 

loop on top of the converter’s voltage regulator, which permits current sharing and PnP functionalities at the same 

time [7]. However, in spite of these remarkable properties, several disadvantages restrict the usability of the droop 

controller, the most important ones being, load-dependent voltage deviation, steady-state error in voltage 

magnitudes, and the reality that diffusion of voltage error along resistive connection lines leads to current sharing 

deterioration [2]. To restore the voltage, a secondary controller, and to provide precise current sharing between 

different buses, a tertiary controller need to be applied [1-3]. Other disadvantages of the conventional droop method 

are its inability to attain a coordinated performance of multiple components with various characteristics, the 

compromise between power-sharing accuracy and voltage regulation, weak performance in the presence of resistive-

inductive lines and/or conductance, and slow transient response [5]. 



3 

 

Recently, to resolve some of the drawbacks related to the droop-based methods, non-droop-based control 

approaches have been presented in the literature [10-25]. In these methods, an advanced model-based controller 

performs the tasks of the primary and secondary controller related to the droop mechanism based on the received set 

points from the supervisory level. Controller design based on the robust stability and robust desirable performance 

approach under various sources of uncertainty, such as uncertain and unknown dynamics loads, PnP functionality of 

DGs, and changes in microgrid topology, has played a significant role among non-droop-based control manners. 

Robust stability means that the closed-loop system under the designed controller is stable in presence of 

uncertainties in the plant. As a result, the output will be bounded for every bounded input to the system and any 

finite initial condition. Besides, robust performance is defined as the closed-loop system's desirable performance, 

such as reference tracking with zero steady-state error, bounded control signal, acceptable transient response, etc., is 

always provided under existing uncertainty sources [26]. These strategies consider the robust voltage regulation of 

the autonomous microgrids to design a multi-loop state-feedback [12, 13, 19, 20, 22-24] or a single-loop output-

feedback controller [10, 11, 14, 15, 18]. Due to their requirement for more measurement sensors and also the 

availability or estimation of all state variables, state-feedback-based methods impose higher costs and lower system 

reliability. As a result, these control manners are less appropriate for actual implementation.  

Robust non-droop-based methods have been mostly used to control the voltage of AC islanded microgrids [10-

16]. Several control schemes have recently been presented for DC autonomous microgrids [17-25]. A Non-fragile 

robust 𝐻∞ approach is proposed in [17] to minimize the effects of the modelling uncertainty and the external 

disturbance in DC microgrids with parallel topology. A centralized output-feedback controller is proposed in [18] 

that only guarantees robustness against unknown loads and parametric uncertainties of the DGs. Another centralized 

controller based on state-feedback is designed in [19] with robustness against load changes and parametric 

uncertainties. A decentralized nonlinear state-feedback based controller is presented in [20], which is robust with 

respect to bounded unknown disturbances. However, the load dynamics are neglected in [18-20]. A nonlinear 

decentralized backstepping-based strategy is proposed in [21] to improve the transient response in the presence of 

load change and constant power load (CPL). A decentralized state-feedback controller is suggested in [22] that 

guarantees robust stability against uncertain CPL, and uncertain constant impedance load (CIL). To resolve the 

problem of voltage regulation of the DC microgrid in case of PnP functionality of DGs, the state-feedback control 

https://en.wikipedia.org/wiki/Bounded_function
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approaches have been used in [23, 24]. These are based on the neutral interactions idea and have a decentralized 

scalable structure. In the provided control method in [23], after plugging in/out of a DG unit, all the local controllers 

of its neighboring DGs needed redesigning, which resulted in the complexity of the proposed controller. A three 

degree-of-freedom (DOF) control scheme is propounded in [24], with no need to retune the state-feedback gains 

after the PnP operations of DG units. Nevertheless, the developed strategies in [23, 24] do not take into account load 

dynamics. Also, these approaches use static state-feedback to provide system stability and two pre-filters to reduce 

the load effect and improve the dynamic output of the closed-loop microgrid. Although the introduced state-

feedback-based controllers satisfy robust stability, robust desirable performance of the system is not guaranteed. 

Moreover, the design of the pre-filters and state-feedback gains are accomplished as three independent optimization 

problems, which leads to a suboptimal controller, and as a results the suboptimal closed-loop performance and non-

robustness to several subsequent changes caused by different sources of uncertainty. Furthermore, using the neutral 

interactions idea results in some restrictions to the decision variables in the final optimization problem, which leads 

to a more conservative control design approach. Various researches have been conducted on the extension of robust 

non-droop-based control for DC microgrids; however, they comprise one or more of the following disadvantages, 1) 

non-robustness with respect to PnP functionality of DGs [18-20], 2) non-robustness against uncertain ZIP loads [18-

21, 23, 24], 3) inability to maintain robust performance under PnP functionality of DGs and topological changes [18-

24], 4) suboptimal controller [22-24], 5) limitations to the decision variables [22-24], 6) high-order controllers [18], 

7) centralized control structure [18, 19], 8) non-robustness to several different subsequent changes [23, 24], and 9) 

being inapplicable to DC microgrids with general topology [17, 20, 25]. 

This paper present an optimal robust primary voltage control approach for islanded uncertain DC microgrid with 

general structure. Each DG unit comprises a local uncertain ZIP load through a DC/DC converter, which can be 

different types, such as buck and boost. The proposed controller, opposed to works in [22-24], is based on the 

output-feedback, and unlike [18], has a fully decentralized structure, which offers several advantages, including 

lower communication bandwidth, availability of a proprietary control unit, fewer sensors, less computational burden, 

cost-effectiveness, and higher reliability. The main contribution of the proposed controller are as follows: 

 The main focus of the presented voltage control scheme, unlike most of the previously proposed robust non-

droop-based controllers [22-24], is on the robust desired performance (transient and steady-state) satisfaction 
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in addition to robust voltage stabilization in the islanded DC microgrids with a general structure by providing a 

decentralized 𝐻∞ fixed-order local voltage control strategy.  

 The proposed controller guarantees robust stability and performance of the closed-loop microgrid system under 

several sources of uncertainty, including topology changes, uncertain ZIP loads, unknown load dynamics, PnP 

operations of DGs, and several subsequent changes caused by different mentioned uncertainty sources, by 

modeling all uncertainty sources as a new unique polytope. 

 Unlike the proposed robust control schemes in [22-24], every local controller is a solution of a unique convex 

optimization problem, resulting in optimal performance and robustness to several different consecutive 

changes in addition to less computational complexity. More precisely, if any of the changes mentioned above 

occur, the closed-loop system is still robust to all sources of uncertainty.  

 To achieve a decentralized control structure, contrary to the works in [22-24], which are based on the neutral 

interactions idea, the interaction terms between DG subsystems are modeled as a disturbance input with no 

constraint on the structure of final decision variables, which results in less conservatism. 

 The robust controller design process is scalable, i.e., the local control system design for each DG unit is not 

dependent on the other DGs.  

To attain these objectives, an average LTI state-space model is extracted for each DG unit, considering two 

disturbances from interaction inputs and unknown load dynamics. Next, the uncertain loads, the PnP operation of 

DGs, and the topological alterations are modeled as a new polytopic-type uncertainty. The design objectives are 

converted into an LMI description of a fixed-order dynamic output-feedback controller for a polytopic LTI state-

space system. In order to evaluate its effectiveness by several case studies, the suggested control manner is exerted 

to a DC microgrid system, including 6 DGs [23]. The generated outcomes emphasize the efficiency of the presented 

controller in assuring robust stability and robust desirable performance. It should be noted that in this paper the 

robust stability and robust performance specifications are described in frequency-domain, which allows system 

design, control parameters adjustment, stability analysis, and performance studies to be done easily. Moreover, the 

frequency-domain conditions can be transformed into time-domain, which helps to establish an effective control 

design [27]. For example, high closed-loop bandwidth provides a fast dynamic response. 

Different sections of this paper are classified as follows: The mathematical model of the islanded DC microgrid  
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Fig. 1.  General electrical diagram of a DC microgrid consists of two DGs connected via line 𝑖𝑗. 
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Fig. 2.  Average model of a  DC/DC converter: (a) model of a buck converter, and (b) model of a boost converter. 

TABLE I Description for the used symbols 

Symbol Description 𝑉𝑠𝑖  Generated Voltage 𝑉𝑖 Load Voltage 𝐼𝑡𝑖 Filter Current 𝐼 𝐿𝑖 Load Current 𝐼𝑖𝑗 Distribution Line Current 𝑅𝑡𝑖 Filter Resistance 𝐿𝑡𝑖 Filter Inductance 𝐶𝑡𝑖 Filter Capacitor 𝑅𝑖𝑗 Line Resistance 𝐿𝑖𝑗 Line Inductance 𝑍𝑙𝑖  Impedance of CIL 𝐼𝑙𝑖 Current of CCL 𝑃𝑙𝑖 Power of CPL 𝑑𝑖 Duty Cycle of Converter 

system is obtained in Section 2. Section 3 presents the design process of the control system strategy. Simulation 

results are presented in Section 4, and the conclusions are given in Section 5. 

All over the manuscript, the set of real numbers is indicated by ℝ. Matrices 𝐼 and 0 show the identity and the zero 

matrices, respectively. The symbols 𝑃𝑇 and ∗ indicate the matrix transpose and a symmetric block, respectively. For 

a symmetric matrix 𝑃, the relations 𝑃 < 0 and 𝑃 > 0 represent that the matrix is negative-definite and positive-

definite, respectively. For a transfer function 𝑇 𝑠 , the variable 𝑠 is the complex Laplace variable, the symbol ‖𝑇 𝑠 ‖∞ indicates the value of the 𝐻∞-norm, and the 𝐻∞-norm is defined as the supremum (least upper bound) over 

all real-valued frequencies for the maximum singular value of the matrix. 
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2. Modeling of the Islanded DC Microgrids 

Consider an islanded DC microgrid with the general structure, containing 𝑁 DGs. Every DG unit consist of an 

ideal DC voltage source, a DC/DC converter, and a local uncertain ZIP load. First, a microgrid system comprising of 

two DGs, DG 𝑖 and DG 𝑗, connected through a distribution line 𝑖𝑗, is considered as depicted in Fig. 1. Depending on 

the application and the voltage level at the source and load sides, different types of converters, such as boost and 

buck, can be used in a DC microgrid. The average electrical model of the buck and boost converters are shown in 

Fig. 2. In the case of using other types of converters, e.g., cuk-type, the proper electrical model needs to be replaced, 

then the dynamic equations and the final state-space model must be extracted in accordance with the new electrical 

circuit and new dynamics. The description of the used symbols are given in Table Ι. First, it is assumed that the DC-

DC converters are buck-type with the average model shown in Fig. 2 (a). The dynamic equations of the system, 

using the Kirchhoff’s circuit laws, are as follows: 

𝐷𝐺 𝑖: { 
 𝑑𝑉𝑖𝑑𝑡 = 1𝐶𝑡𝑖 𝐼𝑡𝑖 − 1𝐶𝑡𝑖 𝐼 𝐿𝑖 + 1𝐶𝑡𝑖 𝐼𝑖𝑗          𝑑𝐼𝑡𝑖𝑑𝑡 = − 1𝐿𝑡𝑖 𝑉𝑖 − 𝑅𝑡𝑖𝐿𝑡𝑖 𝐼𝑡𝑖 + 𝑑𝑖𝐿𝑡𝑖 𝑉𝑠𝑖                                                                                                                                    1  

𝐿𝑖𝑛𝑒 𝑖𝑗: 𝑑𝐼𝑖𝑗𝑑𝑡 = −𝑅𝑖𝑗𝐿𝑖𝑗 𝐼𝑖𝑗 + 1𝐿𝑖𝑗 𝑉𝑗 − 1𝐿𝑖𝑗 𝑉𝑖                                                                                                                                    2  

𝐿𝑜𝑎𝑑 𝑖: 𝐼 𝐿𝑖 = 𝑉𝑖𝑍𝑙𝑖 + 𝐼𝑙𝑖 + 𝑃𝑙𝑖𝑉𝑖 , 𝑤𝑖𝑡ℎ 𝑍𝑙𝑖 ∈ ℝ ≥ 0                                                                                                                          3  

By assuming that the distribution lines are Quasi-Stationary Line (QSL) [28], i.e. 
𝑑𝐼𝑖𝑗𝑑𝑡 = 0, the line dynamic in (2) 

is rewritten as follows: 𝐼𝑖𝑗 = (𝑉𝑗 − 𝑉𝑖) 𝑅𝑖𝑗⁄                                                                                                                                                                            4  

Since the impedance of the lines in the DC network is often resistive, the assumption of QSL is reasonable. By 

replacing the values of 𝐼 𝐿𝑖 and 𝐼𝑖𝑗 in the system equations (1), the dynamic of DG 𝑖 is obtained as follows: 

{  
  𝑑𝑉𝑖𝑑𝑡 = 1𝐶𝑡𝑖 (− 𝑉𝑖𝑍𝑙𝑖 − 𝑉𝑖𝑅𝑖𝑗 − 𝑃𝑙𝑖𝑉𝑖 + 𝐼𝑡𝑖 − 𝐼𝑙𝑖 + 𝑉𝑗𝑅𝑖𝑗)    𝑑𝐼𝑡𝑖𝑑𝑡 = 1𝐿𝑡𝑖  −𝑉𝑖 − 𝑅𝑡𝑖𝐼𝑡𝑖 + 𝑑𝑖𝑉𝑠𝑖                                                                                                                                                5  

Assuming that the system (5) has an equilibrium, there exist constant signals  𝑉𝑖0 , 𝑉𝑗0 , 𝐼𝑡𝑖0 , 𝐼𝑙𝑖0 , 𝑑𝑖0  such that: 

{  
  0 = 1𝐶𝑡𝑖 (−𝑉𝑖0𝑍𝑙𝑖 − 𝑉𝑖0𝑅𝑖𝑗 − 𝑃𝑙𝑖𝑉𝑖0 + 𝐼𝑡𝑖0 − 𝐼𝑙𝑖0 + 𝑉𝑗0𝑅𝑖𝑗  )    0 = 1𝐿𝑡𝑖 (−𝑉𝑖0 − 𝑅𝑡𝑖𝐼𝑡𝑖0 + 𝑑𝑖0𝑉𝑠𝑖)                                                                                                                                              6  
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From the linearization of (5) around the constant signals  𝑉𝑖0 , 𝑉𝑗0 , 𝐼𝑡𝑖0 , 𝐼𝑙𝑖0 , 𝑑𝑖0 , the linearized model is obtained as 

follows: 

{  
  𝑑�̃�𝑖𝑑𝑡 = 1𝐶𝑡𝑖 (− �̃�𝑖𝑍𝑙𝑖 − �̃�𝑖𝑅𝑖𝑗 + 𝑃𝑙𝑖𝑉𝑖02 �̃�𝑖 + 𝐼𝑡𝑖 − 𝐼𝑙𝑖 + �̃�𝑗𝑅𝑖𝑗  )   𝑑𝐼𝑡𝑖𝑑𝑡 = 1𝐿𝑡𝑖 (−�̃�𝑖 − 𝑅𝑡𝑖𝐼𝑡𝑖 + �̃�𝑖𝑉𝑠𝑖)                                                                                                                                               7  

where �̃�𝑖 = 𝑉𝑖 − 𝑉𝑖0, �̃�𝑗 = 𝑉𝑗 − 𝑉𝑗0, 𝐼𝑡𝑖 = 𝐼𝑡𝑖 − 𝐼𝑡𝑖0, 𝐼𝑙𝑖 = 𝐼𝑙𝑖 − 𝐼𝑙𝑖0, and �̃�𝑖 = 𝑑𝑖 − 𝑑𝑖0.  

Likewise, if the DC microgrid system includes 𝑁 DGs, and DG 𝑖 is connected to a subset of DG units which 

comprises 𝑛𝑖 DGs in the form 𝑁𝑖 = {𝑗1, 𝑗2, … , 𝑗𝑛𝑖} ⊂ {1,… ,𝑁}, the linearized dynamics of DG 𝑖 are as follows: 

{  
  𝑑�̃�𝑖𝑑𝑡 = 1𝐶𝑡𝑖 (− �̃�𝑖𝑍𝑙𝑖 + 𝑃𝑙𝑖𝑉𝑖02 �̃�𝑖 − ∑ �̃�𝑖𝑅𝑖𝑗𝑗∈𝑁𝑖 + 𝐼𝑡𝑖 − 𝐼𝑙𝑖 + ∑ �̃�𝑗𝑅𝑖𝑗𝑗∈𝑁𝑖 )𝑑𝐼𝑡𝑖𝑑𝑡 = 1𝐿𝑡𝑖 (−�̃�𝑖 − 𝑅𝑡𝑖𝐼𝑡𝑖 + �̃�𝑖𝑉𝑠𝑖)                                                                                                                                              8  

Therefore, the state-space equations for every DG in the autonomous mode are obtained in the following form: 

{�̇�𝑖 = 𝐴𝑖𝑖𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 + 𝐵𝑤1𝑖𝑤1𝑖 + ∑ 𝐴𝑖𝑗𝑘�̃�𝑗𝑘𝑛𝑖
𝑘=1𝑦𝑖 = 𝐶𝑖𝑖𝑥𝑖;                                                                                                                                                                                      9  

where 𝑥𝑖 = [�̃�𝑖 𝐼𝑡𝑖]𝑇 is the state vector, 𝑢𝑖 = �̃�𝑖𝑉𝑠𝑖 is the input, �̃�𝑗 is the voltage of PCC 𝑗,  𝑦𝑖 = �̃�𝑖 is the output of 

DG 𝑖, 𝑛𝑖 is the number of neighbors of DG 𝑖, 𝑤1𝑖 = 𝐼𝑙𝑖 is the first exogenous input corresponding to the constant 

current load (CCL) changes and/or other unknown load dynamics, and the state-space matrices are as follows: 

𝐴𝑖𝑖 = [  
  1𝐶𝑡𝑖  − 1𝑍𝑙𝑖 + 𝑃𝑙𝑖𝑉𝑖02 − ∑ 1𝑅𝑖𝑗𝑘 𝑛𝑖

𝑘=1
1𝐶𝑡𝑖− 1𝐿𝑡𝑖 −𝑅𝑡𝑖𝐿𝑡𝑖]  

  , 𝐵𝑖𝑖 = [ 01𝐿𝑡𝑖] , 𝐵𝑤1𝑖 = [− 1𝐶𝑡𝑖0 ] , 𝐴𝑖𝑗𝑘 = [ 1𝐶𝑡𝑖𝑅𝑖𝑗𝑘0 ] , 𝐶𝑖𝑖 = [1 0]              10  
It should be noted that, in this model, 𝐴𝑖𝑗𝑘�̃�𝑗𝑘 is the interaction efficacy of subsystem 𝑗𝑘 (𝑘th neighbor of DG 𝑖) on 

subsystem 𝑖, and 𝐴𝑖𝑗𝑘 = 0 if and only if no connection among DGs 𝑖 and  𝑗𝑘 exists.     

Now, it is assumed that the DC-DC converters are boost-type with the general model shown in Fig. 2 (b). The 

dynamic equations of DG 𝑖, assuming that DG 𝑖 is connected to a subset of DG units in the form 𝑁𝑖, are as follows: 

{  
  𝑑𝑉𝑖𝑑𝑡 = 1𝐶𝑡𝑖 ( 1 − 𝑑𝑖 𝐼𝑡𝑖 −  𝑉𝑖𝑍𝑙𝑖 + 𝐼𝑙𝑖 + 𝑃𝑙𝑖𝑉𝑖  + ∑ 𝑉𝑗 − 𝑉𝑖𝑅𝑖𝑗𝑗∈𝑁𝑖 )𝑑𝐼𝑡𝑖𝑑𝑡 = − 1𝐿𝑡𝑖 ( 1 − 𝑑𝑖 𝑉𝑖 − 𝑅𝑡𝑖𝐼𝑡𝑖 + 𝑉𝑠𝑖)                                                                                                                                11  
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Fig. 3.  Block diagram of the proposed voltage control approach. 

Due to the existence of the terms 𝑃𝑙𝑖 𝑉𝑖⁄ , (1 − 𝑑𝑖 𝐼𝑡𝑖, and (1 − 𝑑𝑖 𝑉𝑖, the system dynamical equations (11) are not 

linear. Linearization of this around operating fixed point  𝑉𝑖0 , 𝑉𝑗0 , 𝐼𝑡𝑖0 , 𝐼𝐿𝑖0 , 𝑑𝑖0  results in the following linear 

approximated model: 

{  
  𝑑�̃�𝑖𝑑𝑡 = 1𝐶𝑡𝑖 (− �̃�𝑖𝑍𝑙𝑖 + 𝑃𝑙𝑖𝑉𝑖02 �̃�𝑖 − ∑ �̃�𝑖𝑅𝑖𝑗𝑗∈𝑁𝑖 + (1 − 𝑑𝑖0)𝐼𝑡𝑖 − 𝐼𝑡𝑖0�̃�𝑖 − 𝐼𝑙𝑖 + ∑ �̃�𝑗𝑅𝑖𝑗𝑗∈𝑁𝑖 )𝑑𝐼𝑡𝑖𝑑𝑡 = 1𝐿𝑡𝑖 (− 1 − 𝑑𝑖 �̃�𝑖 − 𝑅𝑡𝑖𝐼𝑡𝑖 + 𝑉𝑖0�̃�𝑖 + �̃�𝑠𝑖)                                                                                                                 12  
where �̃�𝑠𝑖 = 𝑉𝑠𝑖 − 𝑉𝑠𝑖0 is the small-signal input voltage disturbance, which can be neglected, since the input voltage 

changes are very slow. 

The equations (12) are presented in the state-space model similar to (9), where 𝑢𝑖 = �̃�𝑖, and the state-space 

matrices are as follows: 

𝐴𝑖𝑖 = [  
  1𝐶𝑡𝑖  − 1𝑍𝑙𝑖 + 𝑃𝑙𝑖𝑉𝑖02 − ∑ 1𝑅𝑖𝑗𝑘 𝑛𝑖

𝑘=1
1 − 𝑑𝑖0𝐶𝑡𝑖−1 − 𝑑𝑖0𝐿𝑡𝑖 −𝑅𝑡𝑖𝐿𝑡𝑖 ]  

  , 𝐵𝑖𝑖 = [   
 −𝐼𝑡𝑖0𝐶𝑡𝑖𝑉𝑖0𝐿𝑡𝑖 ]   

 , 𝐵𝑤1𝑖 = [−1𝐶𝑡𝑖0 ] , 𝐴𝑖𝑗𝑘 = [ 1𝐶𝑡𝑖𝑅𝑖𝑗𝑘0 ] , 𝐶𝑖𝑖 = [1 0]          13  
3. Control System Strategy of DC Microgrid 

The presented voltage control strategy in this paper is hierarchical, comprising two principal levels with different 

time scales. The first level controller must stabilize the PCC voltage and provide the desirable performance 

indicators such as offset-free reference voltage tracking, robustly. The second level control, which is called the 
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power management system (PMS), maintains the optimal operating point of the autonomous DC microgrid and 

transmits the voltage set-points to the initial level. The PMS centrally solves a power flow problem and sends the set 

points to the primary controllers of DG units. The structure of the proposed primary controller is fully decentralized. 

The major purpose of this paper is to develop a primary robust controller for autonomous DC microgrids with the 

general topology, and the main design objectives are as follows: 

 Fully decentralized structure of the primary voltage controller  

 Voltage stabilization of the closed-loop microgrid system 

 Desired performance satisfaction of the overall closed-loop system, including limited transient response, 

reference tracking, zero steady-state voltage tracking error, and bounded control signal  

 Robustness of stability and desirable performance of the closed-loop system versus topological changes, PnP 

functionalities of DGs, ZIP load variations, unknown load dynamics, and several different subsequent changes 

Steps of the design process of the robust controller are discussed as follows: 

3.1.  Stage 1: Structure of the Proposed Voltage Controller 

In a decentralized control manner, the local control center for DG 𝑖 must utilize only its local measurements to 

provide overall stability and desirable functionality. To hamper possible instability and weak performance due to the 

efficacies of interactions ∑ 𝐴𝑖𝑗𝑉𝑗𝑗∈𝑁𝑖 , the interaction terms are regarded as a disturbance vector, as follows: 

{�̇�𝑖 = 𝐴𝑖𝑖𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 + 𝐵𝑤1𝑖𝑤1𝑖+𝐵𝑤2𝑖𝑤2𝑖𝑦𝑖 = 𝐶𝑖𝑖𝑥𝑖;                              𝑖 = 1,… ,𝑁                                                                                                                                   14  

where 𝑤2𝑖 = [𝑉𝑗1  𝑉𝑗2  ⋯ 𝑉𝑗𝑛𝑖]𝑇is the second exogenous input and the matrix 𝐵𝑤2𝑖 is defined as follows: 𝐵𝑤2𝑖 = [𝐴𝑖𝑗1  𝐴𝑖𝑗2 … 𝐴𝑖𝑗𝑛𝑖]                                                                                                                                                           15  

Then, a robust local controller is planned, so that it dominates this disturbance. Actually, by minimizing the effect 

of exogenous input 𝑤2𝑖 on the local measured output 𝑦𝑖 via minimizing the 𝐻∞ norm of the equivalent transfer 

function, the stability and desirable performance were retained, notwithstanding the existence of interaction terms. It 

is worth pointing out that, from the obtained DC microgrid mathematical model (1)-(15), the interactions 𝐴𝑖𝑗𝑉𝑗 are 

resulted from the PCC voltages. Therefore, the interaction terms are bounded and can be assumed as a bounded 

disturbance, if the closed-loop system is stable. 

The initial control objectives for subsystem 𝑖 (DG unit 𝑖) are, 1) stability, acceptable transient response, reference  
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Fig. 4.  Closed-loop block diagram for subsystem 𝑖. 
tracking, offset-free voltage tracking, and appropriate control input, and 2) attenuation of uncertain CCL disturbance 

and/or other unknown load dynamics. The first objective is attained by the appropriate design of a feedback 

controller 𝐾𝑖 𝑠 . While, the second one is gained by measuring the load current and compensating its effect via a 

feedforward controller 𝐾𝑤𝑖 𝑠 . Fig. 3 shows the general scheme of the proposed non-droop-based control approach 

for islanded DC microgrid. The simultaneous design of the feedback and feedforward controllers for each DG 

subsystem is one of the main purposes.  

3.2. Stage 2: Initial Formulation for the Controller Design 

Consider the block diagram of Fig. 4. The transfer functions 𝐺𝑖 𝑠 , 𝐺𝑤1𝑖 𝑠  and 𝐺𝑤2𝑖 𝑠  are acquired from the 

state-space description of DG 𝑖, specified in (10), (13) and (15), as follows: 

{𝐺𝑖 𝑠 = 𝐶𝑖𝑖 𝑠𝐼 − 𝐴𝑖𝑖 −1𝐵𝑖𝑖       𝐺𝑤1𝑖 𝑠 = 𝐶𝑖𝑖 𝑠𝐼 − 𝐴𝑖𝑖 −1𝐵𝑤1𝑖𝐺𝑤2𝑖 𝑠 = 𝐶𝑖𝑖 𝑠𝐼 − 𝐴𝑖𝑖 −1𝐵𝑤2𝑖
                                                                                                                                                 16  

To convert all initial control objectives into a single optimization problem, the following steps are taken: 

For the reference tracking, the effect of the reference input 𝑟𝑖 on the error signal 𝑒𝑖 must be decreased. This 

objective can be attained by minimizing the ratio of the 𝐿2 norm of the error signal to the reference input via the 

following optimization problem: 

𝑚𝑖𝑛 (sup𝑟𝑖∈ℒ2 ‖𝑒𝑖‖𝐿2‖𝑟𝑖‖𝐿2) = 𝑚𝑖𝑛‖𝑇𝑟𝑖𝑒𝑖‖∞    = 𝑚𝑖𝑛‖ 𝐼 + 𝐺𝑖 𝑠 𝐾𝑖 𝑠  −1‖∞ = 𝑚𝑖𝑛‖𝑆𝑖 𝑠 ‖∞                                     17  
For the appropriate amplitude of control input, the effect of the reference signal 𝑟𝑖 on the control signal 𝑢𝑖 must be 

decreased, by minimizing the 𝐻∞ norm of the equivalent transfer function, as follows: 

𝑚𝑖𝑛 (sup𝑟𝑖∈ℒ2 ‖𝑢𝑖‖𝐿2‖𝑟𝑖‖𝐿2 ) = 𝑚𝑖𝑛‖𝑇𝑟𝑖𝑢𝑖‖∞ = 𝑚𝑖𝑛‖𝐾𝑖 𝑠  𝐼 + 𝐺𝑖 𝑠 𝐾𝑖 𝑠  −1‖∞                                                             18  
Reducing the impact of exogenous input (�̅�𝑖 = [𝑤1𝑖 𝑤2𝑖]𝑇) on the output signal 𝑦𝑖, can be achieved through the 

𝐾𝑖 𝑠  𝐺𝑖 𝑠  

𝐺𝑤𝑖 𝑠 = [𝐺𝑤1𝑖 𝑠 𝐺𝑤2𝑖 𝑠 ] [𝐾𝑤𝑖 𝑠 0] 
�̅�𝑖 = [𝑤1𝑖𝑤2𝑖] 

𝑟𝑖  𝑦𝑖  

𝑊1𝑖 𝑠  𝑊2𝑖 𝑠  𝑧1𝑖  𝑧2𝑖  𝑧𝑚𝑖  

𝑢𝑖  𝑒𝑖  𝑢𝑐1𝑖  
𝑢𝑐2𝑖  

𝑦𝑐2𝑖  
𝑦𝑐1𝑖  
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following optimization problem: 

𝑚𝑖𝑛(sup�̅�𝑖∈ℒ2 ‖𝑦𝑖‖𝐿2‖�̅�𝑖‖𝐿2) = 𝑚𝑖𝑛‖𝑇�̅�𝑖𝑦𝑖‖∞ = 𝑚𝑖𝑛‖𝑇𝑤1𝑖𝑦𝑖 𝑇𝑤2𝑖𝑦𝑖‖∞ = 𝑚𝑖𝑛‖((𝐼 + 𝐺𝑖 𝑠 𝐾𝑖 𝑠 )−1(𝐺𝑤1𝑖 + 𝐺𝑖𝐾𝑤𝑖))𝑇
((𝐼 + 𝐺𝑖 𝑠 𝐾𝑖 𝑠 )−1𝐺𝑤2𝑖)𝑇 ‖

∞
  

 19  

Moreover, the proper weighing matrices 𝑊1𝑖 𝑠  and 𝑊2𝑖 𝑠  can be used in optimization problems (17) and (18), 

to adjust the bandwidth of the closed-loop system and the maximum of the sensitivity function, and to restrict the 

effect of the measurement noise and the control efforts, respectively, as shown in Fig. 4 [29]. 

Eventually, all control objectives can be formulated as the following optimization problem: 𝑚𝑖𝑛𝐾𝑖 𝑠 ,𝐾𝑤𝑖 𝑠 𝛼1𝛾1𝑖 + 𝛼2𝛾2𝑖 
       𝑠. 𝑡.

{  
  ‖ 𝑊1𝑖 𝑠 𝑆𝑖 𝑠 𝑊2𝑖 𝑠 𝐾𝑖 𝑠 𝑆𝑖 𝑠 ‖∞ < 𝛾1𝑖
‖(𝑆𝑖 𝑠 (𝐺𝑤1𝑖 𝑠 + 𝐺𝑖 𝑠 𝐾𝑤𝑖 𝑠 ))𝑇

(𝑆𝑖 𝑠 𝐺𝑤2𝑖 𝑠 )𝑇 ‖∞ < 𝛾2𝑖    𝑖 = 1,… ,𝑁                                                                            20  

where α1 and α2 are weighting factors that specify a trade-off between the disturbance signals attenuation and the 𝐻∞ performance criterion.  

3.3. Stage 3: The State-Space Representation for the Constraints 

The state-space models for the transfer functions appearing in the constraints of the optimization problem (20), are 

attained here. Considering the virtual diagram of Fig. 4, and using the state-space description of 𝐺𝑖, 𝐺𝑤𝑖, 𝑊1i, and 𝑊2𝑖, the state-space description of the augmented open-loop subsystem and desirable local controller 𝐾𝐶𝑖 𝑠 =[𝐾𝑖 𝑠 𝐾𝑤𝑖 𝑠 ] are respectively named as follows: 

[ �̇�𝑖𝑧𝑖𝑧𝑚𝑖𝑦𝑖 ] = [   
 𝐴𝑖𝐶𝑧𝑖𝐶𝑧𝑚𝑖𝐶𝑖

𝐵𝑟𝑖𝐷𝑧𝑟𝑖𝐷𝑧𝑚𝑟𝑖𝐷𝑟𝑖
𝐵𝑤𝑖𝐷𝑧𝑤𝑖𝐷𝑧𝑚𝑤𝑖𝐷𝑤𝑖

𝐵𝑖𝐷𝑧𝑖𝐷𝑧𝑚 𝑖0 ]   
 [𝑥𝑖𝑟𝑖�̅�𝑖𝑢𝑖]                                                                                                                        21  

{�̇�𝑐𝑖 = 𝐴𝐾𝑖𝑥𝑐𝑖 + 𝐵𝐾𝑖𝑦𝑐𝑖𝑢𝑖 = 𝐶𝐾𝑖𝑥𝑐𝑖 + 𝐷𝐾𝑖𝑦𝑐𝑖                                                                                                                                                                 22  

where 𝑧𝑖 = [𝑧1𝑖 𝑧2𝑖]𝑇, and 𝑦c𝑖 = [𝑦c1𝑖 𝑦c2𝑖]𝑇. 

Now, the transfer function of the closed-loop DG subsystem is defined as follows: 

[   
 𝑧1𝑖𝑧2𝑖𝑧𝑚𝑖𝑦𝑐1𝑖𝑦𝑐2𝑖]  

  = [  
  𝑊1𝑖00𝐼0

−𝑊1𝑖𝐺𝑤1𝑖0𝐺𝑤1𝑖−𝐺𝑤1𝑖𝐼
−𝑊1𝑖𝐺𝑤2𝑖0𝐺𝑤2𝑖−𝐺𝑤2𝑖0

−𝑊1𝑖𝐺𝑖𝑊2𝑖𝐺𝑖−𝐺𝑖0 ]  
  [ 𝑟𝑖𝑤1𝑖𝑤2𝑖𝑢𝑖 ]                                                                                                   23  
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Consequently, the state-space representation of the closed-loop subsystem 𝑖 is attained as: [ �̇�𝑖�̇�𝑐𝑖] = [𝐴𝑖 + 𝐵𝑖𝐷𝐾𝑖𝐶𝑖 𝐵𝑖𝐶𝐾𝑖𝐵𝐾𝑖𝐶𝑖 𝐴𝐾𝑖 ] [ 𝑥𝑖𝑥𝑐𝑖] + [𝐵𝑟𝑖 + 𝐵𝑖𝐷𝐾𝑖𝐷𝑟𝑖 𝐵𝑤𝑖 + 𝐵𝑖𝐷𝐾𝑖𝐷𝑤𝑖𝐵𝐾𝑖𝐷𝑟𝑖 𝐵𝐾𝑖𝐷𝑤𝑖 ] [ 𝑟𝑖�̅�𝑖] [ 𝑧𝑖𝑧𝑚𝑖] = [ 𝐶𝑧𝑖 + 𝐷𝑧𝑖𝐷𝐾𝑖𝐶𝑖 𝐷𝑧𝑖𝐶𝐾𝑖𝐶𝑧𝑚 𝑖 + 𝐷𝑧𝑚𝑖𝐷𝐾𝑖𝐶𝑖 𝐷𝑧𝑚𝑖𝐶𝐾𝑖] [ 𝑥𝑖𝑥𝑐𝑖] + [ 𝐷𝑧𝑟𝑖 + 𝐷𝑧𝑖𝐷𝐾𝑖𝐷𝑟𝑖 𝐷𝑧𝑤𝑖 + 𝐷𝑧𝑖𝐷𝐾𝑖𝐷𝑤𝑖𝐷𝑧𝑚𝑟𝑖 + 𝐷𝑧𝑚𝑖𝐷𝐾𝑖𝐷𝑟𝑖 𝐷𝑧𝑚𝑤𝑖 + 𝐷𝑧𝑚𝑖𝐷𝐾𝑖𝐷𝑤𝑖] [ 𝑟𝑖�̅�𝑖]                   24  

Eventually, the state-space realization for constraints of the optimization problem (20) are as follows: 

𝑇𝑟𝑖𝑧𝑖 : [ 𝐴 𝑖 �̂�1𝑖𝐶 1𝑖 �̂�1𝑖]  = [ (𝐴𝑖 + 𝐵𝑖𝐷𝐾𝑖𝐶𝑖 𝐵𝑖𝐶𝐾𝑖𝐵𝐾𝑖𝐶𝑖 𝐴𝐾𝑖 ) (𝐵𝑟𝑖 + 𝐵𝑖𝐷𝐾𝑖𝐷𝑟𝑖𝐵𝐾𝑖𝐷𝑟𝑖 ) 𝐶𝑧𝑖 + 𝐷𝑧𝑖𝐷𝐾𝑖𝐶𝑖 𝐷𝑧𝑖𝐶𝐾𝑖 𝐷𝑧𝑟𝑖 + 𝐷𝑧𝑖𝐷𝐾𝑖𝐷𝑟𝑖]                                                                          25  

𝑇�̅�𝑖𝑧𝑚𝑖 : [ 𝐴 𝑖 �̂�2𝑖𝐶 2𝑖 �̂�2𝑖] = [ (𝐴𝑖 + 𝐵𝑖𝐷𝐾𝑖𝐶𝑖 𝐵𝑖𝐶𝐾𝑖𝐵𝐾𝑖𝐶𝑖 𝐴𝐾𝑖 ) (𝐵𝑤𝑖 + 𝐵𝑖𝐷𝐾𝑖𝐷𝑤𝑖𝐵𝐾𝑖𝐷𝑤𝑖 )(𝐶𝑧𝑚𝑖 + 𝐷𝑧𝑚𝑖𝐷𝐾𝑖𝐶𝑖 𝐷𝑧𝑚𝑖𝐶𝐾𝑖) 𝐷𝑧𝑚𝑤𝑖 + 𝐷𝑧𝑚𝑖𝐷𝐾𝑖𝐷𝑤𝑖]                                                       26  

Therefore, the constraints representations (25) and (26) are equivalent to the closed-loop state-space description of 

an LTI system with a dynamic output-feedback controller. In what follows, after modeling the PnP operation of 

DGs, load variations, and topological changes as polytopic-type uncertainty, the final design problem is transformed 

into an LMI-based convex optimization problem. 

3.4. Stage 4: Robustness to Different Sources of Uncertainty 

In this subsection, robustness of the closed-loop DC microgrid system under different sources of uncertainty, 

including PnP operations of DGs, local load variations, and topological changes, is investigated. The objective is to 

retain the stability and desirable performance of the overall microgrid system against these changes via proper 

modeling of uncertainties. To attain this, all uncertainty sources are modeled as a unique polytope in the state-space 

matrices proposed for the DC microgrid system in (10), (13), and (15). Then the final optimization problem will be 

satisfied at the vertices of the presented polytope. 

3.4.1. PnP Functionality of DGs 

Conforming to the state-space matrices described in (10), (13), and (15), with plug-in/-out of each DG 𝑖, only the 

matrices 𝐴𝑖𝑖 and 𝐵𝑤2𝑖 for DG 𝑖 and its neighboring DG units, change. In matrix 𝐴𝑖𝑖, PnP functionalities only affect 

the first-row/first-column element (𝑎𝑖𝑖11). Therefore, due to the effect of PnP operations, an interval uncertainty for 

this element is defined as follows: 

𝑞1𝑖𝑚𝑖𝑛 ≤ 𝑞1𝑖 = ∑ 1𝑅𝑖𝑗𝑘
𝑛𝑖

𝑘=1 ≤ 𝑞1𝑖𝑚𝑎𝑥                                                                                                                                                   27  
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where the maximum and minimum values of 𝑞1𝑖 are attained as follows: 

 𝑞1𝑖𝑚𝑎𝑥: Maximum possible connection of all neighboring DG units to DG 𝑖. 
 𝑞1𝑖𝑚𝑖𝑛: Disconnection of all neighbors connected to DG 𝑖 and according to (10) and (13) 𝑞1𝑖𝑚𝑖𝑛 = 0. 

Besides, the changes in matrix 𝐵𝑤2𝑖 due to the PnP operations can be modeled as: 𝐵𝑤2𝑖 = [𝜆1𝐴𝑖𝑗1  𝜆2𝐴𝑖𝑗2 … 𝜆𝑛𝑖𝐴𝑖𝑗𝑛𝑖]                                                                                                                                             28  

where 𝜆𝑘 ∈ {0,1}, and 𝜆𝑘 = 0 due to the plugging out of the 𝑘th neighboring unit of DG 𝑖; otherwise, 𝜆𝑘 = 1. 

In the control objectives outlined in subsection 3.2, matrix 𝐵𝑤2𝑖 appears only in the ‖𝑇𝑤2𝑖𝑦𝑖‖∞ < 𝛾2𝑖 constraint, 

and this constraint can be rewritten as follows: ‖𝑇𝑤2𝑖𝑦𝑖‖∞ = ‖𝜆1𝑇𝑖,𝑗1 𝜆2𝑇𝑖,𝑗2 ⋯ 𝜆𝑛𝑖𝑇𝑖,𝑗𝑛𝑖‖∞ < 𝛾2𝑖                                                                                                         29  

where 𝑇𝑖,𝑗𝑘  is the transfer function from the output PCC voltage of the 𝑘th neighbor of DG 𝑖, i.e. 𝑉𝑗𝑘, to the output of 

DG 𝑖, i.e. 𝑦𝑖. 
If the 𝑘th neighbor of DG 𝑖 is plugged-out, then 𝜆𝑘 = 0. As a result, the corresponding transfer function (𝑇𝑖,𝑗𝑘) 

will be deleted in (29). Therefore, the constraint (29) changes as follow: 

‖𝜆1𝑇𝑖,𝑗1 ⋯ 𝜆𝑘−1𝑇𝑖,𝑗𝑘−1 0 𝜆𝑘+1𝑇𝑖,𝑗𝑘+1 ⋯ 𝜆𝑛𝑖𝑇𝑖,𝑗𝑛𝑖‖∞ = ‖𝑇𝑤2𝑖𝑦𝑖 × [𝐼𝑘−1 0 00 0 00 0 𝐼𝑛𝑖−𝑘]𝑛𝑖×𝑛𝑖
‖∞                  30  

and the following conditions hold too: 

‖𝑇𝑤2𝑖𝑦𝑖 × [𝐼𝑘−1 0 00 0 00 0 𝐼𝑛𝑖−𝑘]𝑛𝑖×𝑛𝑖
‖∞ ≤ ‖𝑇𝑤2𝑖𝑦𝑖‖∞⏟      <𝛾2𝑖

× ‖[𝐼𝑘−1 0 00 0 00 0 𝐼𝑛𝑖−𝑘]‖∞⏟              =1
< 𝛾2𝑖 × 1 = 𝛾2𝑖                                  31  

Consequently, if the constraint (29) for DG 𝑖 is met under maximum possible connections of other DGs to DG 𝑖, it 
will also be satisfied after the disconnections of some adjacent units. Therefore, it is sufficient to satisfy this 

constraint only in the case of the maximum possible interactions, i.e. 𝜆𝑘 = 1 for 𝑘 = 1,… , 𝑛𝑖. It should be noted 

that, if all the lines connected to DG 𝑖 are detached (corresponding to 𝑞1𝑖𝑚𝑖𝑛), the matrix 𝐵𝑤2𝑖 will be zero. 

Remark. The effect of changing matrix 𝐴𝑖𝑖 due to plugging in/out of its neighbors on the transfer functions 𝑇𝑖,𝑗𝑘  

for 𝑘 = 1,… , 𝑛𝑖, has been considered via the proposed interval uncertainty in (27) and the polytope provided in the 

following.  
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3.4.2. Uncertain ZIP Loads 

On modeling uncertain constant impedance load  𝑍𝑙𝑖  and uncertain constant power load  𝑃𝑙𝑖 , the changes of 

these loads only affect the 𝑎𝑖𝑖11  element of matrix 𝐴𝑖𝑖. By assuming that these loads belong to a given interval as 

follows: 𝑍𝑙𝑖𝑚𝑖𝑛 ≤ 𝑍𝑙𝑖 ≤ 𝑍𝑙𝑖𝑚𝑎𝑥, 𝑃𝑙𝑖𝑚𝑖𝑛 ≤ 𝑃𝑙𝑖 ≤ 𝑃𝑙𝑖𝑚𝑎𝑥                                                                                                                                 32  

the following ranges are obtained: 𝑞2𝑖𝑚𝑖𝑛 = 1𝑍𝑙𝑖𝑚𝑎𝑥 ≤ 𝑞2𝑖 = 1𝑍𝑙𝑖 ≤ 1𝑍𝑙𝑖𝑚𝑖𝑛 = 𝑞2𝑖𝑚𝑎𝑥                                                                                                                             33  

𝑞3𝑖𝑚𝑖𝑛 = 𝑃𝑙𝑖𝑚𝑖𝑛𝑉𝑖02 ≤ 𝑞3𝑖 = 𝑃𝑙𝑖𝑉𝑖02 ≤ 𝑃𝑙𝑖𝑚𝑎𝑥𝑉𝑖02 = 𝑞3𝑖𝑚𝑎𝑥                                                                                                                             34  

Therefore, according to (27), (33), and (34), a single interval uncertainty is obtained for the element 𝑎𝑖𝑖11  due to 

the PnP operations and uncertain loads, as follows: 𝑎𝑖𝑖11𝑚𝑖𝑛 ≤ 𝑎𝑖𝑖11 = 1𝐶𝑡𝑖  −𝑞1𝑖 − 𝑞2𝑖 + 𝑞3𝑖 ≤ 𝑎𝑖𝑖11𝑚𝑎𝑥                                                                                                                      35  

where 𝑎𝑖𝑖11𝑚𝑖𝑛 = 1𝐶𝑡𝑖 (−𝑞1𝑖𝑚𝑎𝑥 − 𝑞2𝑖𝑚𝑎𝑥 + 𝑞3𝑖𝑚𝑖𝑛), 𝑎𝑖𝑖11𝑚𝑎𝑥 = 1𝐶𝑡𝑖  −𝑞1𝑖𝑚𝑖𝑛 − 𝑞2𝑖𝑚𝑖𝑛 + 𝑞3𝑖𝑚𝑎𝑥                                                          36  
Consequently, in the DC microgrid system, the PnP operations of DGs and the changes of uncertain loads can be 

modeled as a polytopic-type uncertainty with 2 vertices in state-space matrices 𝐵𝑤𝑖2 and 𝐴𝑖𝑖, as follows: (𝐴𝑖𝑖 , 𝐵𝑤𝑖2) 𝜃 = 𝜃(𝐴𝑖𝑖1 , 𝐵𝑤𝑖21 ) +  1 − 𝜃 (𝐴𝑖𝑖2 , 𝐵𝑤𝑖22 ), 0 ≤ 𝜃 ≤ 1                                                                                          37  

where (𝐴𝑖𝑖𝑗 , 𝐵𝑤𝑖2𝑗 ), 𝑗 = 1,2 represents the system matrices related to the vertex 𝑗, which are obtained as follows: 

𝐴𝑖𝑖1 = [𝑎𝑖𝑖11𝑚𝑖𝑛 𝑎𝑖𝑖12𝑎𝑖𝑖21 𝑎𝑖𝑖22] , 𝐵𝑤2𝑖1 = [𝐴𝑖𝑗1  𝐴𝑖𝑗2 … 𝐴𝑖𝑗𝑛𝑖] , 𝐴𝑖𝑖2 = [𝑎𝑖𝑖11𝑚𝑎𝑥 𝑎𝑖𝑖12𝑎𝑖𝑖21 𝑎𝑖𝑖22] , 𝐵𝑤2𝑖2 = 0                                                         38  

3.4.3. Microgrid Topology Changes 

Since all of the possible scenarios for connection or disconnection of the DG units are considered in the polytopic 

modeling of PnP operations in matrices 𝐴𝑖𝑖 and 𝐵𝑤𝑖2, the disconnection of some distribution lines between DG units 

is not affected the polytopic uncertainty domain and its vertices. Consequently, the polytopic zone considered for the 

modeling of PnP functionalities and uncertain ZIP loads also includes robustness to topological changes due to PnP, 

link failures, etc. Therefore, the proposed approach and the presented polytopic space are also robust to the 

microgrid topology changes. 

Therefore, the dynamics of a DG under different mentioned sources of uncertainty are described by the following 
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polytopic state-space model: 

{�̇�𝑖 = 𝐴𝑖𝑖 𝜃 𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 + 𝐵𝑤1𝑖𝑤1𝑖+𝐵𝑤2𝑖 𝜃 𝑤2𝑖𝑦𝑖 = 𝐶𝑖𝑖𝑥𝑖;                                                                                                                                                                                      39  

It should be noted that the polytopic uncertain matrices 𝐴𝑖𝑖 and 𝐵𝑤2𝑖 result in polytopic uncertainty in the open-

loop  augmented state-space matrices 𝐴𝑖, 𝐵𝑤𝑖, 𝐷𝑤𝑖, 𝐷𝑧𝑤𝑖 and 𝐷𝑧𝑚𝑤𝑖 for each DG subsystem described in (21). 

3.5. Stage 5: Convex Description for the Final Problem 

Pursuant to the outcomes of the prior parts, the final problem is to design the dynamic output-feedback controller 

with 𝐻∞ performance criterion for LTI polytopic state-space systems. The design must be accomplished via solving 

a unique convex LMI-based optimization problem in the convex hull vertices. In the obtained LMIs, if there is no 

coupling between the Lyapunov matrix and the system state-space matrices, the possibility of using the linearly 

parameter-dependent (LPD) Lyapunov function is created instead of the common Lyapunov matrix. It is thereby 

reducing the conservatism in robust controller design for the entire polytopic uncertain zone. Therefore, an iterative 

algorithm is proposed here to solve this nonconvex optimization problem using the LPD Lyapunov function via a 

fixed-order controller. The presented method is used to design a robust reduced-order dynamic output-feedback 

controller for the islanded DC microgrid system. 

Consider the LTI system 𝐻 indicated by the following equations, 

𝐻: {�̇� = 𝐴𝑥 + 𝐵𝑤𝑤 + 𝐵𝑢     𝑧 = 𝐶𝑧𝑥 + 𝐷𝑧𝑤𝑤 + 𝐷𝑧𝑢𝑦 = 𝐶𝑥 + 𝐷𝑤𝑤                                                                                                                                                                         40                

where 𝑥 is the state vector, 𝑢 is the control input, 𝑦 is a vector of the measured outputs, 𝑤 is a vector of exogenous 

inputs, and 𝑧 is a vector of output signals corresponding to the desirable performance of the closed-loop system.  

It is assumed that the state-space matrices be included in a polytopic uncertainty region with 𝑞 vertices as follows: 

[ 𝐴 𝜃 𝐵𝑤 𝜃 𝐵 𝜃 𝐶𝑧 𝜃 𝐷𝑧𝑤 𝜃 𝐷𝑧 𝜃  𝐶 𝜃 𝐷𝑤 𝜃 0 ] = ∑𝜃𝑗 [𝐴𝑗 𝐵𝑤𝑗 𝐵𝑗𝐶𝑧𝑗 𝐷𝑧𝑤𝑗 𝐷𝑧𝑗𝐶𝑗 𝐷𝑤𝑗 0 ]𝑞
𝑗=1                                                                                                            41  

where matrices (𝐴𝑗 , 𝐵𝑤𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝐶𝑧𝑗 , 𝐷𝑧𝑗, 𝐷𝑧𝑤𝑗 , 𝐷𝑤𝑗 ) represent the 𝑗th vertex of the polytope, and 𝜃 = [𝜃1 ⋯ 𝜃𝑞 ]𝑇 

belongs to the following unit simplex, 

 {𝜃 ∈ ℝ𝑞 ∶  ∑ 𝜃𝑗 = 1, 𝜃𝑗 ≥ 0𝑞𝑗=1 }                                                                                                                                                 42  

After the utilization of the dynamic output-feedback controller 𝐾 𝑠 : [𝐴𝐾 𝐵𝐾𝐶𝐾 𝐷𝐾], the state-space representation of 
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the closed-loop system is as follows: 

 𝑇𝑤𝑧 𝜃 : [𝐴𝑐𝑙 𝜃 𝐵𝑐𝑙 𝜃 𝐶𝑐𝑙 𝜃 𝐷𝑐𝑙 𝜃 ] = [ (𝐴 𝜃 + 𝐵 𝜃 𝐷𝐾𝐶 𝜃 𝐵 𝜃 𝐶𝐾𝐵𝐾𝐶 𝜃 𝐴𝐾 ) (𝐵𝑤 𝜃 + 𝐵 𝜃 𝐷𝐾𝐷𝑤 𝜃 𝐵𝐾𝐷𝑤 𝜃 ) 𝐶𝑧 𝜃 + 𝐷𝑧 𝜃 𝐷𝐾𝐶 𝜃 𝐷𝑧 𝜃 𝐶𝐾 𝐷𝑧𝑤 𝜃 + 𝐷𝑧 𝜃 𝐷𝐾𝐷𝑤 𝜃 ]                       43  
To hold the linear dependency of the closed-loop state-space matrices on the vector 𝜃, and since in the state-space 

description of constraints proposed in (25) and (26) only the matrices 𝐴𝑖, 𝐵𝑤𝑖, 𝐷𝑤𝑖 and 𝐷𝑧𝑚𝑤𝑖 are uncertain, it is 

supposed that matrices 𝐵 and 𝐷𝑧 are constant. The robust fixed-order dynamic output-feedback controllers are 

designed via the following Theorems. 

Theorem 1. Suppose that matrix 𝑀 is given, then the system  𝐴, 𝐵, 𝐶, 𝐷  is stable, and the inequality ‖𝐶 𝑆𝐼 −𝐴 −1𝐵 + 𝐷‖∞ < 𝛾 holds, if there exists a scalar 𝛽 ≫ 1 and symmetric Lyapunov matrix 𝑃 = 𝑃𝑇 > 0 such that: 

[  
  − 𝑀𝑇 + 𝑀 𝑃 + 𝐴𝑇𝑀𝐵𝑇𝑀0𝑀

𝑃 + 𝑀𝑇𝐴−𝛽𝑃𝑜𝐶0
𝑀𝑇𝐵0−𝛾𝐼𝐷0

0𝐶𝑇𝐷𝑇−𝛾𝐼0
𝑀𝑇000−𝛽−1𝑃]  

  < 0                                                                                                        44  
Proof. See Appendix A. 

Now, the robust polytope expansion of Theorem 1 can be described as follows: 

Theorem 2. Suppose that matrix 𝑀 is given, then the fixed-order controller 𝐾 𝑠 : [𝐴𝐾 𝐵𝐾𝐶𝐾 𝐷𝐾] guarantees the robust 

stability and the robust performance ‖𝑇𝑤𝑧 𝜃 ‖∞ < 𝛾 of the closed-loop system (43) for all the systems in the 

polytopic set provided by (41), if there exists a scalar 𝛽 ≫ 1 and symmetric Lyapunov matrices 𝑃𝑗 = 𝑃𝑗𝑇 > 0 such 

that for 𝑗 = 1,… , 𝑞: 

𝑓𝑗 (𝐴𝑗 , 𝐵, 𝐶𝑗, 𝐵𝑤𝑗 , 𝐶𝑧𝑗, 𝐷𝑤𝑗 , 𝐷𝑍, 𝐷𝑧𝑤𝑗 ,𝑀, 𝛽 |𝐴𝐾 , 𝐵𝐾 , 𝐶𝐾 , 𝐷𝐾 , 𝑃𝑗 , 𝛾 ) = [   
  − 𝑀 + 𝑀𝑇 ∗∗∗∗

𝑃𝑗 + 𝑀𝑇𝐴𝑐𝑙𝑗−𝛽𝑃𝑗∗∗∗
𝑀𝑇𝐵𝑐𝑙𝑗0−𝛾𝐼∗∗

0𝐶𝑐𝑙𝑗 𝑇𝐷𝑐𝑙𝑗 𝑇−𝛾𝐼∗
𝑀𝑇000−𝛽−1𝑃𝑗]   

  < 0           45  
where the sign | is the arguments of 𝑓𝑗 disconnects the known parameters and the decision variables. 

Proof. See Appendix B. 

Remarks. 

 An iterative algorithm is required to solve the problem of robust fixed-order 𝐻∞ controller design presented in 

(45). First, for an initial controller and a fixed scalar 𝛽, matrix 𝑀 is computed from the optimization problem 

(45). Then, the controller is redesigned by Theorem 2 using the obtained auxiliary matrix 𝑀. Now, the obtained 
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controller is used as an initial controller to recalculate 𝑀. This process terminates on convergence (a priori 

defined tolerance for 𝛾) or achieving the maximum iterations number (ℎ𝑚𝑎𝑥). 

 The initial controller can be calculated for each vertex of the polytope by the HIFOO method proposed in [30]. 

 Since, the auxiliary matrix and the state-space matrices of the controller are computed from one optimization 

problem, the upper bound on the 𝐻∞ performance (𝛾) during the iterations is decreasing. Therefore, it can be 

easily indicated that the fixed-order controller design process propels to a monotonic convergence of the 𝐻∞ 

norm upper bound. 

Based on the consequences of Theorem 2, the ultimate design problem of the local voltage controller for every 

DG subsystem in autonomous general-structure DC microgrids with robust desirable performance and robust 

stability, can be expressed as a multi-objective convex optimization problem via satisfying a set of LMI constraints 

at the vertices of the proposed polytope as follows:  𝑚𝑖𝑛𝑃1𝑖𝑗 , 𝑃2𝑖𝑗 , 𝐴𝐾𝑖, 𝐵𝐾𝑖, 𝐶𝐾𝑖, 𝐷𝐾𝑖, 𝑀1𝑖, 𝑀2𝑖   𝛼1𝛾1𝑖 + 𝛼2𝛾2𝑖        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶                𝑓𝑗 (𝐴𝑖𝑗 , 𝐵𝑖 , 𝐶𝑖, 𝐵𝑟𝑖, 𝐶𝑧𝑖, 𝐷𝑧𝑖, 𝐷𝑟𝑖, 𝐷𝑧𝑟𝑖, 𝑀1𝑖, 𝛽1𝑖| 𝐴𝐾𝑖, 𝐵𝐾𝑖 , 𝐶𝐾𝑖, 𝐷𝐾𝑖, 𝑃1𝑖𝑗 , 𝛾1𝑖 ) < 0  

              𝑓𝑗 (𝐴𝑖𝑗 , 𝐵𝑖 , 𝐶𝑖, 𝐵𝑤𝑖𝑗 , 𝐶𝑧𝑚𝑖 , 𝐷𝑧𝑚𝑖, 𝐷𝑤𝑖𝑗 , 𝐷𝑧𝑚𝑤𝑖𝑗 ,𝑀2𝑖, 𝛽2𝑖| 𝐴𝐾𝑖, 𝐵𝐾𝑖 , 𝐶𝐾𝑖, 𝐷𝐾𝑖, 𝑃2𝑖𝑗 , 𝛾2𝑖 ) < 0               𝑃1𝑖𝑗 > 0,   𝑃2𝑖𝑗 > 0                                  𝑗 = 1,2.                                                                                                               46  
3.5.1. Robust Decentralized Controller Design Algorithm 

The final design process of the robust local controller for every DG subsystem consists of the following steps:  

Step 1: Create matrices 𝐴𝑖𝑖 , 𝐵𝑖𝑖 , 𝐵𝑤1𝑖, 𝐵𝑤2𝑖 and 𝐶𝑖𝑖, given in (10), (13) and (15), and then, the state-space matrices 

of augmented open loop subsystems pursuant to (21) for 𝑖 = 1,… ,𝑁. 

Step 2: Create vertices of polytopic uncertain matrices  𝐴𝑖𝑖𝑗 , 𝐵𝑤2𝑖𝑗  , according to (38) and then, extract the vertices 

of (𝐴𝑖𝑗, 𝐵𝑤𝑖𝑗 , 𝐷𝑤𝑖𝑗 , 𝐷𝑧𝑚𝑤𝑖𝑗
) according to (21) for 𝑗 = 1, 2. 

Step 3: Find the initial controller for each vertex of the polytope. 

Step 4: Solve the LMI-based optimization problem (46) to extract the final robust local controller 𝐾𝐶𝑖 𝑠 . 
Step 5: Elicit the state-space description of feedback controller 𝐾𝑖 𝑠  and feedforward controller 𝐾𝑤𝑖 𝑠 . 
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Fig. 5.  Plan of the test DC microgird system composed of 6 DGs. 

TABLE II Parameters of the test DC microgrid 

Electrical Parameters of DGs 

DG CONVERTER TYPE 𝑅𝑡𝑖 Ω  𝐿𝑡𝑖 𝑚𝐻  𝐶𝑡𝑖 𝑚𝐹  𝑉𝑟𝑒𝑓,𝑖  𝑉  𝑉𝑠𝑖 𝑉  

1 Buck 0.2 1.8 2.2 47.9 100 

2 Buck 0.3 2.0 1.9 48 100 

3 Buck 0.1 2.2 1.7 47.7 100 

4 Boost 0.5 3.0 2.5 48 25 

5 Buck 0.4 1.2 2.0 47.8 100 

6 Buck 0.6 2.5 3.0 48.1 100 

Parameters of Local Loads 

DG 𝑍𝑙𝑖   Ω  𝐼𝑙𝑖   𝐴  𝑃𝑙𝑖   𝑊  
1 10  ±5Ω  0 300  ±100𝑊  

2 6  ±4Ω  0 350  ±100𝑊  

3 20  ±10Ω  0 0 

4 3  ±2Ω  0 0 

5 6  ±4Ω  11  ±3𝐴  0 

6 7.5  ±5Ω   3  ±2𝐴  0 

Parameters of Distribution Lines 

Line 𝑖𝑗 𝑅𝑖𝑗  Ω  𝐿𝑖𝑗  𝜇𝐻  
Line 12 0.05 2.1 

Line 13 0.07 1.8 

Line 34 0.06 1.0 

Line 24 0.04 2.3 

Line 45 0.08 1.8 

Line 16 0.1 2.5 

Line 56 0.08 3.0 

4. Simulation Results 

The effectiveness of the suggested control scheme is evaluated under various simulation scenarios. We use an 

autonomous DC microgrid, which includes 6 DGs with different types of converter, as depicted in Fig. 5. The 

electrical parameters of DGs and distribution lines are specified in Table ΙΙ. All simulation case studies were 

performed on a computer with an Intel Core i5-540M (2.53 GHz), 4-GB RAM (532 MHz), and Windows 7. The 

local robust voltage controllers are acquired using the final five-step algorithm presented in subsection 3.5.1, and the 

convex optimization problem (46) is solved in MATLAB/YALMIP [31]. The test microgrid system is simulated in  



 

 

 
20

 
Fig. 6.  Dynamic response of nominal microgrid under the reference voltage changes of DG 1 at 𝑡 = 1.5𝑠: (a) PCC voltage 

signals of DG 1 and its neighboring DGs, and (b) control signal of DG 1. 

SimPowerSystems Toolbox of MATLAB. Robust stability, robust desired transient and robust steady-state desirable 

performance of the DC system in Fig. 5 with the designed controller are verified by a class of general test, including 

performance of the nominal system and performance under PnP operations of DGs, load variations and microgrid 

topology changes. 

4.1. Performance of the Nominal Closed-Loop System 

In this case study, stability and desirable performance of the nominal closed-loop system are investigated. 

Initially, the voltage references for all DGs are adjusted pursuant to Table ΙΙ. Then, the PCC 1 voltage reference is 

varied to 47.2 𝑉 at 𝑡 = 1.5 𝑠. The output voltages of DG 1 and its neighbors, and control signal of DG 1 are shown 

in Figs. 6 (a) and (b), respectively. The results illustrate that the proper tracking of the reference signal with a fast 

and limited transient response and zero steady-state error in less than 0.05𝑠 that is acceptable regarding the IEEE 

standards [32]. Also, Fig. 6 (b) indicates that the magnitude of the control signal is always suitable. The obtained 

consequences from this scenario demonstrate that the provided controller guarantees the stability and desirable 

performance of the closed-loop nominal DC microgrid and is robust with respect to the reference signals variations. 

4.2. Performance under PnP Operations of DGs 

In this part, robust stability and robust performance of the closed-loop system with the proposed controller under  
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Fig. 7.  PCC voltage signals of DG 5 and its neighboring DGs due to the PnP functionality of DG 5. 
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Fig. 8. Configuration of the autonomous DC microgrid after topology change. 

PnP operations are evaluated. To this end, it is supposed that DG 5 is plugged out from the test system at  𝑡 = 1𝑠 , 

and again plugged back into the microgrid at 𝑡 = 1.8𝑠. Due to this PnP occurrence, all the distribution lines joint to 

DG 5 are disconnected in the time interval 𝑡 = 1𝑠 to 𝑡 = 1.8𝑠. Thus, the dynamics of DGs 4 and 6 are affected. Fig. 

7 displays the dynamic voltage outputs of DG 5 and its neighboring DGs under these changes. The consequences 

demonstrate that the stability and desirable performance of the islanded DC microgrid are retained versus the PnP 

functionalities of DGs, and the designed local controllers adjust the PCC voltages after the PnP operations with zero 

steady-state error and a fast and acceptable transient response [32]. In other words, the proposed decentralized 

controller is robust to the PnP operations of DG units, not requiring retune of the local voltage controllers. 
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Fig. 9.  PCC voltage signals of all DGs under the topological changes at 𝑡 = 1𝑠 and 𝑡 = 1.2𝑠. 

 
Fig. 10. DG 1 dynamic response due to the changes in CPL: (a) power of CPL, (b) PCC voltage, and (c) control signal. 

4.3.  Robustness to Topology Changes 

In this part, the robustness of the proposed local controllers against topological change is tested. To this end, Line 

12 and Line 16 are disconnected at 𝑡 = 1𝑠 and 𝑡 = 1.2𝑠, respectively. Therefore, topology of the test DC microgrid 

in Fig. 6 is converted into the configuration displayed in Fig. 8. The dynamic voltage outputs of all DGs to these 

topological changes are shown in Fig. 9. The obtained outcomes indicate that the local controllers can regulate the 

PCC voltages quickly with zero steady-state error and preserve the stability and the desirable performance of the 

closed-loop test microgrid after the major changes in its configuration. Thus, the proposed controller is robust versus 

uncertainties that change the microgrid topology. 
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Fig. 11. Dynamic responses of DG 6 and its neighbors due to constant impedance load change of PCC 6 at 𝑡 = 0.9𝑠:  (a) PCC 

voltage signal of DG 6 and its neighbours, (b) control signal of DG 6. 

4.4. Robustness to Uncertain Constant Power Loads 

In this scenario, the robustness of the closed-loop test microgrid with the designed decentralized controller to the 

changes of CPLs is verified. Hence, the power of CPL of DG 1 is altered in the defined range, according to Fig. 10 

(a). The voltage signal of PCC 1 and the control signal of DG 1 are displayed in Fig. 10 (b) and (c), respectively. 

According to the attained results, the desired performance and stability of the DC microgrid system is robust against 

the uncertain CPLs. 

4.5. Robustness to Uncertain Constant Impedance Loads 

The purpose of this test is to verify the robustness of the microgrid system with respect to CIL changes. Therefore, 

the load resistance at PCC 6 is changed from 7.5Ω to 5Ω at 𝑡 = 0.9𝑠. Fig. 11 (a) shows the PCC voltages of DG 6 

and its neighboring DGs due to this change. The control signal of DG 6 is given in Fig. 11 (b). The results 

demonstrate that, after a short transient, the stability and desirable performance of the closed-loop DC microgrid are 

maintained under impedance load changes and the designed controller is strongly robust. 

4.6. Robustness to Uncertain Constant Current Loads 

This case study evaluates the robustness of the closed-loop system to the CCL uncertainty. Therefore, the load 

current at PCC 5 is stepped down from 11A to 9A at 𝑡 = 0.9𝑠. PCC voltage signal and control input of DG 5 are  
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Fig. 12. DG 5 dynamic response due to constant current load change at 𝑡 = 0.9𝑠:  (a) PCC voltage, (b) control signal. 

 
Fig. 13. PCC voltage signals of DG 1 and DG 6 due to plugging out of DG 5 and connection of an unknown load to PCC 6. 

shown in Fig. 12 (a) and (b), respectively. The outcomes show that the closed-loop system under the proposed 

control scheme is also robust to the uncertainties in CCLs and does not need to reset the local controllers. 

4.7. Robustness to Different Subsequent Changes 

The objective of this case study is to examine the robustness of the proposed controller against several consecutive 

changes caused by different sources of uncertainty. Therefore, first DG 5 is plugged out from the test DC system at 𝑡 = 1𝑠 and then, an unknown resistive load is parallelly connected to the load at PCC 6 at 𝑡 = 1.4𝑠. Fig. 13 displays 

the PCC voltages of DGs 1 and 6 due to these variations. The outcomes illustrate that, 1) after a short transient, the 

load voltages at PCCs remain unaltered irrespective of the loads dynamics and the designed controller is robust, and  
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Fig. 14. Voltage signal at PCC 2 with the proposed control approach and droop-based control method in [33]. 

2) after PnP operation of DGs and disconnection of some distribution lines, the designed control system is still 

robust under the load variations, which is due to the satisfaction of all control objectives simultaneously. 

4.8. Comparison to Droop-Based Control Method 

In this scenario, the performance of the presented control approach is compared to a droop-based control manner 

proposed in [33], which comprises of the current PI control loop, voltage PI control loop, droop controller, and a 

secondary controller to correct the steady-state voltage error. The performance of the closed-loop test microgrid 

system with the proposed control scheme and the droop-based controller against local load changes are verified. To 

this end, the resistance of CIL of DG 2 is stepped down from 6Ω to 3Ω at 𝑡 = 1𝑠, then the power of CPL of DG 2 is 

altered from 350𝑊 to 400𝑊 at 𝑡 = 1.5𝑠. Fig. 14 shows the dynamic PCC voltage of DG 2 with droop control 

method and the proposed decentralized control scheme due to these changes. According to the attained results, 

although the closed-loop test system remains stable for both control manners, the transient response of the closed-

loop microgrid under the proposed robust controller is significantly improved compared to the PI-based droop 

controller. This is due to considering the load dynamics in the microgrid mathematical modeling in (1)-(15) and 

control design process, applying an effective manner to disable interaction terms between DG units, optimal design 

of the proposed decentralized controller, and robust desirable performance satisfaction of the closed-loop DC 

islanded microgrid.  
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5. Conclusion 

A novel primary robust voltage control approach for the autonomous operation mode of DC microgrids is 

propounded in this paper. The microgrid system comprises of multiple DGs with arbitrary structure, and each DG 

has a local uncertain ZIP load. The structure of the presented primary control manner is fully decentralized and is 

based on the output-feedback. The proposed 2DOF controller provides robust stability for the closed-loop microgrid 

system. Moreover, it preserves the desirable performance of the overall system under different sources of 

uncertainty, including PnP functionalities of DGs, topological changes, uncertain ZIP loads, unknown load 

dynamics, and different subsequent changes. Every local controller is the optimal solution of a single convex 

optimization problem, resulting in optimal performance as well as robustness to several successive changes. 

Moreover, the control design procedure is scalable, i.e. the local control design for each DG is not dependent on the 

other DG units. All control objectives are converted into a fixed-order dynamic output feedback controller for a 

polytopic LTI system with 𝐻∞ performance criterion and are formulated as an LMI-based optimization problem. 

The performance of the proposed controller is examined under various case studies, including reference tracking, 

PnP functionalities of DGs, microgrid topological variations, ZIP load changes, several subsequent changes, and 

comparison to the conventional droop-based method. All simulation test cases indicate that the proposed control 

scheme is strongly robust and retains stability and desirable performance of the closed-loop system.  

As a shortcoming of the proposed control method is the disregard for the dynamics of input energy sources. To 

improve the performance of the provided control strategy, the following subjects are suggested for future works: 1) 

attaining the proposed LTI polytopic state-space model for the other types of DC/DC converters, 2) considering the 

dynamics of renewable energy sources in the provided mathematical model, and 3) considering other possible 

uncertainty sources, e.g., uncertainty in renewable energy source, in the presented polytopic model.  

Appendix A. Proof of Theorem 1 

Proof. We must show that the condition (44) results in the stability and the 𝐻∞ performance of the LTI system  𝐴, 𝐵, 𝐶, 𝐷 . By using the Congruence Transformation [34] and multiplying the inequality (44) from the right and 

left by matrix 
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[𝑊000
0𝑄00

00𝐼0
000𝐼] < 0 , 𝑄 = 𝑃−1,𝑊 = 𝑀−1                                                                                                                            A. 1  

and its transposed, respectively, and then applying the Schur Complement Lemma [34], the following equivalent 

inequality is obtained 

[  
 − 𝑊 + 𝑊𝑇 + 𝛽𝑄𝑊 + 𝑄𝐴𝑇𝐵𝑇0

𝑊𝑇 + 𝐴𝑄−𝛽𝑄0𝐶𝑄
𝐵0−𝛾𝐼𝐷

0𝑄𝐶𝑇𝐷𝑇−𝛾𝐼]  
 < 0.                                                                                                          A. 2  

According to the Schur Complement Lemma, (A.2) is equivalent to 

[   
  − 𝑊 + 𝑊𝑇 + 𝛽𝑄 𝑊𝑇 + 𝐴𝑄 𝐵𝑊 + 𝑄𝐴𝑇 1𝛾 𝑄𝐶𝑇𝐶𝑄 − 𝛽𝑄 0𝐵𝑇 0 1𝛾 𝐷𝑇𝐷 − 𝛾𝐼]   

  < 0.                                                                                               A. 3  
Adding the left side of inequality (A.3) with the following negative-semidefinite matrix  

[  
   
 0 0 1𝛾 𝑄𝐶𝑇𝐷0 0 −1𝛾 𝑄𝐶𝑇𝐷1𝛾 𝐷𝑇𝐶𝑄 −1𝛾 𝑄𝐶𝑇𝐷 0 ]  

   
 < 0                                                                                                                                 A. 4  

results in the following inequality 

[  
   
 − 𝑊 + 𝑊𝑇 + 𝛽𝑄 𝑊𝑇 + 𝐴𝑄 𝐵 + 1𝛾 𝑄𝐶𝑇𝐷𝑊 + 𝑄𝐴𝑇 1𝛾 𝑄𝐶𝑇𝐶𝑄 − 𝛽𝑄 0𝐵𝑇 + 1𝛾 𝐷𝑇𝐶𝑄 0 1𝛾 𝐷𝑇𝐷 − 𝛾𝐼 ]  

   
 < 0.                                                                                             A. 5  

Again, applying the Schur Complement Lemma and using the change of variable 𝑋 = 𝛽𝑄 − 1𝛾𝑄𝐶𝑇𝐶𝑄 > 0, results 

in the following equivalent inequality 

[  
 − 𝑊 + 𝑊𝑇 + 𝑋𝑊 + 𝑄𝐴𝑇𝐵𝑇𝐶𝑄

𝑊𝑇 + 𝐴𝑄−𝑋00
𝐵0−𝛾𝐼𝐷

𝑄𝐶𝑇0𝐷𝑇−𝛾𝐼]  
 < 0.                                                                                                             A. 6  

According to the Schur Complement Lemma, (A.6) is equivalent to 

[−[𝐵 𝑄𝐶𝑇] [−𝛾𝐼 𝐷𝑇𝐷 −𝛾𝐼]−1 [𝐵𝑇𝐶𝑄] + 𝑋 −  𝑊 + 𝑊𝑇 𝑊𝑇 + 𝐴𝑄𝑊 + 𝑄𝐴𝑇 −𝑋 ] < 0, [−𝛾𝐼 𝐷𝑇𝐷 −𝛾𝐼] < 0.                                     A. 7  
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Pursuant to the Reciprocal Projection Lemma [35], the feasibility of the inequality (A.7) with respect to 𝑊, in 

which 𝑋 is any given positive-definite matrix, is equivalent to the following LMIs 

𝑄𝐴𝑇 + 𝐴𝑄 − [𝐵 𝑄𝐶𝑇] [−𝛾𝐼 𝐷𝑇𝐷 −𝛾𝐼]−1 [𝐵𝑇𝐶𝑄] < 0, [−𝛾𝐼 𝐷𝑇𝐷 −𝛾𝐼] < 0.                                                                             A. 8  

After multiplying the right and left sides of (A.8) by matrix 𝑃, the following equivalent conditions are attained 

𝐴𝑇𝑃 + 𝑃𝐴 − [𝑃𝐵 𝐶𝑇] [−𝛾𝐼 𝐷𝑇𝐷 −𝛾𝐼]−1 [𝐵𝑇𝑃𝐶 ] < 0, [−𝛾𝐼 𝐷𝑇𝐷 −𝛾𝐼] < 0.                                                                           A. 9  

According to the Schur Complement Lemma, (A.9) is equivalent to 

[𝐴𝑇𝑃 + 𝑃𝐴 𝑃𝐵 𝐶𝑇𝐵𝑇𝑃𝑇 −𝛾𝐼 𝐷𝑇𝐶 𝐷 −𝛾𝐼] < 0.                                                                                                                                               A. 10  

Based on the Bounded Real Lemma (BRL) [36], the matrix inequality (A.10) demonstrates that the linear system  𝐴, 𝐵, 𝐶, 𝐷  is stable, and ‖𝐶 𝑆𝐼 − 𝐴 −1𝐵 + 𝐷‖∞ < 𝛾.   

Appendix B. Proof of Theorem 2 

Proof. It should be shown that the conditions in (45) guarantee the robust stability and the robust 𝐻∞ performance of 

the closed-loop system (43). The convex combination of the inequalities given in (45) brings about the following 

condition 

[   
 − 𝑀 + 𝑀𝑇 ∗∗∗∗

𝑃 𝜃 + 𝑀𝑇𝐴𝑐𝑙 𝜃 −𝛽𝑃 𝜃 ∗∗∗
𝑀𝑇𝐵𝑐𝑙 𝜃 0−𝛾𝐼∗∗   0𝐶𝑐𝑙𝑇  𝜃 𝐷𝑐𝑙𝑇  𝜃 −𝛾𝐼∗

𝑀𝑇000−𝛽−1𝑃 𝜃 ]  
  < 0                                                                   B. 1  

where the matrices (𝐴𝑐𝑙 𝜃 , 𝐵𝑐𝑙 𝜃 , 𝐶𝑐𝑙 𝜃 , 𝐷𝑐𝑙 𝜃 ) are given in (42), and 𝑃 𝜃 = ∑ 𝜃𝑗𝑃𝑗𝑞𝑗=1 . 

According to Theorem 1, inequality (B.1) demonstrates that the closed-loop system 𝑇𝑤𝑧 𝜃  is stable, and also ‖𝑇𝑤𝑧 𝜃 ‖∞ < 𝛾.   
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