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With rapid development of advanced manufacturing technologies and high demands for innovative lightweight constructions to
mitigate the environmental and economic impacts, design optimization has attracted increasing attention in many engineering
subjects, such as civil, structural, aerospace, automotive, and energy engineering. For nonconvex nonlinear constrained opti-
mization problems with continuous variables, evaluations of the fitness and constraint functions by means of finite element
simulations can be extremely expensive. To address this problem by algorithms with sufficient accuracy as well as less com-
putational cost, an extended multipoint approximation method (EMAM) and an adaptive weighting-coefficient strategy are
proposed to efficiently seek the optimum by the integration of metamodels with sequential quadratic programming (SQP). -e
developed EMAM stems from the principle of the polynomial approximation and assimilates the advantages of Taylor’s expansion
for improving the suboptimal continuous solution. Results demonstrate the superiority of the proposed EMAM over other
evolutionary algorithms (e.g., particle swarm optimization technique, firefly algorithm, genetic algorithm, metaheuristic methods,
and other metamodeling techniques) in terms of the computational efficiency and accuracy by four well-established engineering
problems. -e developed EMAM reduces the number of simulations during the design phase and provides wealth of information
for designers to effectively tailor the parameters for optimal solutions with computational efficiency in the simulation-based
engineering optimization problems.

1. Introduction

Solving nonlinear optimization problems is a hot issue in
design optimization of practical engineering systems. In this
class of optimization problems, both the objective function
and the constraints are nonlinear and extremely expensive
when solved using numerical methods, for example, finite
element methods. In order to obtain solutions with high
computational accuracy in reasonable time, the hybrid
optimization method has become increasingly popular for
solving nonlinear optimization problems because it can
reduce the computational burden during the analysis by

replacing the complex physical systems with the mathe-
matical models and improve the accuracy of the optimal
solution with the use of the combined heuristic methods and
mathematical programming techniques.

-e multipoint approximation method (MAM) [1, 2] is
one of the best-known metamodel-based optimization
methods with the integration of sequential quadratic pro-
gramming (SQP) technique, and it replaces the original
optimization problem with a sequence of mathematical
approximations that use much simpler objective and con-
straint functions. MAM stemmed from previous work [3, 4]
and was further generalized to multipoint approximations
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[2, 5]. Recently, Liu and Toropov [6] have implemented the
discrete capability into theMAM to solvemixed continuous-
discrete optimization problems. In MAM, the process of
constructing metamodels can be described as an assembly of
multiple metamodels into a single metamodel using linear
regression. -e coefficients of the model assembly are not
weights of the individual models but tuning parameters
determined by the least squares method.

In inexpensive engineering design problems, such as a
cantilever beam design [7], the hypersonic wing [8], and the
wind farm layout design [9], evolutionary algorithms can be
a good choice to find globally optimal solutions. Genetic
algorithm (GA) [10, 11] is inspired by natural evolution in
biology, and the population of candidate solutions experi-
ences a process similar to natural selection and genetic
variation. GA has been well-recognized as an optimization
method handling nonsmooth and nonlinear problems,
where traditional methods generally fail.

Similarly, intrigued by the group foraging such as fish
schooling and bird flocking, particle swarm optimization
(PSO) technique developed by Kennedy [12] has become one
of the dominant optimization algorithms in many fields.-e
advantages of using various variants of this technique have
been validated in the civil engineering applications in terms
of convergence rate and success rate. Chen et al. [13] pro-
posed an improved particle swarm optimization- (IPSO-)
based form-finding method for suspension bridge design
and construction with the test on the design analysis on
Yingwuzhou Yangtze River Bridge. Ghamisi and Bene-
diktsson [14] applied integration PSO on feature selection
and demonstrated the usefulness on road detection.
Meanwhile, PSO has also been widely applied for solving
structural mechanics problems [15]. Firefly algorithm (FA),
inspired by social behavior of fireflies which is related to the
rate and rhythmic of flash [16], is another very promising
method. -is novel technique has played an important role
in the research of truss structures [17] and composite
reinforced bridges [18]. Furthermore, the integration of
numerical algorithms with neural networks to solve complex
problems has been recently investigated by Moghadas et al.
[19], Cao et al. [20], and Li et al. [21].

Besides the aforementioned metaheuristic algorithms,
metamodel-based algorithms have become increasingly
popular in recent years. Widely used metamodels include
polynomial regression (PR) [22], radial basis function (RBF)
[23], Kriging [24], multivariate adaptive regression splines
(MARS) [25], artificial neural networks (ANNs) [26], and
support vector regression (SVR) [27]. Currently, there are
lots of novel techniques and approaches in the area of
metamodel-based optimization. Jones et al. [28] proposed
efficient global optimization (EGO), which employs the
Kriging metamodel for solving black-box problems. -e
optimization progress is guided by both the prediction and
error estimations. Regis [29] developed COBRA, an efficient
solver which makes use of RBF interpolation to approximate

objective and constraint functions. A new iterate in COBRA
is selected according to the violation of constraints within
some small margins. An application of multifidelity meta-
model can be found in [30–32], where genetic algorithms are
responsible for exploring the global design space.

As stated in Haftka et al. [33], there is still much room
for the development of efficient and accurate algorithms to
tackle high-fidelity design optimization. To address com-
plex nonlinear optimization problems involving multi-
scale/multilevel/multidisciplinary analysis within
reasonable time, much attention has been paid to the re-
search in relevant fields. Taking into account the above
situations, MAM has been gradually developed and become
one of the algorithms demonstrating good performance on
efficiently solving mid-range constrained engineering op-
timization problems with the use of the combined heuristic
methods and SQP technique. Based on the authors’ pre-
vious work [2, 6], an extended MAM (EMAM) framework
is proposed in this paper to further improve the compu-
tational efficiency during the entire simulation process.
First, a novel metamodel model inspired by Taylor’s ex-
pansion technique is developed to effectively construct the
approximations. To implement Taylor’s expansion meta-
model into the framework of MAM, the function of Eu-
clidean distance for the determination of weighting
coefficients during the process of approximations is
replaced by a proposed strategy for adaptive selection of
weighting coefficients. -en, the SQP technique is applied
on the approximations to obtain the optimal solutions. -e
correctness of this enhanced EMAM is validated by
comparing with the results from several nonconvex
benchmark problems [34, 35], which were successfully
solved by researchers in use of the state-of-the-art algo-
rithms, such as genetic algorithms (GAs) [36–38], evolu-
tion strategies (ESs) [39], particle swarm optimization
(PSO) [40], charged system search (CSS) [41], colliding
bodies optimization (CBO) [42], and firefly algorithm (FA)
[43]. Although there were some primary tests and rudi-
mentary findings in previous work [44], robust numerical
results are found in this paper to extensively demonstrate
the advantages and superiority of the developed hybrid
algorithm over evolutionary algorithms andMAM in terms
of the computational efficiency and accuracy during the
optimization process. With the implementation of the
effective Taylor’s expansion in the current MAM optimi-
zation framework, the developed EMAM does not dete-
riorate the ability to solve the mid-range optimization
problems, which is the distinctive feature of MAM opti-
mization framework.

2. Multipoint Approximation Method (MAM)

Based on response surface methodology [22], the multipoint
approximation method (MAM) aims at constructing mid-
range approximations [4, 5] and is suitable to solve large-scale
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optimization problems by producing better-quality approx-
imations that are sufficiently accurate in a current trust region
and inexpensive in terms of computational costs required for
their building. -ese approximation functions have a rela-
tively small number (N+ 1, where N is the number of design
variables) of regression coefficients to be determined and the
corresponding least squares problem can be solved easily.

In general, an optimization problem can be formulated as

min F0(x), Fj(x)≤ 1(j � 1, . . . ,M), Ai ≤ xi ≤Bi(i � 1, . . . ,N),

(1)

where x refers to the vector of design variables; Ai and Bi
are the given lower and upper bounds on the design
variable xi;N is the total number of the design variables;
F0(x) is an objective function; Fj(x) is the constraint
function; and M is the total number of the constraint
functions.

In order to present the detailed physical model using the
response functions and reduce the number of calls for the
response function evaluations, the MAM replaces the op-
timization problem by a sequence of approximate optimi-
zation problems:

min F
k
0(x), F

k
j (x)≤ 1(j � 1, . . . ,M), Ak

i ≤ xi ≤B
k
i ,Ak

i ≥Ai,B
k
i ≤Bi(i � 1, . . . ,N), (2)

where F
k
0(x) and F

k
j (x) are the functions which approximate

the functions F0(x) and Fj(x) defined in equation (1), Ak
i

and Bk
i are the side constraints of a trust subregion, and k is

the iteration number.
-e selection strategy of the approximate response

functions F
k
j (x)(j � 0, . . . ,M) outlines that their evaluations

are inexpensive as compared to the evaluations of the actual
response functions Fj(x) and are intended to be adequate in
a current trust region. -is is achieved by appropriate
planning of numerical experiments and use of the trust
region defined by the side constraints Ak

i and Bk
i .

In the present work, constructing the metamodels for the
objective and constraint functions includes two stages. In the
first stage, the parameters aj involved in building a single
metamodel ϕl are formulated as follows:



P

p�1
wp F xp  − φl xp, aj  

2
⟶ min , (3)

where F is the function to be approximated; P means the
total number of sampling points; the coefficient wp denotes
the weight of each point xp; in other words, it represents the
inequality of each sample point in the sample space [45]; and
aj indicates the tuning parameter associated with the specific
metamodel φl in equation (4), and it is determined by the
weighted least squares method.

φ1(x) � a0 + 
N

i�1
aixi,

φ2(x) � a0 + 

N

i�1
aix

2
i ,
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N

i�1

ai

xi

,

φ4(x) � a0 + 
N

i�1

ai

x
2
i

,

φ5(x) � a0

N

i�1
x

ai

i .

(4)

In the second stage, different approximate models are
assembled into one metamodel described by equations (5)
and (6). Also, equation (5) is built in the same manner as
equation (3). It should be noted here that the design of
experiments is fixed when a different approximate model ϕl

is constructed.



P

p�1
wp F xp  − F xp, bl  

2
⟶ min, (5)

where the assembly metamodel Fis expressed as

F(x) � 
NF

l�1
bl · φl(x), (6)

where NF is the number of regressors in the model bank
φl(x)  and the coefficients bl are regression coefficients that
should not be considered as weight factors, e.g., could be
positive or negative.

Finally, the above two-step metamodel building strategy
leads to solving the linear system of NF equations with NF
unknowns bl.

3. Extended MAM and Adaptive Selection of
Weighting Coefficients

Moving least-squares method (MLSM) is a metamodel
building technique that has been suggested for use in the
meshless form of the finite element method [46] and then
advocated to build the highly dependent metamodels around
the specific point in the local space for design optimization
[47–49]. Intrigued byMLSM, an extendedMAM (EMAM) is
proposed in this paper to explore the full potential of the
polynomial regression-based metamodels through the entire
optimization process. Since MLSM can more accurately
predict the response function around the point at which the
approximation is made, EMAM has the ability to capture
values of the response function around the point with a high
level of accuracy.
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In current research, a novel metamodel called Taylor’s
expansion metamodel is developed to construct the linearly
combined metamodel and it is given as follows:

φ(x) � φ x0  + 
N

i�1

zφ(x)

zxi
|x�x0 · Δi , Δi � xi − x0i , (7)

where φ(x0) is the initial function value at the starting point
x0, which is the suboptimal point obtained in the previous
iteration during the optimization loop, and N is the number
of design variables. It is noted that the quality of the above
metamodel highly depends on the suboptimal point x0
because the approximation around x0 is constructed with
high levels of accuracy and efficiency by linear expansion.
-is enables EMAM to outperform other metamodel
methods in local search for the optimal solution and also
improve the quality of the optimal solution.

As described in Section 2, the explicit metamodel will be
determined on the basis of implicit response evaluations by
the weighted least-squares fitting. Apparently, values of the
weighting coefficient wp in equations (3) and (5) directly
control the quality of the approximation. Generally, the
optimal solution in an optimization problem lies on the
boundary of the feasible region. In other words, there is at
least one constraint to be activated when the optimum is
found in the constrained optimization problems. -erefore,
it is necessary to propose a strategy for adaptive selection of
weighting coefficients in the current optimization frame-
work so that the approximation function F(x) could im-
prove its accuracy near the promising region. As a result, the
optimal solution will be more likely to locate in the vicinity
of a boundary.

To implement Taylor’s expansion metamodel into this
approximation-based framework, the weighting coefficient
wp is defined as follows:

wp � 
M

j�1
wj
p,

wj
p �

Fj(x) + 0.1 
α
, if 0.9≤Fj(x)< 1,

F− β
j (x), if Fj(x)> 1,

1, else,

⎧⎪⎪⎨

⎪⎪⎩

(8)

where α and β are user-defined positive constants and α � 4
and β � 5 are determined by the author’s experience from a
lot of tests performed. It is noted that the bigger weightings
should be adaptively assigned to the points which are located
more closely to the boundaries between the feasible and
infeasible regions. As can be seen from equation (8), the
maximum constraint weighting factor wj

p is assigned when
the constraint evaluation equals 1. With β> α, the quality of
the metamodel to approximate response functions in the
feasible region is much ‘better’ than the one in the infeasible
region.

As compared to the formulations of the weighting co-
efficient wp in [45], which is defined in the following
equation:

wp � wo
p · wj

p (j � 1, . . . ,M),

wj
p �

Fαj (x) Fj(x)≤ 1

F− α
j (x) Fj(x)≥ 1

⎧⎪⎨

⎪⎩
,

wo
p �

F0 x1( 

F0 xp 
⎡⎢⎣ ⎤⎥⎦

β

,

(9)

α � 4 and β � 1.5.
-e objective weighting factor wo

p has not been used in
the proposed strategy. -ere are two reasons: (1) -e
weighting factor wo

p will sometimes be allocated a wrong
weight value for an infeasible point. Considering an infea-
sible solution xp with an extremely low objective value
F0(xp), this weight [(F0(x1))/(F0(xp))]β would approach
infinity. As a result, the quality of the metamodel is severely
damaged. (2) Even if the objective weighting factorwo

p is well
defined, the influence of wo

p on the quality of metamodels is
much less than that of the constraint weighting factor wj

p.
In equation (9), the constraint weighting coefficient wp

only considers the contribution from each constraint during
the process of the constraint metamodel building. -ere-
fore,wp is only affected by a single constraint for a given
design point. In the proposed strategy for adaptive selection
of weighting coefficients, all information of different con-
straints is considered by the product of a bunch of weighting
factorwj

p. Obviously, one design point and its corresponding
constraints are not isolated one from another. -e optimal
behavior of a design point should be judged by the infor-
mation of the whole set of constraints, rather than the in-
formation from a single constraint. By combining the
constraints with multiplication shown in equation (8), the
more the constraints are active, the larger the weighting of a
point. On the contrary, the less weighting value is given
when the point is far away from the feasible region. It is
noted that the proposed strategy for adaptive selection of
weighting coefficients leads to the approximation function
with a high level of accuracy in the feasible region, which
results in a high probability of identifying feasible solutions
during the optimization process.

Based on these facts, the flowchart of the EMAM as an
enhanced optimization framework is shown in Figure 1. At
the beginning, an initial feasible design is given to trigger the
entire optimization process and the corresponding trust
region is defined. -en, a number of sampling points (N+ 5,
where Nmeans the number of design variables) are uniformly
distributed over the trust region. -e objective and constraint
values at these points are obtained by evaluating the response
functions. In this paper, we assume the response functions are
computationally expensive in simulation-based optimization
and any design point will never cause a crash during the
simulations. Based on the obtained data about design vari-
ables and responses, Taylor’s expansion regressor defined by
equation (7) and five other forms of regressors represented by
equation (4) are built in sequence. Following that, these six
regressors are assembled into one metamodel for the
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evaluations of all response functions of the interests. -us,
numerical simulations are performed on the metamodels
inside the trust region and the optimal solution of the sub-
problem is found by SQP (sequential quadratic program-
ming) solver. To update the trust region in next iteration, it
will be resized and moved based on several indicators [2] and
then, the next iteration starts. When the size of the trust
region is small enough, the entire optimization process will
terminate and the final solution will be achieved.

4. Examples

4.1. Design of a Tension/Compression Spring. -is problem
first described by Belegundu [34] and Arora [50] has arisen
from the wide applications of vibration-resistant structures
in civil engineering. -e design objective is to minimize the
weight of a tension/compression spring subject to con-
straints on shear stress, surge frequency, and minimum
deflections as shown in Figure 2. -e design variables in-
clude the wire diameter d, the mean coil diameter D, and the
number of active coilsN. Detailed information on constraint
functions g1, g2, g3, and g4 can be found in reference [50].

In Table 1, the results obtained by extended MAM are
compared to those by other methods, such as mathematical
programming methods [34, 50], genetic algorithms (GAs)
[36–38], evolution strategies (ESs) [39], and charged system
search (CSS) [41]. As is shown in Table 1, the optimal design
(0.0126653) found by extended MAM has a good agreement
with the one by MAM and it also represents the lightest
weight design among all the feasible solutions indicated in
Table 2. Actually, Kaveh and Talatahari [41] obtained a
slightly better design (0.0126384) using CSS. However, this
optimal design can be noted that at least 0.11% design
constraint violation (g2) was clearly observed in Table 2.

By choosing different starting points that are randomly
generated for each example in this section, both extended
MAM and MAM have the ability to obtain the lightest
design (0.0126653) shown in Table 3, when eight sampling
points are selected to build the metamodels in each iteration
of the optimization process. Taking into account the ran-
domness in the developed algorithm, the mean value and
standard deviation (SD) of the results have also been pro-
vided in Table 3 to reveal the method’s robustness. To
compare methods using a probabilistic metric, more details
can be found in [51]. In general, the number of evaluations
called by the extended MAM is less than the number of
analyses by MAM and the former can obtain the more
robust optimum as well. In conclusion, the extended MAM
effectively enhances search performance with the higher
robustness and accuracy of the optimal solution than
metaheuristic algorithms.

4.2. A Reactor Pressure Vessel Example. -e second case
study focuses on the design optimization of a cylindrical
pressure vessel capped at both ends by hemispherical heads
(Figure 3). -e main purpose of this research is to minimize
the total manufacturing cost of the vessel including the
combination of welding, material, and forming costs. -e
design variables consist of the shell thickness Ts, the

Input of initial design X and
build initial trust region

Design of numerical experiments
inside of trust region

Metamodel building with
Taylor’s expansion regressor

Metamodel building with
intrinsically linear regressors

Solving optimization problem on
metamodel within trust region

Trust region small enough?

STOP

YES

Yes

No

Is metamodel good?

Resizing and moving trust
region towards the objective

improvement

Figure 1: Extended MAM flowchart.

P P D

d

Figure 2: Schematic of the tension/compression spring.
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spherical head thickness Th, the radius of cylindrical shell R,
and the shell length L. -e detailed problem formulation is
given in [35].

-e comparison of results obtained by the extended
MAM and other metamodel-based methods (SCGOSR [52],
eDIRECT-C [53], ConstrLMSRBF [53], CORBA [53], and
CiMPS [53]) has been presented in Table 4. -e cost
computed using the extended MAM or MAM has been
further reduced to 5885.268 by 0.0009% from 5885.33, which
was the best design referred in [52]. To build the metamodels
at each iteration of the optimization process, nine sampling
points are used in this example. It is noted that the optimized

solutions by MAM and extended MAM are the best feasible
designs since no violated constraints are observed in Table 5.
SCGOSR [52] could find a near-optimal design with the cost
of 5885.3653, which is slightly heavier than the result by
extended MAM, but the first and second constraints are
violated. In average, the extended MAM outperforms the
MAM to seek the optimum in terms of the number of it-
erations used in the case studies with different starting points
shown in Table 6. Taking into account the above advantages
of extended MAM for seeking optimal solutions, the su-
periority of the proposed method over other metamodel-
based techniques has been demonstrated in terms of the
accuracy and efficiency. It is concluded that hybrid algo-
rithms, such as the extended MAM and MAM, are quite
robust algorithms to consistently achieve higher accuracy of
the solution than other metamodel-based algorithms used
for solving problems with multiple local optima, and the
extended MAM has a slightly faster rate of convergence than
MAM.

4.3. Welded Beam Design. Design optimization of a welded
beam shown in Figure 4 is a complex and challenging
problem in nature with many variables and constraints.

Table 1: Comparison of optimal designs of the spring using different algorithms.

Methods d D N Weight
Mathematical programming [34] 0.050000 0.315900 14.250000 0.0128334
Mathematical programming [50] 0.053396 0.399180 9.185400 0.0127303
GA-based [37] 0.051480 0.351661 11.632201 0.0127048
GA-based [38] 0.051989 0.363965 10.890522 0.0126810
ES-based [39] 0.051643 0.355360 11.397926 0.012698
CSS [41] 0.051744 0.358532 11.165704 0.0126384
MAM 0.051604352 0.35468326 11.409247 0.0126653
Extended MAM 0.051656017 0.35592318 11.3357128 0.0126653

Table 2: Constraint results of the optimal designs.

Methods g1 g2 g3 g4
Mathematical programming [34] − − 0.000014 − 0.003782 − 3.938302 − 0.756067
Mathematical programming [50] 0.000019 − 0.000018 − 4.123832 − 0.698283
GA-based [37] − 0.002080 − 0.000110 − 4.026318 − 4.026318
GA-based [38] − 0.000013 − 0.000021 − 4.061338 − 0.722698
ES-based [39] − 0.001732 − 0.0000567 − 4.039301 − 0.728664
CSS [41] 8.78603e − 6 0.0011043 − 4.063371 − 0.726483
MAM − 1.0843e − 7 − 6.10541e − 8 − 4.0497478 − 7.291416
Extended MAM − 6.3091e − 7 − 3.2158e − 7 − 4.052208 − 7.282805

Table 3: Optimal designs of the spring using MAM and extended MAM algorithms with different starting points.

Starting point (d, D, N) MAM Extended MAM
Output value No. of iterations Output value No. of iterations

0.05 0.4 9 0.01311 71 0.01269 17
0.08 1.0 10 0.01311 19 0.01289 26
0.06 0.5 11 0.0126684 14 0.0126653 15
0.09 0.7 9 0.01268 14 0.01280 22
0.06 0.6 12 0.0126653 14 0.0126653 14
Average 0.01284674 26.4 0.01274212 18.8
SD 2.15e − 4 22.4 8.91e − 5 4.5

L

R R

Th Ts

Figure 3: Pressure vessel with the indication of design variables.

6 Mathematical Problems in Engineering



Usually, conventional optimization methods fail to find
global optimal solution. Hence, the welded beam design
problem is often used to evaluate the performance of dif-
ferent optimization methods. To determine the best set of
design variables for minimizing the total fabrication cost of
the structure, the minimum cost optimization is performed

considering shear stress (τ), bending stress (σ), buckling load
(pc), and end deflection (δ) constraints.-e constants in this
study are chosen as follows:

P � 6000 lb,

L � 14 in,

E � 30 × 106 psi,

G � 12 × 106 psi,

τmax � 13600 psi,

σmax � 30000 psi,

δmax � 0.25 in.

(10)

Taking into account design variables x1 � h, x2 � l,
x3 � t, and x4 � b, the mathematical optimization of the
problem can be formulated as follows.

Objective: minimize the cost

cost(x) � 1.10471 x21x2 + 0.04811 x3x4 14 + x2( . (11)

-e bounds on the design variables are

Table 4: Comparison of the optimal solution with the literature on pressure vessel designs.

Methods Ts Th R L Cost

SCGOSR [52] 0.778187 0.384658 40.320586 199.986548 5885.3653
eDIRECT-C [53] 1.00000 0.62500 51.81347 84.57855 7006.7816
ConstrLMSRBF [53] 1.00000 0.62501 51.81035 84.60683 7007.2309
CORBA [53] 1.00000 0.62503 51.80156 84.66651 7007.8352
CiMPS [53] 1.10000 0.62500 56.99482 51.00125 7163.7390
MAM 0.7781687 0.3846492 40.319619 200.000 5885.268
Extended MAM 0.7781687 0.3846492 40.319619 200.000 5885.268

Table 5: Comparison of present constraint values with the literature for the pressure vessel.

Methods g1 g2 g3 g4
SCGOSR [52] 2.8e − 2 9.7e − 3 − 6.5e − 2 − 4.0e+ 1
eDIRECT-C [53] − 2.9e − 8 − 1.3e − 1 − 1.0e − 1 − 1.6e+ 2
ConstrLMSRBF [53] − 6.0e − 5 − 1.3e − 1 − 4.7e+ 1 − 1.6e+ 2
CORBA [53] − 2.3e − 4 − 1.3e − 1 − 1.2e+ 1 − 1.6e+ 2
CiMPS [53] 3.7e − 2 − 8.1e − 2 − 6.2e − 2 − 1.9e+ 2
MAM − 5.3e − 8 − 0.0012 − 0.01962 − 40.000
Extended MAM − 5.3e − 8 − 0.0012 − 0.01962 − 40.000

Table 6: Optimal pressure vessel designs using MAM and extended MAM algorithms with different starting points.

Methods- MAM Extended MAM
Starting point (Ts,Th,R, L) Output value No. of iterations Output value No. of iterations

1.0 1.0 100 150 5885.268 10 5885.268 10
0.8 0.5 50 150 5885.268 10 5885.268 9
0.5 0.5 100 100 5885.268 21 5885.268 17
1.5 1.5 50 50 5885.268 9 5885.268 10
Average 5885.268 12.5 5885.268 11.5
SD 5885.268 4.9 5885.268 3.2

P

b

AL

l

t

B

h

Figure 4: Design variables of a welded beam structure in para-
metric optimization.
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0.1≤ x1 ≤ 2,

0.1≤ x2 ≤ 10,

0.1≤ x3 ≤ 10,

0.1≤ x4 ≤ 2.

(12)

Subject to

g1(x) � τ(x) − τmax ≤ 0,

g2(x) � σ(x) − σmax ≤ 0,

g3(x) � x1 − x4 ≤ 0,

g4(x) � 0.10471x21 + 0.04811x3x4 14 + x2(   − 5≤ 0,

g5(x) � 0.125 − x1 ≤ 0,

g6(x) � δ(x) − δmax ≤ 0,

g7(x) � p − pc(x)≤ 0,

(13)

where
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 .

(14)

In this example, the best combination of design variables
and the lowest cost by hybrid algorithms (MAM and ex-
tended MAM) are compared with those obtained using GA
[36–38], PSO [40, 54], FA [43], colliding bodies optimization
(CBO) [42], CMA-ES [55], and differential evolution [56] in
Table 7. Nine sampling points are applied to construct the
metamodels in each iteration of the optimization process.

Although Kaveh and Mahdavi [42] claimed that the mini-
mum cost design was 1.724663 indicated in Table 7, the
corresponding fabrication cost of the structure was actually
1.724983, which can be easily evaluated by substituting the
values of design variables for the optimal design into the
objective function cost (x). -e cost of this design is higher
than the result (1.724852) by the extended MAM, which is
one of the best feasible designs shown in Table 7. CMA-ES,
IAPSO, and iDEaSm could also find the best design; how-
ever, the required number of function evaluations is 4658,
12500, and 4425, respectively. MAM and EMAM only need
about 120 function evaluations (about 13 iterations) as
shown in Table 8, where the statistical results of four ran-
domly tests are given to demonstrate the robustness of the
solution. It is concluded that both extended MAM and
MAM demonstrate the superiority over the other methods
to solve the complex optimization problem with respect to
the efficiency and accuracy of the solution.

4.4. A Ten-Bar Truss Structure. To further demonstrate the
computational efficiency of the extended MAM, the well-
known ten-bar truss benchmark problem [6] shown in
Figure 5 is used to explore the potential. -e optimization
formulation of this problem is defined to minimize the
weight of the structure by varying the cross-sectional areas
(from 0.1 in2 to 12.7 in2) of the truss members subject to
stress constraints. -e allowable stress in each truss member
is the same in tension and compression and is set to 25 ksi for
all members except member 9 for which it is 75 ksi. -e
density of the truss material is 0.1 (lb/in3), the member size
L� 360 in, the loads P1� P2�100 Kips, and P3� 0.

In order to demonstrate the superiority of the extended
MAM over other optimization methods such as PSO [57],
FA [58], and SQP in HyperStudy [59], a comparison of
optimal designs of ten-bar truss structure has been given in
Table 9. It should be noted that for PSO, FA, MAM, and the
extended MAM, the objective function value, the number of
iterations, and the number of response analyses are actually
the average results over 5 independent runs. -e best design
(1497.0) was achieved by Haftka [60]; however, some con-
straints indicated in Table 10 had been violated. -e same
conclusion can be drawn for the optimal design (1497.6) by
SQP in HyperStudy. -e results by PSO (1519.2) and FA
(1558.1) are feasible solutions; however, they are not the best
design. For the best feasible design (1497.6) by extended
MAM andMAM, the higher efficiency and accuracy of these
two algorithms have been demonstrated, for example, the
average number of iterations used by the extendedMAMhas
been reduced by an order of magnitude from 520 (PSO) or
400 (FA) to 28. It is also noted that the average number of
response analyses (420) called by extended MAM is 24% less
than the one (555) by MAM. In summary, the extended
MAMoutperforms the other methods in seeking the optimal
solution of the complex engineering design problems in
terms of the efficiency and accuracy.
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Table 7: Comparison of present optimized designs with the literature for the welded beam.

Methods x1(h) x2(l) x3(t) x4(b) Cost

GA-based [36] 0.248900 6.173000 8.178900 0.253300 2.433116
GA-based [37] 0.208800 3.420500 8.997500 0.210000 1.748309
GA-based [38] 0.205986 3.471328 9.020224 0.20648 1.728226
CPSO [40] 0.202369 3.544214 9.04821 0.205723 1.728024
ES-based [39] 0.199742 3.612060 9.037500 0.206082 1.737300
CSS [41] 0.205820 3.468109 9.038024 0.205723 1.724866
CBO [42] 0.205722 3.47041 9.037276 0.205735 1.724663
FA [43] 0.201500 3.56200 9.041400 0.205700 1.731210
CMA-ES [55] NA NA NA NA 1.724852
IAPSO [54] 0.2057296 3.47048866 9.03662391 0.20572964 1.724852
IDEaSm [56] 0.20572963 3.4704888 9.0366238 0.20572965 1.724852
MAM 0.2057296 3.4704893 9.0366242 0.2057297 1.724852
Extended MAM 0.2057296 3.4704894 9.0366242 0.2057297 1.724852

Table 8: Optimal designs of the welded beam using MAM and extended MAM algorithms with different starting points.

Methods MAM Extended MAM
Starting point (h, l, t, b) Output value Iteration number Output value Iteration number
0.6 1.0 5.0 0.6 1.724852 14 1.724853 13
0.5 3.5 9.0 0.5 1.724852 12 1.724853 14
0.6 2.0 7.0 0.6 1.724852 14 1.724852 12
1.0 3.0 7.0 0.5 1.724853 13 1.724853 13
Average 1.724852 13.3 1.724853 13.0
SD 4.3e − 7 0.8 4.3e − 7 0.7

1 2

10
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9

4

5
7

8

3

L L

L

135

6 4 2

P1 P2

P3

Figure 5: Ten-bar truss structure.

Table 9: Comparison of present optimized designs for ten-bar truss structure.

Design variables Haftka [60] HyperStudy [59] PSO [57] FA [58] MAM Extended MAM
x1 7.9 7.9 7.5395 7.4269 7.9 7.9
x2 0.1 0.1 0.4605 0.8070 0.1 0.1
x3 8.1 8.1 8.4605 8.6498 8.1 8.1
x4 3.9 3.9 3.5395 3.6580 3.9 3.9
x5 0.1 0.1 0.1 0.1424 0.1 0.1
x6 0.1 0.1 0.4605 0.6316 0.1 0.1
x7 5.8 5.8 6.3081 6.5491 5.798276 5.798275
x8 5.51 5.52 5.0056 4.7649 5.514327 5.515434
x9 3.68 3.68 3.3370 3.3244 3.676959 3.676927
x10 0.14 0.14 0.6513 0.8937 0.141421 0.141430
Weight (lb) 1497.0 1497.6 1519.2 1558.1 1497.6 1497.6
No. of iterations N/A 13 520 400 37 28
No. of response analyses N/A 144 5200 20000 555 420
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5. Conclusions

-e paper focuses on obtaining the high efficiency and
accuracy solution of complex simulation-based optimization
problems by developing an extended multipoint approxi-
mation method. A novel metamodel inspired by Taylor’s
expansion technique is proposed, as well as a strategy for
adaptive selection of weighting coefficients, so that the
approximation of responses of the interests in the compu-
tationally expensive design problems can be performedmore
efficiently. -e superiority of the extended MAM over SQP,
metaheuristic algorithms, metamodel-based algorithms, and
MAM has been demonstrated by four nonconvex bench-
mark examples in terms of the computational efficiency and
accuracy. In the current implementation, there are some
limitations of EMAM. First, the optimization performance
needs improvement to solve mixed-variable optimization
problems. Second, the moving trust region strategy has
certain drawbacks of balancing exploration and exploitation.
Finally, the metamodel has difficulty in modelling highly
multimodal and high-dimensional responses. However,
possessing the potential of remarkably reducing the com-
putational effort in the simulation-based optimization, the
extended MAM can pose great influence on solving highly
nonlinear engineering problems and provide valuable in-
sights into the development of effective algorithms applied
during the simulation-driven design process.
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