
This is a repository copy of Polyglot and Distributed Software Repository Mining with 
Crossflow.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/166260/

Version: Accepted Version

Proceedings Paper:
Matragkas, Nikolaos orcid.org/0000-0002-8594-1912, Kolovos, Dimitris orcid.org/0000-
0002-1724-6563, Barmpis, Konstantinos et al. (2 more authors) (2020) Polyglot and 
Distributed Software Repository Mining with Crossflow. In: MSR '20: Proceedings of the 
17th International Conference on Mining Software Repositories. MIning Software 
Repositories, 29 Jun 2020 , pp. 374-384. 

https://doi.org/10.1145/3379597.3387481

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Polyglot and Distributed Software Repository Mining with
Crossflow

Konstantinos Barmpis
Department of Computer Science

University of York
York, UK

konstantinos.barmpis@york.ac.uk

Patrick Neubauer
Department of Computer Science

University of York
York, UK

patrick.neubauer@york.ac.uk

Jonathan Co
Department of Computer Science

University of York
York, UK

jonathan.co@york.ac.uk

Dimitris Kolovos
Department of Computer Science

University of York
York, UK

dimitris.kolovos@york.ac.uk

Nicholas Matragkas
Department of Computer Science

University of York
York, UK

nicholas.matragkas@york.ac.uk

Richard F. Paige
Dept. of Computing and Software

McMaster University
Ontario, Canada

paigeri@mcmaster.ca

ABSTRACT

Mining software repositories at a large scale typically requires

substantial computational and storage resources. This creates an

increasing need for repository mining programs to be executed in a

distributed manner, such that remote collaborators can contribute

local computational and storage resources. In this paper we present

Crossflow, a novel framework for building polyglot distributed

repository mining programs. We demonstrate how Crossflow

offers delegation of mining jobs to remote workers and can cache

their results, how such workers are able to implement advanced

behavior like load balancing and rejecting jobs they either cannot

perform or would execute sub-optimally, and how workers of the

same analysis program can be written in different programing

languages like Java and Python, executing only relevant parts of

the program described in that language.

CCS CONCEPTS

• Information systems → Data mining; • Software and its

engineering → Concurrent programming structures.

KEYWORDS

Mining software repositories, domain-specific modeling language,

scalable, ease of use, lower barrier to entry

ACM Reference Format:

Konstantinos Barmpis, Patrick Neubauer, Jonathan Co, Dimitris Kolovos,

Nicholas Matragkas, and Richard F. Paige. 2020. Polyglot and Distributed

Software Repository Mining with Crossflow. In 17th International Con-

ference on Mining Software Repositories (MSR ’20), October 5–6, 2020, Seoul,

Republic of Korea. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3379597.3387481

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387481

In [9], we presented a short (4-page) overview of an early ver-

sion of Crossflow, a Java-based framework for development and

distributed execution of multi-step software repository mining pro-

grams (workflows). This preliminary work focused on motivating

the need for a tool facilitating distributed execution of software

repository mining programs that would allow remote collabora-

tors to contribute their local computational and storage resources.

Crossflow was developed to address a number of challenges we

identified in the context of a repository mining use-case [10], where

we set out to assess the “popularity” of 22 different model-driven

engineering technologies by measuring their use in open-source

GitHub repositories. The analysis involvedmore than 40,000 GitHub

API calls, well over the 5,000 calls per hour offered by GitHub, and

as such we had to introduce artificial delays to our mining program

resulting in an execution time of over 8 hours. We did not wish to

use multiple credentials or pre-authorized tokens from the same

machine as this is against GitHub’s API policy1.

In addition, given the fragility of the network and the intermit-

tent errors that GitHub’s API would produce (e.g., when it was

overloaded), our mining program needed to include a substantial

amount of defensive (wait-and-retry) code against network errors,

as well as several bespoke persistent caches to minimize the number

of API calls that would have to be repeated in case of an unexpected

program crash.Weaving all these concerns together lead to a tightly-

coupled program that was hard to reuse and to run in a distributed

manner (e.g., to share the load between the different collaborators

involved in this work).

This experience motivated us to investigate approaches for dis-

tributed execution of software repository mining programs that

would allow remote collaborators to contribute their computational

and storage resources. Moreover, the fluctuating availability of

workers as well as the elimination of centralized book-keeping

motivated us to implement a locality scheduling mechanism that

allows worker nodes to dynamically reject jobs during runtime.

Additionally, storage and bandwidth limitations associated with

1https://help.github.com/en/github/site-policy/github-terms-of-service#h-api-
terms

374

2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR)



centrally-stored data motivated us to develop a worker-based capa-

bility approach that enables jobs, which require particular reposi-

tory data, to be picked up by workers that have the required repos-

itory available in their local storage.

This paper extends the preliminary work in [9] and provides a

more comprehensive description of Crossflow2, focusing on new

capabilities such as polyglot support. It also reports on empirical

evaluation of Crossflow against an existing repository mining

tool, using a case-study from the literature. The rest of the paper is

organized as follows. Section 1, presents the architecture of Cross-

flow, the domain-specific language it uses for specifyingmulti-step

software repository mining programs (workflows), as well as key

features such as caching, locality scheduling and polyglot code

generation. Section 2 presents related work, section 3 presents a

qualitative and quantitative analysis of Crossflow in comparison

to an existing tool and case-study, and section 4 concludes the paper

and discusses directions for future work.

1 CROSSFLOW

Crossflow is a novel polyglot distributed data processing frame-

work, tailored to the needs of collaborative repository mining.

Crossflow supports distributing tasks of multi-step repository

mining programs, which we will refer to as work�ows in the re-

mainder of the paper, over multiple computing nodes (workers),

which communicate through, and are orchestrated by, a master

node using messaging middleware. Each such worker is written in

one of the programing languages supported by Crossflow and will

execute relevant steps (tasks) of the workflow written in that lan-

guage. The current implementation of Crossflow employs Apache

ActiveMQ [12] as messaging middleware and supports workflow

tasks that are implemented in Java and Python.

Technology Extension Keyword

GMF .gmfgraph figure

ATL .atl rule

QVTo .qvto transformation

Table 1: Technologies with file extensions and keywords

We explain the building blocks and facilities of Crossflow

through a running example. In this example the goal is to iden-

tify the degree to which different technologies (e.g. programming

languages, tools) are used together in the same GitHub repository.

For instance, a goal is to identify if projects which employ the

Eclipse Graphical Modelling Framework (GMF)3 are more likely to

also use the ATL [6] or the QVTo4 model transformation languages.

One way to achieve this is to:

• Record information about the technologies of interest in a

structured format. For example, the CSV file seen in Table

1, captures a known file extension and keyword for each

technology of interest;

2https://github.com/crossflowlabs/crossflow
3https://www.eclipse.org/gmf-tooling/
4https://projects.eclipse.org/projects/modeling.mmt.qvt-oml

• Query GitHub (using its public repository search API) to

find repositories containing files of interest for each technol-

ogy (this API returns the details of up to 1000 files for each

distinct search);

• Clone the repositories hosting the collected files and search

these local clones for files of all technologies of interest;

• Compute a co-occurrence matrix like the one in Table 2.

GMF ATL QVTo

GMF - 16 25

ATL 16 - 7

QVTo 25 7 -

Table 2: Technology co-occurrence matrix

1.1 Architecture

As illustrated in Figure 1, Crossflow provides a purpose-built

domain-specific language for modeling repository mining work-

flows, and code generators that produce implementation scaffolding,

which depends on reusable runtime libraries (currently supporting

Java and Python). While a Crossflow model specifies the sources,

tasks, streams and sinks of a workflow, how they are wired, and

where tasks are executed (in all workers vs. only in the master node)

it does not capture the behavior of the modeled sources, tasks and

sinks. This is expressed using hand-written code embedded in the

generated scaffolding; such skeletons will be in the programing

language defined for that task in the model (or in Java by default).

Once the desirable behavior has been implemented, this workflow-

specific code and the reusable core runtime library are bundled into

self-contained runnables, to be executed on the nodes participating

in the execution of the workflow. As such, a node is able to run one

or more Crossflow workers in one or more of the languages de-

fined in the Crossflow model, contributing to the analysis of tasks

implemented in those languages. The following sections discuss

the components of the Crossflow architecture in detail.

Figure 1: Crossflow Architecture, based on [9]

1.2 Crossflow DSL

The Crossflow DSL has been implemented on top of the Eclipse

Modeling Framework and its abstract syntax (metamodel) is illus-

trated in Figure 2. We explain its building blocks using a graphical

model (cf. Figure 3) of our running example.

Sources feed the workflow with jobs based on user input. In our

example, TechnologySource reads a comma-separated file structured

375



like Table 1, producing Technology jobs, consisting of a name, an

extension and a keyword, into the Technologies stream. Sources are

only executed on the master node and will only run once, upon

workflow initialization. Since sources (like all Tasks) are able to

provide their data asynchronously, one element at a time, a source

can be providing new jobs for an arbitrary amount of time during

the execution of a workflow.

Figure 2: Crossflow Language Metamodel

Streams are message channels to which sources and tasks of the

workflow can send jobs that other tasks can carry out, or results

that sinks can aggregate and persist. In Crossflow, job steams are

typed: for example the Technologies stream only accepts jobs of

type Technology (dashed line in the diagram). Crossflow supports

two types of streams: queues which send each job to only one of

the subscribed workers, and topics which broadcast each job to all

subscribed workers.

Tasks subscribe to one or more (incoming) streams and receive

jobs posted there by other tasks or sources. They can also post new

jobs to one or more outgoing streams. For example:

• the GitHubCodeSearcher task subscribes to the Technolo-

gies stream, processes incoming jobs of type Technology by

searching for files with the specified keyword and exten-

sion through the GitHub API, and for each result, it pushes

its repository path (wrapped into a Repository job) to the

Repositories stream. In a distributed execution of this work-

flow, each worker contributes an instance of GitHubCode-

Searcher (hence the double rectangle node shape in the di-

agram) which can perform such GitHub searches under its

own credentials;

• the RepositorySearchDispatcher task receives these reposi-

tories, and for every repository it has not encountered be-

fore, it produces one RepositorySearch job into the Repos-

itorySearchesStream. Unlike GitHubCodeSearcher, Reposito-

rySearchDispatcher is represented with a single rectangle,

signifying that only one instance of the task is executed and

this instance lives on the master node. This does not have a

significant impact on the performance of the workflow as

the cost of filtering out duplicate repository IDs is negligible

to that of querying GitHub and cloning Git repositories;

• for each RepositorySearch job, the RepositorySearcher makes a

shallow clone of the Git repository and counts the number of

files with the extension and containing the keyword relevant

to each technology.

Sink components can subscribe to one or more streams and receive

results to aggregate/persist. For instance, the ResultsSink sink in the

example collects RepositorySearchResults, builds the co-occurrence

matrix seen in Table 2, and periodically persists it into another CSV

file. As with sources, sinks are only executed on the master node.

Languages define the programing language(s) that a task is to

be implemented in. The running example defines two languages:

Java and Python5; the task GitHubCodeSearcher is both a Java and

a Python task hence it has two redundant implementations and

can be executed by a Crossflow worker running in either Java or

Python. Sources and Sinks will always only be run by the master,

which runs in Java.

Figure 3: Crossflow Model of the Running Example

1.3 Code Generator

Each language supported by Crossflow has an associated code

generator that can consume a workflow model and produce the

appropriate scaffolding code. Java generation is always performed

as master node mode is only supported by Java and it’s use as the

default language. For all other languages, the associated generator

is only executed if the language is defined within the workflow

model. Figure 4 shows a simplified type hierarchy for the running

example, in particular:

• For every Task in the model that is applicable for the genera-

tor’s language, an abstract base class containing infrastructure-

communication code and a skeleton subclass is produced.

The skeleton contains one consumeXYZ(...) method for ev-

ery incoming stream, where hand-written code needs to

be added to handle incoming jobs. For example, from the

GitHubCodeSearcher task of Figure 3 both the Java and Python

generators produce an abstractGitHubCodeSearcherBase base

class and concreteGitHubCodeSearcher class that extends the

base class. Within the concrete class, an empty stub imple-

mentation of a consumeTechnologies(...) method is produced,

which is called by the workflow when a new Technology job

is received. Partial hand-written bodies of these methods are

illustrated in Listing 1 and Listing 2.

• Similarly, Sinks are generated in the same manner as Tasks

though only to Java as both Sources and Sinks must be run

on a master node.
5even though direct links between language and task are hidden (to avoid clutter-

ing the model), all tasks can be associated to one or more languages (with Java being
used as a default when no languages are specified)

376



Figure 4: Generated Classes for the Running Example

• For every Source, an abstract base class and skeleton sub-

class is produced by the Java generator. Within the Source

skeleton subclass an empty produce() method is generated

for developers to implement and specify the behavior of the

source (e.g. for TechnologySource, the implementation of pro-

duce reads file extensions and keywords from an input CSV

file and pushes Technology jobs to the Technologies stream).

• The abstract base classes generated from Tasks and Sources,

also contain one sendXYZ(...) method for each outgoing

stream that developers can use to send outgoing jobs to

the respective stream. For example, GitHubCodeSearcherBase

contains sendToRepositories(...) used by hand-written code in

its concrete subclass to send Repository jobs to the Reposito-

ries stream, for RepositorySearchDispatcher to consume.

• For every Stream in the model, the generator produces a

concrete class which contains code that subscribes instances

of the concrete task classes to the underlying ActiveMQ

topics/queues [12]. Unlike with tasks, sources and sinks,

developers do not need to write additional code to specify

the behavior of streams.

• For every Type in the model the generator produces a con-

crete class which contains properties, setters and getters for

the type’s fields. If there is at least one stream typed after

the type in question, the generated class extends the built-in

Job class, which provides JobID/correlation ID fields as well

as serialization capabilities which are required for caching

as discussed below.

The generator also produces an entry (main) Java/Python class

named after the workflow instance in the model, which starts and

coordinates the execution of the workflow on a node, supporting

command-line parameters through which users can specify:

• Whether the node runs in master or worker mode. Each

workflow execution can be coordinated by one master node.

In the master mode, additional command line parameters

specify whether the workflow needs to start an embedded

(ActiveMQ) messaging broker that will manage the message

channels of the workflow, or can use an existing one at a

specified DNS/IP address.

• For nodes in worker mode, relevant parameters can define

the DNS/IP address where the ActiveMQ broker instance is

running. An additional parameter (-exclude) can be used to

exclude particular tasks from their execution by the worker.

For example, a worker may exclude GitHubCodeSearcher

from its execution if it doesn’t have GitHub credentials, and

contribute to the workflow through cloning and searching

repositories by means of the RepositorySearcher task.

1 @Override

2 public void consumeTechnologies(Technology t) throws Exception {

3 List <String> paths = ...; // runs GitHub search

4 for ( String path : paths) {

5 Repository r = new Repository() ;

6 r .path = path;

7 r . correlationId = t . jobId ;

8 sendToRepositories ( r ) ; } }

Listing 1: The consumeTechnologies(...) hand-written

method of GitHubCodeSearcher in Java

1 def consumeTechnologies(self , t :Technology):

2 paths = ... # runs GitHub search

3 for p in paths :

4 r = Repository ()

5 r .path = p

6 r . correlation_id = t . job_id

7 sendToRepositories ( r )

Listing 2: The consumeTechnologies(...) hand-written

method of GitHubCodeSearcher in Python

Listing 3 shows bash commands for starting the master node and

three worker nodes of the bundled implementation of the example

above in four computers with the monikers pc1 . . . pc4. Executing

these commands leads to the runtime distribution illustrated in

Figure 5. Note how there is only one instance of RuntimeSearchDis-

patcher at runtime (running on pc1 alongside the source and the

sink of the workflow) due to the masterOnly flag in the model dis-

cussed above. Also, while instances of RepositorySearcher run on all

three workers, only two instances of GitHubCodeSearcher in Java

run, due to the excludes flag in line 17 of the bash command that

starts the node on pc4 as well as the one in Python.

1 pc1: java −jar techrank. jar −mode master_bare

2 −instance technologyanalysis

3 −in technologies . csv −out results . csv

4 pc2: java −jar techrank. jar −mode worker

5 −instance technologyanalysis

6 −brokerHost pc1.acme.com

7 pc3: java −jar techrank. jar −mode worker

8 −instance technologyanalysis

9 −brokerHost pc1.acme.com

10 pc4: java −jar techrank. jar −mode worker

11 −instance technologyanalysis

12 −brokerHost pc1.acme.com

13 −exclude GitHubCodeSearcher

14 pc4: python3.8 main.py −mode worker

15 −instance technologyanalysis

16 −brokerHost pc1.acme.com

Listing 3: Running amaster and threeworker nodes through

the command line

To facilitate clean separation between generated and hand-written

code, the Crossflow generator uses different directories for these,

which can be specified by the user. By default, Java code is placed

in a src and a src-gen directory. Code under src-gen is meant to

be exclusively generated and can be overwritten by the generator

in subsequent invocations, while files under src, containing the

implementation of the behavior of sources, tasks and sinks, are

never overwritten and once generated they need to be maintained

manually. Similarly by default Python code is located within the py

and py-gen directories.

377



Figure 5: Runtime Component Distribution

It is worth noting that Crossflow can be used as a Java/Python

library, without leveraging any of its code generation capabilities,

by building code directly on top of the core runtime classes.

1.4 Error Handling, Logging and Monitoring

Exceptions produced during the execution of hand-written code

in consumeXYZ(...)/produce(...) methods6, such as consumeTechnolo-

gies(...), in workers are caught by the generated base classes and

sent to a dedicated stream (FailedJobsTopic) together with the job

that caused them. Temporary loss of network connectivity between

the master and the worker nodes is handled through the message

persistence and wait-and-retry capabilities of the supporting (Ac-

tiveMQ) messaging middleware. For logging and monitoring, there

are various dedicated Streams provided by Crossflow:

• The LogTopic contains any log messages added by users to a

Task, using the Crossflow logAPI, such as: log(LogLevel.INFO,

"message");

• The TaskStatusTopic contains a continuous stream of Task

statuses, such as a task being in progress (evaluating a job)

or waiting for a job to arrive. Users can add further statuses

to a Task in their implementation, by using the Crossflow

task status API, such as: getWorkflow().setTaskBlocked(this,

"this task is blocked");

• The StreamMetadataTopic and TaskMetadataTopic provide

continuous monitoring information about streams (like the

current number of messages in each stream or the number

of consumers it has) and tasks (like when a task is idle)

1.5 Caching

Jobs performed in the context of a repository mining workflow

can require fetching large volumes of remote data (e.g. cloning Git

repositories) or making calls to rate-limited APIs. To avoid repeated

execution of such jobs, Crossflow provides built-in support for job-

level caching. In Crossflow, each job has a unique (auto-generated

or manually set) JobID and an optional correlation ID, recording

the JobID of the job of which it is an output. For example, Listing

1 shows a redacted version of the implementation of the consume-

Technologies(...) method of GitHubCodeSearcher, where outgoing

Repository jobs are associated to the incoming Technology by setting

the correlation ID of the former to the JobID of the latter (line 7).

6The generated signatures of such methods allow exceptions to be thrown during
their execution.

The master node intercepts jobs submitted to all streams and

caches outputs against their respective inputs (based on JobIDs and

correlation IDs). Hence, previously-seen jobs are not re-executed

in subsequent runs of the workflow, but instead their cached out-

puts are reused. This will only happen for jobs that define such a

correlation ID and only if the cache is enabled for that workflow.

The default cache implementation in Crossflow is file based

and is organized as follows.

• The cache for a workflow execution is stored in a file-system

directory;

• For each stream in the workflow, there is a directory named

after the stream under the root cache directory;

• For every job submitted to the stream, a nested directory is

created with a unique name (UUID) derived by hashing the

values of the fields of the job;

• Every output correlated to the job through its correlation

ID field is stored in an XML file under this directory, named

with the content-derived UUID of the output job.

An example directory structure for the workflow of Figure 3

appears in Figure 6.

cache

Technologies

<UUID of input job A> (folder)

<UUID of output job B> (file)

<UUID of output job C> (file)

. . .

<UUID of input job D>

. . .

Repositories

. . .

RepositorySearches

. . .

RepositorySearchResults

. . .

Figure 6: Example Cache Directory Structure

The main rationale behind a filesystem-based cache implementa-

tion (as opposed to e.g. a database-backed implementation) is that it

simplifies backing up or discarding parts of the cache. For example,

if after the first execution of the workflow a defect is detected in

the part of the RepositorySearcher task that searches within cloned

repositories, the developer (or an API call to Cache.clear(String

streamName)) can delete the RepositorySearches folder of the cache

and run the workflow again. In the new execution all other cached

results will be reused (as well as the previously cloned repositories

- see section on locality scheduling below) and only the code that

searches for files within the cloned repositories will need to be

re-executed.

1.6 Locality Scheduling and Worker
Capabilities

The first time the example workflow is executed in a distributed

setup, different worker nodes will end up with different cloned Git

repositories as a result of the execution of their RepositorySearcher

378



tasks. The next time the workflow is executed (e.g. after a bug fix

or after adding more technologies to the input csv), Repository-

Search jobs should ideally be routed to nodes that already have

clones of relevant repositories from the previous execution to avoid

unnecessary cloning of the same repositories in different nodes.

To achieve this, we originally considered delegating the required

book-keeping to the master node. In this approach, the master node

would be responsible for “remembering” how Git repositories (and

other expensive to re-fetch/compute resources) were distributed be-

tween workers. However, given that workers can appear/disappear

at any point during the execution of the workflow, we opted for a

simpler and more flexible approach, which eliminates the need for

centralized book-keeping by enabling Crossflow worker tasks to

reject jobs allocated to them. This feature (an OpinionatedTask in

the Crossflow model) is one which delegates the Job acceptance

logic to the developer. In this case, the Task contains a method

acceptJob(Job job) whereby each incoming job can be rejected be-

fore it is carried out by the task (and consequently returned to its

originating stream to be re-dispatched), by evaluating the boolean

condition defined in that method. Using this structure, the devel-

oper has total control over which Jobs are accepted by that Task; for

example implementing the acceptance logic for RepositorySearch is

as follows:

• RepositorySearcher receives a Repository to analyze

• If the worker has a clone of the repository in question, it

accepts (acceptInput(Repository repo) returns true) and per-

forms the job

• If it does not have a clone of the repository:

– The first time the worker encounters this job it adds the

JobID of the job to a list of encountered jobs and rejects

the job (keeping track of how many times this has already

happened)

– If the JobID of the job is already in the worker’s encoun-

tered job list upon reception, it assumes that all other

nodes have also rejected the job, and accepts it

The main advantages of this approach is that it eliminates the

need for book-keeping at the master node and that it allows worker

nodes to dynamically reject jobs, which is useful in several scenar-

ios (e.g. when a worker runs out of GitHub API calls or out of space

in its local filesystem). On the flip side, it incurs a runtime overhead

as in the first execution of the workflow above, all RepositorySearch

jobs will be rejected 𝑁 times (i.e. sent back to the master node) by

each worker before they start getting accepted. This can become an

issue in cases where job messages carry a lot of data so developers

of Crossflow programs are encouraged to keep such messages

small and provide pointers to larger data as opposed to embedding

it when possible (e.g. the path of a file on GitHub as opposed to its

contents). In terms of fair allocation of work across the workers,

this is delegated to the respective facilities of the ActiveMQ mes-

saging middleware (round-robin message distribution). Preliminary

experiments have provided no evidence of unfair allocation but this

is an area for additional investigation.

Finally, the part of the logic above pertaining to rejecting a job

unless it has already been encountered by the worker already has

been abstracted into a pre-defined type of Task: a CommitmentTask,

in the Crossflow model. In this abstraction, a job is rejected by

the Task unless it has already been encountered 𝑁 times already.

As this is a probabilistic approach, increasing 𝑁 allows for a higher

probability that the correct worker is chosen, but will incur a higher

network overhead.

1.7 Web-based Admin Interface

To simplify the deployment and execution of Crossflow work-

flows, we have developed a basic supporting web application. The

application provides a root directory (“experiments”), under which

Crossflow workflows can be deployed. Each Crossflow exper-

iment7 lives under its own directory, which contains an experi-

ment.xml descriptor that provides the following configuration pa-

rameters:

• A human-readable title and short summary for the workflow

• The fully qualified name of the main class of the workflow

• The name of the runnable JAR of the workflow

• The paths of input/output CSV files that the web app should

display as HTML tables

• A description of how remote workers can contribute to the

execution of the workflow (i.e. by downloading and running

the workflow’s JAR file locally with appropriate parameters)

The web application allows users to browse available experi-

ments, to start a master node for a selected experiment, to view

the contents of its declared input and output CSV files, to stop the

workflow execution, and to reset its cache. A screenshot of the

application with the running example can be seen in Figure 7.

Figure 7: Co-occurrence Matrix (Output) Tab

2 RELATED WORK

PyDriller [13] is a Python framework for extracting information

from Git repositories such as source code and repository metadata.

It provides a high-level API that can be used to directly interact with

a repository, and tools for manipulating the data retrieved (e.g. code

diffs). Other libraries for interacting with individual Git repositories

include JGit (eclipse.org/jgit) for Java and PyGit (pygit2.org) for

Python. Crossflow is complementary to these tools and developers

7An “experiment” is an instance of the workflow with specific input data.

379



can make use of them to implement Git-related functionality in

Java/Python tasks of Crossflow mining workflows.

There is also a substantial body of work on tools for large scale

analysis on software repositories. The first tool of this kind was

Alitheia Core [8], which provided a service-based architecture

for distributed analysis of software repositories. In comparison

to Crossflow, Alitheia Core has a predefined processing workflow

and, while extensible, it was not built with the intention to support

arbitrary repository mining applications. Moreover, it does not pro-

vide some of the more advanced features of Crossflow, such as

opinionated workers or job caching.

Boa [4] is a domain-specific language and infrastructure for min-

ing software repositories. Boa’s infrastructure leverages distributed

computing techniques to execute domain-specific queries against

collections of Git repositories. However, Boa does not allow the

specification of more complex workflows that require information

from non-Git sources (e.g. a bug tracker or the StackOverflow API).

SmartSHARK [15] presents the implementation of an approach

that is focused on tackling issues related to the reproduction of

software repository mining studies. The implementation is com-

posed of a platform with a series of plugins such as vcsSHARK and

mecoSHARK for obtaining historical information from repository

clones and computing revision-level metrics, respectively. Similar

to Boa, this approach is designed to pre-compute and store any

data that may become relevant during the stage of analysis job

submission. Figure 8 summarizes the use of smartSHARK. The

SmartSHARK platform is represented by a web server running a

user interface (UI) which developers may access to install plug-

ins and provide software project repositories. Next, plugins such

as vcsSHARK and mecoSHARK are responsible for preprocess-

ing provided repositories (i.e. by employing external code analysis

frameworks such as Source Meter [5]) and inserting precomputed

analytics into aMongoDB database that is shared among developers,

the SmartSHARK platform, and aHadoop cluster. Finally, developers

implement analytics programs and submit them either directly or

through a web form to a Hadoop cluster for distributed job execu-

tion. Results produced by a Hadoop job may be stored in the shared

database from which developers may access them.

Figure 8: Overview of SmartSHARK

Another tool for distributed mining of software repositories is

King Arthur8, which is part of the GrimoireLab9 tool chain. King

Arthur is a distributed job queue platform that schedules and ex-

ecutes data retrieval jobs from software repositories using Perce-

val [3], a dedicated Python library. This platform enables the orches-

tration and distribution of data retrieval jobs only, while Crossflow

enables the distribution of entire (data retrieval + analysis) mining

workflows. Moreover, Crossflow workers can selectively choose

jobs to undertake depending on their capabilities. This is not the

case with King Arthur workers, which simply pick the next job

from a queue whenever they are idle.

General-purpose distributed stream processing frameworks such

as Apache Spark [16] and Apache Flink [2] can be used for min-

ing software repositories in a distributed manner, however, unlike

Crossflow, they do not provide support for polyglot/opinionated

workers and for job-level caching.

Finally, Boinc [1] is a software system that facilitates the creation

and execution of public-resource computing projects and hence

it could be used to support the execution of mining workflows.

Boinc shares many similarities with Crossflow. Namely, it sup-

ports distributed computation, workers are assigned jobs based on

their computational capabilities, and locality scheduling is used.

At the same time though, Crossflow offers particular features

that make it more suitable for repository mining workflows. First,

although Boinc supports selective execution of jobs from workers,

it is the server, which decides on the distribution of jobs based on

their estimate of computational requirements. On the other hand,

in Crossflow workers choose their jobs as the master node is

completely unaware of the exact composition of the system. This

results to increased robustness to specific faults, such as as network

and time-out errors. Moreover, Boinc does not provide a high-level,

declarative way to specify workflows.

3 EVALUATION

Themotivation of the evaluation presented in this section is twofold.

First, a qualitative evaluation is presented, analyzing Crossflow

and in particular focusing on the capability to express a state-of-

the-art open source software project effort estimation scenario that

has been employed by the software repository mining approach

SmartSHARK [15]. Secondly, a quantitative performance and re-

source analysis of Crossflow during the execution of said effort

estimation scenario is presented. The employed scenario has origi-

nally been introduced by Gousios et al. [7] and Robles et al. [11] and

estimates developer contributions in months based on factors such

as lines of code (LOC) which have been committed to publicly avail-

able software project repositories. The amount of person months

invested in an open source project are computed based on an au-

tomated approach that takes into account the number of commits

and the number of days a developer has actively contributed to a

project repository. More specifically, the former and latter represent

the number of changes to source code per developer (i.e. acting as

proxy of the amount of activity per person) and the number of days

with commits per person (i.e. acting as proxy of the time periods

when a person is actively developing software), respectively.

8https://github.com/chaoss/grimoirelab-kingarthur
9https://chaoss.github.io/grimoirelab/

380



3.1 Evaluation Scenario

This section describes the procedure associated with establishing

effort estimates for a set of open source software projects by em-

ploying Crossflow. The execution and monitoring of the tool is

performed independently (i.e. on separately provisioned cloud com-

puting nodes) and produces quantitative results and in particular

performance and resource usage statistics.

The result of the effort estimation analysis is a list of metrics for

each open source software project including LOCadded, LOCdeleted,

number of commits, number of developers, project duration, and

LOC. These metrics can used to establish a prediction of effort

required for the development of new projects and in particular

their time to release in months. In other words, the estimated time

to release 𝑡 = 𝑥

𝑑𝑒𝑣𝑠 ·𝐶 ·�
where 𝑥 is the estimated size of a project

release, 𝑑𝑒𝑣𝑠 the number of developers, 𝐶 the mean number of

commits per developer per month, and 
 the mean number of LOC.

Figure 9 depicts a Crossflow model capturing the effort esti-

mation workflow. The execution of master node and individual

worker nodes is initiated similarly as described in Listing 3. The

initial Java task ProjectSource is executed by the master node and

creates instances of Project by parsing lines of the workflow input

CSV file that are composed of Github repository owner, reposi-

tory name, and commit hash value (i.e. acting as head revision).

Next, fitting workers pick up the execution of opinionated Java

task RepositoryCloner which entails facilitating the information

of Project instances to establish local repository clones as well as

creating instances of Repository to keep track of local and remote

repository location and commit hash value. Then, workers exe-

cute the opinionated Java task JavaRepositoryAnalyzer similarly

and in particular by creating instances of JavaRepositoryAnaly-

sisResult (i.e. extending instances of Repository produced by task

RepositoryCloner) holding the computed total size and number of

files of the repository clone based on the commit hash value. Af-

terward, instances of JavaRepositoryAnalysisResult (i.e. created by

the previously described task) are picked by workers running the

opinionated Python task PythonRepositoryAnalyzer. More specifi-

cally, the Python library PyDriller [13] is employed for iterating

through each repository commit and in particular to count the total

number of lines, commits, and developers; sum up the the number

of lines added and deleted; as well as compute estimates on the

duration of a project in months. Finally, the Java task Reposito-

ryAnalysisResultSink is executed by the master node and creates

the workflow output CSV file by serializing instances of Python-

RepositoryAnalysisResult (i.e. created by the previously described

task).

3.2 Experimental Setup

This section outlines the experimental setup of Crossflow for

running the above-mentioned open source software project effort

estimation scenario. The subjects of study are represented by a set

of 21 publicly available open source software projects (i.e. the set

employed by Trautsch et al. [14]).

Table 3 depicts a number of node configurations offered by a

cloud provider and employed for the execution of the effort esti-

mation workflow presented in Figure 9. More specifically, node

configurations are defined by name, number of CPU cores (i.e. of

Figure 9: Effort estimation work
ow in Crossflow

type Intel Xeon Gold 6140 2.30GHz), amount ofmemory in GB, num-

ber of instances (i.e. individual computing nodes) running Ubuntu

18.04, and parallelization count. Further, deployment configurations

that are distributed over several instances employ a single instance

that runs a bare master node (i.e. a master node that only performs

tasks marked as “master only”) alongside an internal ActiveMQ

broker and non-distributed deployment configurations employ a

normal master node (i.e. a master node that also acts as a worker)

and an external ActiveMQ broker.

Name Core(s) Memory Instance(s) Parallel

Deploymentc1m1 1 1 1 1

Deploymentc1m1d 1 1 5 1

Deploymentc1m2d 1 2 5 1

Deploymentc1m2 1 2 1 1

Deploymentc2m2 2 2 1 1

Deploymentc2m2p 2 2 1 2

Deploymentc4m8 4 8 1 1

Deploymentc4m8p 4 8 1 4

Table 3: Cloud provider node configurations

3.3 SmartSHARK

In [15], the authors present how this evaluation scenario is executed

in SmartSHARK:

(1) The user adds the repositories they wish to analyze to Smart-

SHARK, either through the ServerSHARKweb UI, or directly

in the MongoDB SmartSHARK uses to store its results.

(2) The user runs vcsSHARK, which will retrieve these projects

and perform various pre-defined analyses including obtain-

ing LOCadded and LOCremoved for each commit.

(3) The user runs mecoSHARK, which will perform further anal-

ysis on these repositories, such as obtaining the total LOC

of the project.

(4) The user runs a custom analysis program in Spark, on the

MongoDB (that now contains all relevant data required),

in order to synthesize the variables needed for the effort

estimation calculation and to perform it for each project.

Note that in this process, only the last step can be performed in a dis-

tributed manner, as there is no support for executing the remaining

steps (or the external tools they run) in a similar fashion.

381



3.4 Qualitative results

The output produced by the modeled effort estimation workflow is

depicted in Table 5. In total, 18,164 commits have been processed as

produced by 538 individual developers within the estimated project

duration period of 694 months, and 14,530,653,071 and 592,861,925

LOC have been added and deleted during the observed period, re-

spectively. Finally, a total of 16,877,171 LOC have been counted in

the final version of the set of 21 analyzed projects. Thus, in com-

parison to smartSHARK, identical information about the examined

projects (cf. Table 3 in [15]) has been generated by Crossflow.

Moreover, in comparison to Crossflow, the following qualita-

tive observations have been made: Firstly, smartSHARK requires

users to perform a series of manual steps, such as the addition of

projects to be analyzed as well as cloning their respective reposi-

tories; in Crossflow this is done through reading a CSV source

and defining a cloning task, respectively. Secondly, smartSHARK

relies on a shared database and the concept of precomputing a

pre-defined set of information, such as repository metrics, which

may be used during the execution of an analysis job. This choice of

architecture is similar to that of Boa [4] and focuses on scenarios

that envision the analysis of project repositories for which prepro-

cessing has already occurred at time of analysis job submission.

Although similar behavior may be implemented by Crossflow,

the computation of a pre-defined set of information is not enforced

thus enabling users only to perform the computation of metrics

that are relevant to the analysis at hand. As a result, a lower use of

resources, such as computing power, storage space, and execution

time, can be achieved. Thirdly, users of smartSHARK define analysis

jobs by the use of native APIs of frameworks such as Apache Spark,

hence being provided very limited abstraction from distributed

execution concepts. Finally, we note that the smartSHARK plugin

mecoSHARK employs Source Meter [5] as an external source code

analysis tool capable of analyzing code written in a set of supported

programming languages.

3.5 Quantitative results

The performance of running the described workflow on various

node configurations is depicted in Table 4. Note that the amount of

memory used by ActiveMQ is excluded by distributed and included

by non-distributed deployments. The execution of deploymentc1m1

failed to complete successfully due to the combination of a low

amount of memory and the use of an internal ActiveMQ broker

running on the same node. The execution of deploymentc1m2 suc-

ceeded and shows that increasing the memory from one to two

GB is sucient to execute the workflow on a single machine also

acting as an ActiveMQ broker, in approximately three quarters of

an hour. In comparison, deploymentc2m2p shows that parallelizing

the workflow execution over two cores reduces execution time by

approximately 14 percent. Deploymentc2m2 and deploymentc4m8

illustrate the overhead of executing the workflow without the use

of the Crossflow workflow parallelization capability on two and

four cores, respectively. The use of parallelization on a deployment

with a number of four cores (i.e. in case of deploymentc4m8p) re-

duces the execution time to a total of approximately 28 minutes and

shows that the effective overhead of parallelization is reduced (i.e.

resulting in an execution time decrease of approximately 37% when

compared with deploymentc1m2). Deploymentc1m1d illustrates that

the execution of the workflow succeeds with the same low-amount

of resources as employed in deploymentc1m1 however with one

node acting as bare master and ActiveMQ broker and four nodes as

workers as opposed to a single node acting asmaster and running an

ActiveMQ broker. The distributed configurations deploymentc1m1d

and deploymentc1m2d (i.e. increasing the amount of memory by

one GB) complete the described workflow in approximately 30 and

27 minutes, respectively.

Figure 10 illustrates that the mean CPU use for the execution of

the workflow on all the deployment configurations is dominated by

Python, in particular by the task PythonRepositoryAnalyzer, which

employs the Python library PyDriller [13] to iterate through repos-

itory commits and create instances of PythonRepositoryAnalysis-

Result (i.e. requiring to compute values for LOCadded, LOCdeleted,

numOfDevs, projectDuration, and projectLOC).

Configuration Duration
Total (MEAN)

Memory use

Total (MAX)

Memory use

Deploymentc1m1 failed failed failed

Deploymentc1m1d 00:29:49 1021 1211

Deploymentc1m2 00:44:46 300 412

Deploymentc1m2d 0:27:15 1098 1400

Deploymentc2m2 1:13:04 396 614

Deploymentc2m2p 0:38:23 589 732

Deploymentc4m8 1:23:57 858 1368

Deploymentc4m8p 0:28:03 1300 1424

Table 4: Crossflow execution in hours and Megabytes

Figure 11 shows the percentage of maximummemory use by Java

and Python as well as the percentage of remaining memory which

may be consumed by Crossflow or other processes running on

that computing node. It shows that this use-case does not require a

large amount of memory to run, even when provided with a surplus.

3.6 Threats to Validity

The results reported in Table 4 have been extracted through a

single execution of the different configurations.While the execution

time and memory footprint measurements are consistent with our

observations over multiple executions of similar mining workflows

and deployment configurations, this needs to be highlighted as a

threat to the validity of the results of this experiment.

4 CONCLUSIONS

This paper presented Crossflow, a novel framework for develop-

ment and distributed execution of multi-step repository mining

programs. Crossflow provides a domain-specific language for de-

signing polyglot distributed workflows as well as a code-generator

that produces implementation scaffolding for developers to com-

plement with hand-written code. Crossflow uses asynchronous

message-based communication and provides built-in support for

job-level caching and locality scheduling. Preliminary evaluation

shows promising results with regards to the scaling of Crossflow

in both parallel and distributed execution. Beyond more systematic

and larger-scale evaluation, future work includes offering explicit

382



Project LOCadded LOCdeleted Commits Developers Duration LOC

cursynth 74 725 950 443 694 219 8 22 121464

cxxnet 720 994 114 1 949 969 852 36 17 303276

elasticsearch-hadoop 12 192 988 4 389 727 1243 8 29 528719

fatal 40 596 648 8 917 237 401 5 11 324743

guice 1 970 605 371 365 021 777 1441 36 106 7688021

HackerNews 136 843 14 847 12 2 1 5202

k3b 1 970 605 371 365 021 777 1441 36 106 7688021

ksudoku 231 941 927 94 591 343 668 69 81 512211

libxcam 9 743 146 1 444 773 250 12 7 190432

libyami 40 122 874 15 399 910 487 26 24 506490

log4j 92 438 210 38 423 498 3266 21 138 2492060

mxnet 6 023 262 1 711 834 223 13 3 99410

oclint 3 616 606 1 848 673 733 25 32 166164

ohmu 60 807 833 8 576 687 226 8 16 354109

openage 27 051 105 10 191 251 1761 62 23 684688

osquery 10 865 948 515 15 984 362 2208 70 12 854425

passivedns 3 338 015 1 288 034 220 15 45 132595

SMSSync 104 497 422 9 638 622 1395 28 61 823391

swift 15 601 967 7 424 690 496 22 38 412470

wds 3 150 807 778 034 238 11 10 107643

xgboost 247 119 468 4 822 963 1825 61 18 569658
∑

14 530 653 071 592 861 925 18 164 538 694 16877171

Table 5: Output produced by effort estimation work
ow

D
ep
l-c
1m
1d

D
ep
l-c
1m
2

D
ep
l-c
1m
2d

D
ep
l-c
2m
2

D
ep
l-c
2m
2p

D
ep
l-c
4m
8

D
ep
l-c
4m
8p

0

20

40

60

80

100

R
el
at
iv
e
M
E
A
N
C
P
U
u
se

Java Python

Figure 10: Relative MEAN CPU for each experimental setup

traceability for jobs throughout their path in a workflow, improving

upon task scheduling by monitoring resource use of each worker

node and re-allocating tasks based on current surpluses present

in each, as well as further improving usability by adding further

functionality through the Web UI such as spawning worker nodes.

D
ep
l-c
1m
1d

D
ep
l-c
1m
2

D
ep
l-c
1m
2d

D
ep
l-c
2m
2

D
ep
l-c
2m
2p

D
ep
l-c
4m
8

D
ep
l-c
4m
8p

0

20

40

60

80

100

%
M
A
X
m
em

o
ry

u
se

Java Python Remaining

Figure 11: % MAX memory for each experimental setup

ACKNOWLEDGMENTS

The work in this paper was supported by the European Commission

via the CROSSMINER (732223) and TYPHON (78025) projects, and

by the EPSRC via the MANATEE Project (EP/S000143/1).

383



REFERENCES
[1] David P Anderson. 2004. Boinc: A system for public-resource computing and stor-

age. Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(2004), 4–10.

[2] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[3] Santiago Dueñas, Valerio Cosentino, Gregorio Robles, and Jesus M Gonzalez-
Barahona. 2018. Perceval: software project data at your will. Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings
(2018), 1–4.

[4] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013. Boa: a
language and infrastructure for analyzing ultra-large-scale software repositories.
Proceedings of the 35th International Conference on Software Engineering (2013),
422–431.

[5] R. Ferenc, L. Langó, I. Siket, T. Gyimóthy, and T. Bakota. 2014. Source Meter
Sonar Qube Plug-in. 2014 IEEE 14th International Working Conference on Source
Code Analysis and Manipulation (Sep. 2014), 77–82.

[6] Frédéric Jouault and Ivan Kurtev. 2005. Transforming Models with the ATL.
Proceedings of the Model Transformations in Practice Workshop at MoDELS 2005
3844 (October 2005), 128–138.

[7] Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. 2008. Measuring
developer contribution from software repository data. Proceedings of the 5th
International Conference on Mining Software Repositories (2008), 129–132.

[8] Georgios Gousios and Diomidis Spinellis. 2009. Alitheia core: An extensible
software quality monitoring platform. Proceedings of the IEEE 31st International
Conference on Software Engineering (2009), 579–582.

[9] Dimitris Kolovos, Patrick Neubauer, Konstantinos Barmpis, Nicholas Matragkas,
and Richard Paige. 2019. Crossflow: A Framework for Distributed Mining of
Software Repositories. Proceedings of the 16th International Conference on Mining
Software Repositories (2019), 155–159. https://doi.org/10.1109/MSR.2019.00032

[10] Dimitrios S Kolovos, Nicholas Drivalos Matragkas, Ioannis Korkontzelos, Sophia
Ananiadou, and Richard F Paige. 2015. Assessing the Use of Eclipse MDE Tech-
nologies in Open-Source Software Projects. OSS4MDE@ MoDELS (2015), 20–29.

[11] Gregorio Robles, Jesús M. González-Barahona, Carlos Cervigón, Andrea
Capiluppi, and Daniel Izquierdo-Cortazar. 2014. Estimating development ef-
fort in Free/Open source software projects by mining software repositories: a
case study of OpenStack. Proceedings of the 11th International Conference on
Mining Software Repositories (2014), 222–231.

[12] Bruce Snyder, Dejan Bosnanac, and Rob Davies. 2011. ActiveMQ in action. Vol. 47.
Manning Greenwich Conn.

[13] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python
framework for mining software repositories. Proceedings of the 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (2018), 908–911.

[14] Fabian Trautsch, Steffen Herbold, Philip Makedonski, and Jens Grabowski. 2016.
Adressing problems with external validity of repository mining studies through
a smart data platform. Proceedings of the 13th International Conference on Mining
Software Repositories (2016), 97–108.

[15] Fabian Trautsch, Steffen Herbold, Philip Makedonski, and Jens Grabowski. 2018.
Addressing problems with replicability and validity of repository mining studies
through a smart data platform. Empirical Software Engineering 23, 2 (2018),
1036–1083.

[16] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. 2016. Apache spark: a unified engine for big data processing.
Commun. ACM 59, 11 (2016), 56–65.

384


