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Abstract:

Due to the latest advancements in monitoring technologies, interest in 

the possibility of early-detection of quality issues in components has 

grown considerably in the manufacturing industry. However, 

implementation of such techniques has been limited outside of the 

research environment due to the more demanding scenarios posed by 

production environments. 

This paper proposes a method of assessing the health of a machining 

process and the machine tool itself by applying a range of machine 

learning (ML) techniques to sensor data. The aim of this work is not to 

provide complete diagnosis of a condition, but to provide a rapid 

indication that the machine tool or process has changed beyond 

acceptable limits; making for a more realistic solution for production 

environments. 

Prior research by the authors found good visibility of simulated failure 

modes in a number of machining operations and machine tool fingerprint 

routines, through the defined sensor suite. The current research set out 

to utilise this system, and streamline the test procedure to obtain a large 

dataset to test ML techniques upon. 
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Various supervised and unsupervised ML techniques were implemented 

using a range of features extracted from the raw sensor signals, principal 

component analysis, and continuous wavelet transform. The latter were 

classified using convolutional neural networks (CNN); both custom-made 

networks, and pre-trained networks through transfer learning. The 

detection and classification accuracies of the simulated failure modes 

across all classical ML and CNN techniques tested were promising, with 

all approaching 100% under certain conditions. 
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Abstract

Due to the latest advancements in monitoring technologies, interest in the possibility of early-detection 

of quality issues in components has grown considerably in the manufacturing industry. However, 

implementation of such techniques has been limited outside of the research environment due to the more 

demanding scenarios posed by production environments. 

This paper proposes a method of assessing the health of a machining process and the machine tool itself 

by applying a range of machine learning (ML) techniques to sensor data. The aim of this work is not to 

provide complete diagnosis of a condition, but to provide a rapid indication that the machine tool or 

process has changed beyond acceptable limits; making for a more realistic solution for production 
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environments. 

Prior research by the authors found good visibility of simulated failure modes in a number of machining 

operations and machine tool fingerprint routines, through the defined sensor suite. The current research 

set out to utilise this system, and streamline the test procedure to obtain a large dataset to test ML 

techniques upon. 

Various supervised and unsupervised ML techniques were implemented using a range of features 

extracted from the raw sensor signals, principal component analysis, and continuous wavelet transform. 

The latter were classified using convolutional neural networks (CNN); both custom-made networks, and 

pre-trained networks through transfer learning. The detection and classification accuracies of the 

simulated failure modes across all classical ML and CNN techniques tested were promising, with all 

approaching 100% under certain conditions.
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1 Introduction

Techniques for process monitoring of machining operations through sensor signals are well-established 

in the literature [1]. Many solutions utilising such techniques have now been commercialised and are 

available to industry, e.g. Marposs ARTIS [2], Nordmann Tool Monitoring [3], and Sandvik CoroPlus [4]. 

These commercial systems are often focussed on detecting tool breakages, collisions, or other 

catastrophic failures, through comparing signal levels to static limits or signal trending. Although useful, 

more advanced techniques of process monitoring have been proven to be able to provide significantly 

richer information about the process. 

Traditional time-domain statistical features (i.e. RMS, kurtosis, standard deviation, mean, and skewness) 

have been commonly used for detection and prediction of faults and errors in machinery [5]. For example, 

researchers like D’Emilia et al. [6] and Uhlmann et al. [7] extracted time domain features from acoustic 

emissions and vibration signals; and applied machine learning (ML) techniques, such as support vector 

machine, Bayes and nearest-neighbour, to classify failure modes on rotational equipment. Similarly, Nam 

et al [8] utilised a non-linear support vector machine on accelerometer and acoustic emission signal RMS 

values to detect a fault state during an additive manufacturing process. This method achieved up to 100% 

accuracy when detecting issues caused by an uneven print bed of the fused deposition model machine 

under test.  

Such techniques involving time-domain features have also been demonstrated successfully with 

machining operations. For example, Kaya et al [9] trained a support vector machine to predict tool wear 

from time domain features extracted from a combination of force, vibration, and acoustic emissions 
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signals from milling operations. The real-time capability of ML techniques for process monitoring has also 

been demonstrated by Ma et al [10], who were able to compensate for thermal errors in a high-speed 

spindle using a back propagation neural network analysing signals from temperature and eddy current 

sensors. The system was found to be able to increase radial and axial accuracy of the jig borer under test 

by over 80%. Segreto et al [11] also utilised a feed-forward back-propagation neural network to classify 

the type of chip formation in turning, with features from force and displacement signals selected through 

principal component analysis (PCA).

Furthermore, time-frequency domain features, such as wavelet transform techniques have also been 

widely used for monitoring purposes. For instance, Sevilla-Camacho et al. [12] used continuous wavelet 

transforms (CWT) to illustrate the differences in vibration signals from ‘healthy’ and ‘damaged’ cutting 

tools. Likewise, Wang et al. [13] and Wang et al. [14] used wavelet transformations in the form of 

scalograms to train a convolutional neural network (CNN) to classify a number of failure modes in a 

bearings system and a gear box, respectively. Guo et al [15] successfully employed a long short-term 

memory network to analyse features extracted through wavelet packet decomposition of in-process 

acoustic emission signals for the assessment of grinding wheel condition.  And to increase the robustness 

of chatter identification in thin-walled milling processes, an issue caused by highly dynamic and complex 

workpiece-tool interactions, Wang et al [16] developed an adaptive time-frequency domain feature 

selection process. In conjunction with a decision tree model, the authors were able to detect chatter with 

an accuracy of 92.42%.

If in-process signal data could be used to validate machining operations, an ‘inspection by exception’ 

approach could be adopted. This is defined by the authors as a regime in which inspection of components 

only takes place if a deviation from normal process envelopes are detected, or the process cannot be 

validated for any other reason. Such a methodology would be invaluable in industry, where there is 
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interest in reducing the requirement for lengthy component inspection procedures, which currently 

represents a significant bottleneck in manufacturing, as demonstrated by Tiwari et al [17]. It also supports 

the progress towards a zero defect manufacturing (ZDM) strategy; particularly for the middle of 

manufacturing life fault detection, as defined by Psarommatis et al [18] in their ZDM state-of-the-art 

review. The authors also identified a significant gap in beginning of manufacturing life ZDM strategies; 

which, amongst other things, includes gauging machine health prior to the manufacturing process.

Previous research conducted by Dominguez-Caballero et al [19] represented a first step in developing a 

combined system for machine and process health monitoring that utilised advanced signal analysis 

techniques. The authors successfully designed and tested a machine and process health monitoring 

system that utilised a shared sensor suite. The machine health was gauged using a repeatable ‘fingerprint 

routine’, which was designed to include isolated and combined movements of the X-, Y-, and Z-axes, as 

well as rotation of the spindle; whilst the process monitoring was conducted during the machining of nine 

test vehicles in Ti-6Al-4V, which were based on the ‘circle, diamond, square’ test defined in BS ISO 10791-

7-2014 [20]. The analysis of the data captured, though limited in terms of the number of analysis 

techniques tested, was considered successful – particularly in the use of a novel comparative CWT method 

that was devised during this research.

The current research was therefore proposed to expand on the analysis techniques developed, with the 

major aim of utilising ML to detect and categorise faults. This provided the opportunity for additional 

machining trials to be undertaken to produce the significantly higher number of repeats needed for 

training ML. The ML techniques investigated included a range of classical ML techniques, such as PCA, 

classification, and clustering; as well as deep learning techniques, in the form of custom-made CNNs and 

transfer learning of existing CNNs (AlexNet, GoogLeNet, and ResNet-18).
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The remainder of this paper includes descriptions of the equipment and experimental method employed 

during the machining trials (Section 2 and 3); the signal processing and ML techniques tested (Section 4); 

a summary of the results and discussion from the analysis stage (Section 5); and finally, the conclusions 

drawn, including suggestions for further research (Section 6).

2 Experimental setup

The machining trials in this research were conducted on a DMG Mori DMU 40 eVo linear 5-axis milling 

machine tool. One accelerometer (PCB 356A02) was mounted on the spindle column of the machine tool, 

and another (PCB 604B31) was mounted on the machine bed, underneath the workpiece, incorporated 

into a steel plate. Both accelerometers are tri-axial. The setup is illustrated in Figure 1. A power monitoring 

device (Load Controls PPC-3) was also fitted to the spindle motor power supply cables. This provided a 

total of seven signals that could be recorded simultaneously.

[Insert Figure 1]

The signals from these sensors were captured and recorded using National Instruments (NI) LabVIEW 

software via a NI cDAQ-9718 with three modules installed: two NI-9234 modules sampling the vibration 

signals at 51.2 kHz; and one NI-9223 module sampling the power signal at 1 kHz. 

The material used in this research was Al6082 cut into blocks with dimensions 200 x 120 x 85 mm. The 

tool used for the cutting trials was a Sandvik 392.410EH-63 25 105 adapter for carbide heads paired with 

a CoroMill 316-25SM345-25000A H10F three-flute 25 mm diameter solid carbide head (Figure 2 (a)). 

For the fingerprint routine testing, tools were selected as follows. To allow a direct comparison between 
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the baseline tool and an unbalanced tool, two identical tool holders (Figure 2 (b and c)) were used. The 

baseline tool comprised of the adapter for carbide heads (no carbide head inserted); but the unbalanced 

tool contained the remaining thread of a carbide head that had previously been sheared off. The two 

adapters were almost identical in mass (0.77 kg), but the adapter with the carbide head remnant had a 

measurably higher imbalance (4.0 gmm) than the empty adapter (0.1 gmm). 

For testing the effect of the tooling mass on the linear axis motions, a large face mill tool (Figure 2 (d)) 

was ideal due to its considerably larger mass (3.51 kg, including indexable tools and tool holder) than the 

baseline tool. For testing the effect of the tooling mass on the spindle rotation, a chucked end mill (Figure 

2 (e)) around two times heavier than the  baseline tool (1.66 kg, including tool and tool holder, compared 

to 0.77 kg), was opted for as this could be run at higher rotational speeds than the face mill. Hence a 

combination of tools were used for the heavy tool depending on the fingerprint routine being run.

[Insert Figure 2]

3 Experimental method

The method undertaken for the experimental tests utilised simplified operations from those in the 

previous research [19]. The machining trials consisted of straight up-milling face cuts with the 25 mm end 

mill described in Section 2, with the machining parameters listed in Table 1. These parameters allowed six 

machining passes per layer of material, with 35 layers of material per block of aluminium; giving a total of 

210 datasets per work piece. A total of ten workpieces were machined during the trials, with various 

defects applied, as described in Section 3.1. 
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Table 1 - Machining parameters for trials.

Axial depth of cut Radial engagement Spindle speed Feed rate

2 mm 20 mm 6150 rpm 6260 mm/min

The fingerprint routine consisted of only two sub-routines: the motion from a central location to each 

extreme and back along only the X-axis at a feed rate of 40,000 mm/min; and spindle rotation at 12,000 

rpm with a dwell for three seconds once up to speed. 

3.1Failure mode and defect physical simulation

The methodology used for physically simulating machine tool failure modes and part defects was devised 

in the previous research, and so the rationale and finer details can be found in the paper by Dominguez-

Caballero et al [19]. Instead, a brief overview of the simulated failure modes and defects tested in this 

research is presented here. 

The simulated machining defects consisted of: 

 Baseline [two workpieces affected] – No failure mode.

 Misalignment [four workpieces affected] – Tilt machine tool’s bed by A: 0.27°, B: 0.27°, C: 0.32°. 

 Surface cracks [two workpieces affected] – Drill 1.84 mm diameter bores into the part, on the 

cutting path, before recorded trials. 

 Tool wear [two workpieces affected] – Wear the cutting tool severely before recorded trials (a 

fresh tool was used for each of the other test vehicles).
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It should be noted that during misalignment affected operations, after a complete single layer had been 

machined, the subsequent layers would no longer suffer from a tilt in the horizontal plane. To combat 

this, before the start of each layer, the bed was tilted so that odd numbered layers had a rotation of A: 

0.27°, B: 0.27°, C: 0.32°, whilst the even numbered layers had A: 0°, B: 0°, C: 0°; resulting in a tilt of the 

face that was about to be machined for every layer. Please note that although the machine tool possesses 

only two rotational axes (both acting upon the machining table), the B-axis is not orthogonal to the 

machine coordinates; hence an equivalent rotation expressed in terms of orthodox A-, B- and C-axis 

rotations is presented. This particular rotation allowed not only a variation in axial depth of cut of 0.94 

mm to be experienced through any one pass, but also an increase in the initial depth of cut of 0.09 mm 

between the subsequent six passes of each layer; enriching the variance of the data set.    

The simulated machine tool failure modes consisted of:

 Baseline – No failure mode.

 Heavy tool – Load a significantly heavier tool than the baseline tool (as described in Section 2).

 Unbalanced – Load a tool that has a lower balancing classification that the baseline tool (as 

described in Section 2).

 Feedrate-adjusted – Conduct the fingerprint routine with a set of marginally reduced feed rate 

and spindle speed overrides (corresponding to an even spread of 6-10% reduction).

Both of the fingerprint sub-routines (X-axis travel and spindle rotation) were conducted a total of 500 

times whilst under the influence of each of the failure modes. However, the unbalanced failure mode was 

omitted for the linear axis routine, as an unbalanced tool (at this magnitude) would have no effect on axis 

motion.
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4 Analysis methodology

4.1Data processing

Before signal data could be analysed by the ML techniques, a number of data processing steps needed to 

be taken to make the format of the data appropriate. The following sub-sections outline this process.

4.1.1 Feature extraction

The classical ML techniques employed in this research all required a number of single-value features, 

commonly known as ‘predictors’, to be calculated for each of the signals. A table for each routine was 

then constructed that included all of the predictors from each of the runs/passes. There were 15 time-

domain predictors selected and used in this research, based upon the recommendations of Ali et al. [5] 

for the diagnosis of wind turbine bearings. These included features commonly used in signal analysis: 

mean, standard deviation, root mean squared (RMS), kurtosis, skewness, and peak-to-peak; as well as 

those less commonly used: crest factor, shape factor, impulse factor, margin factor and energy, which are 

defined in Eq. 1 to Eq. 5:

Crest factor
𝑥𝑚𝑎𝑥𝑅𝑀𝑆 Eq. 1
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Shape factor

RMS

1𝑁 ∑𝑁𝑖= 1
|𝑥𝑖| Eq. 2

Impulse factor

𝑥𝑚𝑎𝑥
1𝑁 ∑𝑁𝑖= 1

|𝑥𝑖| Eq. 3

Margin factor

𝑥𝑚𝑎𝑥
(

1𝑁 ∑𝑁𝑖= 1
|𝑥𝑖|)2

Eq. 4

Energy
1𝑁∑𝑁

𝑖= 1

𝑥𝑖2 Eq. 5

Spectral kurtosis is also known to be useful in prognosis applications [21], hence the spectral kurtosis, K

 (Eq. 6), was produced for each signal. The mean, standard deviation, skewness, and kurtosis of the (𝑓)

spectral kurtosis were then also calculated.

Spectral kurtosis K(𝑓) =  
〈|𝑆(𝑡,𝑓)|4〉〈|𝑆(𝑡,𝑓)|2〉2― 2

Eq. 6

where,  is the short-time Fourier transform:𝑆(𝑡,𝑓)

𝑆(𝑡,𝑓) =

+∞∫―∞𝑥(𝑡)𝑤(𝑡 ― 𝜏)𝑒―2𝜋𝑓𝑡𝑑𝑡 Eq. 7
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This gave a total of 15 predictors from each signal, and so, depending on the number of signals recorded 

for each routine/cut (up to six acceleration signals and one power signal), there were up to 105 predictors 

for a single observation. It should also be noted that all the extracted predictors were then normalised 

(using the ‘standard score’ method, shown in Eq. 8) to ensure that the relative scales did not influence 

the ML techniques.

𝑧=
𝑥 ― 𝑥𝜎 Eq. 8
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4.1.2 Continuous wavelet transform and filtering

The next step in the data preparation was to conduct CWT on all of the signals, producing the raw 

scalogram for each. The scalogram filtering process used in this research was developed and defined in 

[19] and is summarised in the following steps, and illustrated in Figure 3:

1. A subset of the baseline scalograms are concatenated into a three-dimensional matrix. 

2. Two two-dimensional matrices, one containing the average values, the other containing standard 

deviation, are calculated element-wise from the concatenated matrix. 

3. The test scalogram is then subtracted from the average to produce an output scalogram, i.e. the 

difference between the expected signal and actual signal. 

4. To account for the inherent variance in the baseline signals, the output scalogram is then filtered 

using the standard deviation matrix to produce the resulting signal. 

Steps 1 and 2 were repeated to produce the average scalogram and standard deviation matrix for each 

routine. Steps 3 and 4 could then be repeated for each of the full set of raw scalograms, producing a 

corresponding set of filtered scalograms. 

[Insert Figure 3]

An example of the resulting scalograms from this process is provided in Figure 4. The baseline average 

scalogram (Figure 4 (a)) shows the nominal signal expected from a ‘good’ routine. The filtered scalograms 

highlight the deviations from the baseline average in the signals recorded during a repeated baseline test 

(Figure 4 (b)), and a heavy tool test (Figure 4 (c)). This illustrates that if a routine is run normally, there 

should be minimal signal in the resultant scalogram; whereas a routine that has been affected by some 
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failure mode will exhibit significant signal in the resultant scalogram.

[Insert Figure 4]

4.1.3 Image composition and resizing

To improve the image processing tasks and reduce computing time, the scalogram images were cropped 

and resized to 300 x 300 pixels. An image composition technique was developed to increase the number 

of images per failure mode. This technique consisted of generating up to three additional images from 

the original picture. The first composed image consisted of a horizontally flipped version of the original 

image. For the second and third images, the original image was cropped into two halves, keeping one half, 

then flipping it and attaching it to the original half in its two possible combinations: original half + flipped-

half, and flipped-half + original half.

For the fingerprint routine tests, it was deemed that the composition techniques would have changed the 

nature of the signals. It was therefore decided that the total of 500 tests for each failure mode would be 

preserved, and so the ML techniques could be tested on a smaller number of repeats.
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4.2Machine learning techniques

Numerous types of classical ML were tested, which can be broken down into two main categories: 

supervised and unsupervised learning. Table 2 gives a brief description of each of the techniques tested.

Table 2 - Summary of the ML techniques tested.

Subset of ML Technique

k-Nearest neighbour

Naive Bayes

Classification/ decision tree

Multiclass support vector machine

Classification

Classification ensemble

S
u

p
e

rv
is

e
d

Deep learning Convolutional neural network

Dimensionality reduction Principal component analysis

k-Means clustering

Gaussian mixture model (GMM)

U
n

su
p

e
rv

is
e

d

Clustering

Hierarchical clustering

To gauge the effectiveness of each of the techniques the Rand index, a technique that measures similarity 

between two sets of clustering of the same data [22] (i.e. actual vs predicted categories), was employed. 

This was used as it allows a direct comparison of results from the supervised techniques with the 

unsupervised techniques; whose accuracies cannot be gauged using traditional methods. 

4.2.1 Classical machine learning

All five classification techniques tested were supervised; meaning they required a fully labelled training 
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data set to be trained upon, and a set of unseen test data on which their accuracies could be tested. In 

this case, a 65:35 split was used to partition the data contained in the feature tables into training and 

testing data, respectively. The clustering techniques do not require this partitioning, and so were tested 

with the full datasets.

To give the greatest chance of success, the classical ML techniques were initially tested on the full set of 

features extracted. However, to make such techniques appropriate for a commercial system, they need 

to be able to run as close to real-time as possible. It is therefore advantageous to minimise the number 

of features analysed, thereby reducing the computational effort required for the analysis. However, 

reducing the number of features for analysis whilst still retaining sufficient information to successfully 

distinguish between failure modes is not trivial. 

To assist with feature down-selection, PCA was used. PCA can be used to approximate a complex data set 

represented in N-dimensional space (in this case, N being the number of features), into a lower k-

dimensional space, where k represents the number of principal components (PCs). Each PC is a weighted 

combination of the original features that produce a new set of orthogonal dimensions, where PC1 explains 

the largest proportion of the variation in the data, PC2 explains the next largest proportion of variation, 

and so on. Using this method, a data set with a high number of original features can often be 

approximated reasonably well with only two or three PCs [23]. 

Using PCA in combination with ML has been demonstrated as a successful technique for classification 

applications in the literature [11]. However, as PCA is a form of feature extraction, a large proportion of 

the original features are still required to calculate the first (in this case) three PCs. Therefore, PCA alone 

is not effective in reducing the number of features required, only in simplifying the interpretation of the 

results. To reduce the number of features, the weights of each feature’s contribution to each of the top 
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three PCs were examined. A single feature was then selected to represent each PC, based on its weight 

and orthogonality to the other two features. The classical ML techniques, were then trained and tested 

again on only these reduced features to ascertain if they could still be effective when presented with a 

minimal data set.  

4.2.2 Convolutional neural networks structures and parameters

Two custom-made networks were created and their accuracy and performance were compared with 

already existing networks. A defined procedure for selecting the structure, parameters and hyper 

parameters for a custom-made CNN could not be identified – this challenge has been seen before by other 

researchers [24]. Instead, a trial-and-error approach was adopted, until the CNNs could attain optimal 

level of accuracy inside a reasonable timeframe. This resulted in two different networks, each with a 

different structure; one optimised for vibration signals, the other optimised for power signals. The 

structure of these two custom-made networks is shown in Figure 5.

[Insert Figure 5]

The three pre-existing networks, AlexNet, GoogLeNet, and ResNet-18, were tested using ‘transfer 

learning’. The structure of these networks is significantly more complex than the custom-made networks, 

(example provided in Figure 6), as they were originally designed to classify images of around 1000 

categories, such as flowers, cars, dogs, etc. These therefore need re-training through transfer learning to 

make them proficient in categorising the CWT scalograms. 

 

[Insert Figure 6]
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For the analysis of the CWT scalograms, the scalogram images were partitioned into training, validation, 

and testing datasets; splitting the images as per common practice into 70%, 15%, and 15%, respectively. 

The breakdown of the partitioning for each sensor signal for the fingerprint routines and the machining 

trials can be seen in Table 3. For training tasks, 20 epochs, with mini-batches of 32 images per iteration, 

were chosen. The testing dataset was then used to provide a final value of the performance of the CNN.

Table 3 - Partitioning of CWT images for CNN training.

Routine/ 

operation

Images per 

failure 

mode

Number of 

failure 

modes

Total 

number of 

images

Training 

images 

(70%)

Validation

(15%)

Testing 

images

(15%)

Linear 

fingerprint
500 3 1500 1050 225 225

Spindle 

fingerprint
500 4 2000 1400 300 300

Machining 1680 4 6720 4704 1008 1008
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5 Results and discussion

A significant number of charts and graphs were produced during the analysis stage, however, these are 

far too numerous to be included in this paper. Instead, what is presented in this section is a selection of 

the charts and graphs produced, for example purposes; along with the Rand index from each test to 

provide an overall comparison of the techniques employed.

5.1Classical machine learning

5.1.1 Principal component analysis and feature reduction

As explained in Section 4.2.1 there was a desire to investigate the effectiveness of utilising the full feature 

set for training and testing the ML techniques against using a greatly reduced number of features. To this 

end, PCA was utilised to help identify suitable features for the feature reduction. This feature reduction 

process was conducted using the method outlined in Section 4.2.1, for each fingerprint routine and 

machining operation separately. The features selected for each are given in Table 4.

Table 4 - The reduced feature set for each test, selected through PCA. 

Linear axis motion Spindle rotation Machining

Feature 1
Peak-to-peak for X-axis 

spindle acceleration

Margin factor for spindle 

power

RMS of Z-axis Sensor Plate 

acceleration

Feature 2
Kurtosis for Y-axis spindle 

acceleration

Shape factor for X-axis 

spindle acceleration

Standard deviation of X-axis 

Sensor Plate acceleration
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Feature 3
Mean for X-axis spindle 

acceleration

Margin factor for Z-axis 

spindle acceleration

Crest factor for spindle 

power

Figure 7, Figure 8, and Figure 9 compare the actual groupings of the failure modes/faults (highlighted by 

different markers) for all three routines when using the first three PCs, and the top three selected 

features. It can be seen that, although they appear differently when plotted, the groupings are still distinct 

when plotted against the three features. 

[Insert Figure 7]

[Insert Figure 8]

[Insert Figure 9]

5.1.2 Classification

The classification techniques were all trained and tested for each of the routines with both the full feature 

sets, and the reduced feature sets defined in Table 4. In all cases, when attempting to train the 

classification ensemble technique, the training procedure ended early in an error state. Upon 

investigation it was thought this error was caused by the classification ensemble reaching 100% accuracy 

earlier than anticipated. In other words, the classification challenge posed by the data was too simple for 

such a complex classification technique. Hence, the results from classification ensemble are omitted from 

the remainder of this paper. 

For the remaining classification techniques, once trained with the training data partition, the unseen test 

data was used to determine the accuracy of each technique. In addition to the Rand index, as these 

techniques are supervised and the data fully labelled, it was possible to produce confusion matrices (as 
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illustrated in Figure 10) to see how well each technique was able to classify each failure mode/fault. The 

confusion matrix compares the number of predicted (output) classifications with the actual classification 

(target).

[Insert Figure 10]

As can be seen in Table 5, all of the classification techniques tested performed well on the full feature sets 

across all of the routines. There was a slight reduction in performance when using the reduced feature 

sets. However, considering that the number of features had been reduced from at least 45 down to three, 

this minor reduction in performance is relatively insignificant. 

Table 5 - Rand index scores for classification techniques for all tests.

Rand index (%)

Technique
Linear axis motion Spindle rotation Machining

Full feature set

k-Nearest neighbour 99.8 99.9 98.9

Naive Bayes 100 97.8 98.1

Classification tree 99.8 99.9 99.6

Multiclass support 

vector machine
99.8 100 99.8

Reduced feature set

k-Nearest neighbour 100 92.8 96.1

Naive Bayes 92.5 90.9 84.7

Classification tree 99.2 92.7 95.3

Multiclass support 

vector machine
91.5 92.1 87.9

5.1.3 Clustering

The only information supplied to each clustering technique was the number of desired clusters, and the 
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unlabelled feature sets. The results of clustering cannot be visualised as a confusion matrix. However, it 

was possible to produce graphs illustrating the clustering performance in the three-dimensional feature 

space, as shown in Figure 11. The graphs presented compare the clustering results from GMM and k-

means clustering techniques (Figure 11 (b) and (c)) with the actual failure mode categories (Figure 11 (a)) 

from the linear fingerprint routine results. 

[Insert Figure 11]

As can be seen, certain techniques, such as the GMM in this case, exhibit a strong correlation to the actual 

categories (i.e. the results have been split into clusters that accurately match the failure mode categories); 

whereas others, such as the k-means, perform less well. Table 6, Table 7, and Table 8 contain the Rand 

index scores for all of the techniques, with the various parameters, for both fingerprint routines and the 

machining tests. It is difficult to identify any trends in performance when switching between the full and 

reduced feature sets. In general, however, it can be said that the ‘cosine’ distance metric seemed to be 

the most succesful for k-means and hierarchical techniques; and the GMM also seemed robust throughout 

all of the tests.
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Table 6 - Rand index scores for clustering techniques for linear axis motion fingerprint routine. 

Technique Rand index (%)

Full feature set

GMM 99.6

Metrics Euclidean Cityblock Cosine Correlation

k-Means 77.8 92.1 77.8 77.8

Average 33.6 77.8 88.0 83.1

Centroid 33.6 77.8 88.0 88.0

Complete 33.7 77.8 88.1 87.8

Median 33.7 77.8 95.6 88.0

Single 33.4 33.4 33.4 33.4

Ward 77.8 77.8 88.0 91.4

Hierarchical

Weighted 77.1 77.8 88.0 88.0

Reduced feature set

GMM 70.5

Metrics Euclidean Cityblock Cosine Correlation

k-Means 88.1 88.0 88.0 88.0

Average 39.3 39.3 91.2 74.2

Centroid 39.3 39.3 91.4 75.0

Complete 37.7 37.7 85.5 74.9

Median 39.3 39.3 91.4 75.0

Single 35.7 34.7 91.4 75.9

Ward 71.4 91.3 91.4 75.5

Hierarchical 

Weighted 71.1 39.3 71.5 74.7
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Table 7 - Rand index scores for clustering techniques for the spindle rotation fingerprint routine.

Technique Rand index (%)

Full feature set

GMM 87.0

Metrics Euclidean Cityblock Cosine Correlation

k-Means 86.8 86.8 86.8 86.8

Average 65.7 64.4 86.6 86.7

Centroid 66.0 64.4 85.2 85.2

Complete 66.4 86.4 86.6 86.6

Median 65.4 62.9 86.6 86.9

Single 60.5 85.5 62.5 60.4

Ward 83.9 84.8 85.1 85.1

Hierarchical

Weighted 64.1 62.9 85.2 86.9

Reduced feature set

GMM 86.3

Metrics Euclidean Cityblock Cosine Correlation

k-Means 86.9 86.9 86.9 86.9

Average 66.3 66.5 86.2 84.4

Centroid 66.5 66.2 86.5 83.4

Complete 66.6 65.3 85.9 86.5

Median 66.3 64.8 85.2 81.8

Single 62.5 62.5 84.1 74.5

Ward 86.6 86.6 86.1 85.6

Hierarchical 

Weighted 67.7 66.6 86.4 76.6
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Table 8 - Rand index scores for clustering techniques for the machining tests.

Technique Rand index (%)

Full feature set

GMM 82.21

Metrics Euclidean Cityblock Cosine Correlation

k-Means 68.81 83.77 83.77 83.77

Average 25.95 29.96 65.16 75.79

Centroid 25.83 25.83 64.66 64.55

Complete 27.44 61.43 77.87 74.45

Median 25.52 25.52 61.94 64.50

Single 25.14 29.56 25.20 25.20

Ward 68.76 68.82 76.15 75.92

Hierarchical

Weighted 30.15 61.58 79.62 78.97

Reduced feature set

GMM 81.12

Metrics Euclidean Cityblock Cosine Correlation

k-Means 81.30 82.37 82.26 81.90

Average 63.91 63.91 82.47 75.44

Centroid 63.07 63.91 84.26 77.34

Complete 81.49 81.33 82.33 71.06

Median 82.50 63.18 84.71 67.96

Single 61.54 61.54 82.39 59.93

Ward 81.27 82.82 82.33 77.34

Hierarchical 

Weighted 82.50 81.44 83.92 75.51
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5.2Convolutional neural networks

The training, validation, and testing procedure for CNNs described in Section 4.2.2 was carried out for 

both filtered and raw CWTs with the custom-made and pre-trained CNNs. An example of this training and 

validation process is shown in Figure 12. 

[Insert Figure 12]

Table 11 shows the testing Rand index scores across the CNNs for both fingerprint routine tests and the 

machining trials respectively. It was identified that standalone CNNs could also be used in conjunction 

through ‘ensemble learning’. Ensemble learning is the use of multiple learners to provide a single result 

that is more robust than a learner in isolation. Although relatively complex techniques for combining the 

outputs of multiple learners have been demonstrated in the literature, such as those proposed by Li et al 

[26] and Ma et al [27]; for this research, a more simplistic approach was opted for. The mean classification 

scores were calculated from each of the CNNs, and then the maximum of the averaged scores was used 

to provide the final classification. 
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Table 9 -Testing results for CNN analysis of linear axis motion fingerprint routine.

Rand index (%)

Network

Spindle acc. X-axis Spindle acc. Z-axis Ensemble

Average 

training time 

(mm:ss)

Raw signal

Custom-made 100 100 100 00:47

AlexNet 100 100 100 05:06

GoogLeNet 100 100 100 11:31

ResNet-18 100 100 100 12:35

Filtered signal

Custom-made 100 100 100 00:48

AlexNet 100 100 100 02:45

GoogLeNet 100 100 100 07:34

ResNet-18 100 100 100 05:04
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Table 10 - Testing results for CNN analysis of the spindle rotation fingerprint routine.

Rand index (%)

Network Spindle acc. X-

axis

Spindle acc. Z-

axis
Power Ensemble

Average 

training 

time

(mm:ss)

Raw signal

Custom-made 99.7 99.3 94.3 100 02:38

AlexNet 99.7 99.7 92.6 99.7 05:20

GoogLeNet 99.0 99.0 85.6 99.7 11:27

ResNet-18 100 99.7 91.7 100 12:15

Filtered signal

Custom-made 97.3 97.17 89.6 98.1 02:03

AlexNet 95.7 95.9 85.0 96.2 01:22

GoogLeNet 97.8 95.9 84.51 96.9 05:47

ResNet-18 99.3 99.3 85.0 99.7 07:07

Table 11 - Testing results for CNN analysis of the machining tests.

Rand index (%)

Network Sensor 

Plate acc. 

X-axis

Sensor 

Plate acc. 

Z-axis

Spindle acc. 

X-axis

Spindle acc. 

Z-axis

Ensemble 

(%)

Average 

training 

time 

(mm:ss)

Raw signal

Custom-made 99.79 95.65 95.25 94.42 100 02:00

AlexNet 98.19 97.81 99.90 93.77 100 03:40

GoogLeNet 96.00 94.45 99.48 93.52 99.28 12:55

ResNet-18 97.07 96.62 99.90 89.12 99.48 07:35

Filtered signal

Custom-made 97.04 99.38 98.48 94.19 100 01:25

AlexNet 98.39 99.79 96.86 94.06 100 02:35

GoogLeNet 99.28 100 97.61 96.26 100 06:35

ResNet-18 99.79 99.69 98.46 94.47 100 07:30
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As it can be seen, the Rand index values for the vast majority of the ensemble learning are higher than the 

standalone networks. This method therefore seems to provide a more robust classification, through a 

balanced fusion and evaluation of different types of sensors. 

It was observed that the significantly simpler custom-made CNNs were able to achieve similar accuracies 

to that of the pre-trained networks, despite also having generally significantly shorter training times. This 

could also be attributed to the low complexity of the CWT images and the small number of categories, as 

they may not require such deep networks. This is supported by the results from the linear fingerprint 

routine, where each network was able to identify the failure mode correctly with 100% accuracy. This 

could be indicative of the failure modes being highly distinctive, and so not providing much of a challenge 

for the networks.

As can be seen in Figure 12, the accuracy and loss converged towards the maximum and minimum values, 

respectively, relatively quickly. This was the case for most of the other tests, particularly those involving 

the vibration signals. This may indicate that the number of repeats required to train the CNNs could be 

significantly less than the number provided in these tests. 

It should also be noted that the difference in accuracies achieved by the CNNs when trained on the filtered 

and raw CWTs is minimal. In the case of the spindle rotation tests, there was in fact a decrease in 

accuracies overall when using the filtered CWTs. This was unexpected, as the filtering technique makes 

any changes in the signal far more obvious to the human eye. However, this is obviously not the case for 

CNNs, meaning that they may perform better when provided the raw, unfiltered signal.
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6 Conclusions

This research developed a machine and process monitoring system by implementing ML techniques for 

analysis, including clustering, classification, and PCA; along with deep learning in the form of CNNs. To 

enable this, experimental trials were conducted, which included running a fingerprint routine and 

machining of aluminium blocks under the influence of various simulated failure modes. 

In general, the accuracies achieved across all of the techniques tested were promising, with only a small 

minority not achieving at least mediocre results. A summary of the main findings are provided below:

 PCA was used to inform the reduction of a large feature set, whilst retaining variance in the 

observations. This feature reduction, in some cases by up to 35 times, was found to not have a 

major impact on the resulting classification/clustering accuracies for most of the classical ML 

techniques tested. 

 All of the classification techniques performed well, achieving close to 100% of failure 

modes/defects correctly classified when utilising the full feature sets. These also remained robust 

when testing with the reduced feature sets - with all of the techniques remaining above 84% 

accuracy.

 It was difficult to identify particularly successful or unsuccessful clustering techniques, as their 

performance could vary dramatically depending on which feature set was being analysed. 

However, GMM seemed to be one of the more consistent techniques for successfully splitting 

results into clusters that match the actual failure mode/defect categories.
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 The custom-made CNNs trained in this project appeared to be able to achieve comparable, if not 

higher, accuracies for classifying failure mode/defect categories than when utilising transfer 

learning with pre-trained networks; despite having a significantly simpler structure, and therefore 

shorter training times. 

 Ensemble learning, when applied to the CNN analysis, has been found to increase the accuracy 

achieved when compared to using a standalone network in most cases.

 The filtering technique defined in previous research [19] seemed to have a smaller impact than 

had been expected. Although the filtering technique makes changes in the signal more obvious to 

the human eye, it seems CNNs may benefit from being presented the raw images.

 Although the consistent 100% accuracy achieved for the CNN analysis of linear axis motion 

fingerprint routine may indicate the power of applying such techniques; it may also point to the 

physical simulation of each failure mode being too distinctive or exaggerated. It is therefore 

difficult to gauge the real-world performance of the system without being able to test it on real 

examples of failure modes

With the successes outlined above, there is clearly justification for further development of such 

techniques in the application to machine tool and process health monitoring. One potential methodology 

of employing such techniques could be a hybrid system comprised of both classical ML and CNNs. 

Classification techniques could be used to provide the initial near-/real-time detection of a fault/failure 

mode; triggering an alarm or even stopping the process to help prevent further damage to the machine 

tool or component. CNNs could then be used post-event to provide a robust classification of the detected 

fault to support diagnosis and maintenance activities. Clustering techniques could also be employed in 

detecting previously unseen/untrained failure modes or defects. 
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Other research opportunities include testing such a system on more nuanced or less exaggerated failure 

modes to gauge fidelity; testing of the pre-trained custom-made networks on alternative routines or 

machine tools through transfer learning to help reduce training samples; and investigations into more 

comprehensive fingerprint routines and varied machine operations. 
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List of figure captions

Figure 1 – Illustration of (a) the machining configuration; and (b) the spindle accelerometer location.

Figure 2 - Tools used for (a) the cutting trials; and the testing of the fingerprint routine: (b) baseline tool; 

(c) unbalanced tool (with sheared carbide head present); (d) linear axis heavy tool (face mill); and (e) 

spindle rotation heavy tool (chucked end mill).

Figure 3 - A chart to illustrate the technique developed for comparing the output from CWTs [19].

Figure 4 - An example of (a) the baseline average scalogram; and resultant filtered scalograms from (b) a 

baseline test; and (c) a heavy tool failure mode test for the 12,000 rpm spindle rotation fingerprint routine.

Figure 5 - Custom-made CNN structures for: (a) vibration signals; and (b) power signals.

Figure 6 - GoogLeNet CNN structure [25].

Figure 7 - The linear axis motion fingerprint routine data plotted against: (a) the first three PCs (PC1, PC2, 

and PC3); and (b) the three selected features.

Figure 8 - The spindle rotation fingerprint routine data plotted against: (a) the first three PCs (PC1, PC2, 

and PC3); and (b) the three selected features.

Figure 9 - The machining data plotted against: (a) the first three PCs (PC1, PC2, and PC3); and (b) the three 

selected features.

Figure 10 - Example confusion matrices summarising the performance of the k-nearest neighbour 

classification technique when tested on the spindle rotation fingerprint routine: (a) full feature set; and 

(b) reduced feature set.
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Figure 11 - Graphical comparison of (a) the actual categories for the linear fingerprint routine, against the 

results from: (b) the GMM, and (c) the k-means (‘sqeuclidian’ distance metric) clustering techniques. Note 

that the different markers in (b) and (c) represent the three different clusters.

Figure 12 - Training progress of the filtered CWTs from the Sensor Plate’s X-axis accelerometer, using the 

custom-made 2D CNN.
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