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Abstract
Lithium-ion batteries have been widely used in electric vehicles, smart grids and many other applications as energy storage devices, for which the aging

assessment is crucial to guarantee their safe and reliable operation. The battery capacity is a popular indicator for assessing the battery aging, however,

its accurate estimation is challenging due to a range of time-varying situation-dependent internal and external factors. Traditional simplified models and

machine learning tools are difficult to capture these characteristics. As a class of deep neural networks, the convolutional neural network (CNN) is

powerful to capture hidden information from a huge amount of input data, making it an ideal tool for battery capacity estimation. This paper proposes

a CNN-based battery capacity estimation method, which can accurately estimate the battery capacity using limited available measurements, without

resorting to other offline information. Further, the proposed method only requires partial charging segment of voltage, current and temperature

curves, making it possible to achieve fast online health monitoring. The partial charging curves have a fixed length of 225 consecutive points and a flex-

ible starting point, thereby short-term charging data of the battery charged from any initial state-of-charge can be used to produce accurate capacity

estimation. To employ CNN for capacity estimation using partial charging curves is however not trivial, this paper presents a comprehensive approach

covering time series-to-image transformation, data segmentation, and CNN configuration. The CNN-based method is applied to two battery degrada-

tion datasets and achieves root mean square errors (RMSEs) of less than 0.0279 Ah (2.54%) and 0.0217 Ah (2.93% ), respectively, outperforming exist-

ing machine learning methods.
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Introduction

Due to continual falling costs, and features of high energy

density, low self-discharge rate and long lifespan relative to

other battery types, Lithium-ion batteries have been widely

used as energy storage devices for electric vehicles (EVs), elec-

tric power grid, portable electronic devices, and many other

applications (Li et al., 2019a; Zhang et al., 2016). However,

undesirable side reactions and processes inside the batteries

while in use will continuously degrade their performance,

leading to capacity loss and increase of internal resistance

(Couto et al., 2019). Therefore, battery capacity and internal

resistance are two important indicators for assessing battery

ageing and performance degradation known as battery state

of health (SOH). For example, SOH can be defined as

SOHt =Qt=Q0, where Q0 is the rated capacity of a battery,

and Qt is the battery’s maximum available capacity at current

cycle t (Liu et al., 2019a).
Accurate capacity estimation provides insights into the

SOH, thus plays a critical role in the battery management sys-

tem, ensuring safe and reliable battery operation, preventing

incipient failures and catastrophic hazards, and prolonging

the battery service life (Liu et al., 2019b). However, the bat-

tery capacity can not be measured in real time, and a variety

of estimation/prediction methods have been developed (Tang

et al., 2019). These methods can generally be classified into

three categories: model-based, differential analysis-based, and

machine learning-based.
Model-based methods use battery electrochemical, electri-

cal, or other empirical models to depict the battery dynamics,

and estimate the battery capacity with a combination of

observers or adaptive filtering algorithms (Garg et al., 2018;

Ouyang et al., 2016). A comprehensive review of battery mod-

elling methods including electrochemical models, reduced-

order models, equivalent circuit models, empirical models and

black-box models has been presented by Zhang et al. (2014).

Liu et al. (2020a) have systematically evaluated the perfor-

mance of three modelling techniques (i.e. electrochemical

model, semi-empirical model and Gaussian process

regression-based model) for calendar ageing prediction in

terms of accuracy, generalization ability and uncertainty man-

agement. Zheng et al. (2016) propose to estimate the battery
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capacity by using proportional integral observers based on an
accurate electrochemical model, which can capture the spatio-
temporal dynamics of batteries based upon the electrochemi-
cal principles. The equivalent circuit model with online
identified parameters is used by Yu et al. (2019), and based

on this model, an adaptive H infinite filter is applied to esti-
mate the battery capacity. An empirical model that can reflect
the battery dynamic capacity fading is proposed to predict the
capacity degradation (Xu et al., 2016). However, the accuracy
of the model-based capacity estimation methods is dependent
on the quality of the estimation model. Unfortunately, it is
difficult to build precise battery models due to the complex
electrochemical reactions inside the battery under different
operation conditions. Given the sheer complexity of the age-
ing mechanisms, simple lumped parameter models will lead to
inaccurate estimation of the battery capacity.

The differential analysis-based methods correlate the fea-
tures extracted from the differentiated curves of some electri-
cal, thermal or mechanical parameters with battery capacity
fade. For example, incremental capacity (IC) analysis and dif-
ferential voltage (DV) analysis have been frequently used
(Xiong et al., 2018). IC is calculated by differentiating the
capacity change corresponding to its terminal voltage (dQ/
dV) through charging or discharging the battery under a small
and constant current rate. The DV curves (dV/dQ) is defined
as the inverse of IC. The voltage plateaus can be easily identi-
fied from the IC/DV curves (peaks/valleys) after the differen-
tial operation. The features extracted from the curves such as
IC peak position, peak shape, corresponding peak voltage/
SOC, and peak area, are analyzed to estimate the battery
capacity. For example, Li et al. (2018) have extracted five dif-
ferent features from the IC curves, the first two are peaks and
the last two are valleys, the rest is the shoulder of the IC
curves. The capacity is estimated by analyzing the position,
value and associated area changes of these features. As
described in Weng et al. (2016), the IC peak values are tracked
to estimate the capacity for single cells as well as battery
packs. In Zheng et al. (2018), three corresponding SOC posi-

tions are extracted from the SOC-based IC and DV curves for
battery capacity estimation. While Tang et al. (2018) use a
regional voltage, which is calculated by the terminal voltage
corresponding to the IC peak, for fast capacity estimation.
However, the IC/DV analysis is sensitive to measurement
noise and subject to operation temperature, further, it requires
very low current rate, therefore their applications are severely
constrained (Li et al., 2019b).

With the unprecedented progress of machine learning
(ML) techniques and the documentation of a large volume of
battery test data worldwide, ML techniques have shown a
greater potential in benefiting the battery capacity estimation.
These methods are model-free, and do not need prior knowl-
edge on the complex working principles of the battery.
Various ML techniques have been applied to estimate the
battery capacity fade, such as neural networks (NNs) (Dai
et al., 2018; You et al., 2016; Zhang et al., 2019), recurrent
neural network (RNN) (Chaoui and Ibe-Ekeocha, 2017;
Eddahech et al., 2012), support vector machine (SVM) (Liu
et al., 2018), support vector regression (SVR) (Weng et al.,
2013), and relevance vector machine (RVM) (Guo et al.,
2019; Hu et al., 2015), just to name a few. In You et al.

(2016), a NN with various optimization strategies is used for

capacity estimation, by combining with the k-means cluster-

ing algorithm, achieving a RMSE of less than 2.44%. The

inputs fed into this NN are the features manually extracted

from the raw data. The RNN is used to predict the battery

performance degradation in Eddahech et al. (2012), the mean

square errors for capacity and resistance prediction are 0.462

and 0.296, respectively. In Liu et al. (2018), the nonlinear

relationship between the extracted battery degradation fea-

tures and battery capacity is established using the least square

SVM method. The mean error for the capacity estimation is

less than 5%. In Weng et al. (2013), a linear programming-

based SVR is proposed to correlate the IC peaks with the

faded battery capacity, the model developed using one cell

data is able to estimate the capacity fade of other cells with

absolute error less than 1%. In Guo et al. (2019), a RVM

based on particle swarm optimization is used to predict the

battery capacity by modelling the relationship between the

health feature and capacity, a relative error of less than 5%

and 10% is achieved for single and multiple battery experi-

ments respectively. In Eleftheroglou et al. (2019), three ML-

based methods are used for battery health prediction, and the

uncertainty associated with each point prediction is quanti-

fied. Liu et al. (2020b) have proposed a hybrid method for

battery capacity and remaining useful life prediction, where

the long short term memory model is used to capture the

long-term capacity degradation dynamics and the Gaussian

process regression model is used for the uncertainty quantifi-

cation caused by the capacity regeneration phenomena.

Further, the convolutional neural network (CNN) is applied

to estimate the battery capacity using the measured voltage,

current and the calculated cumulative capacity as inputs, of

which the overall RMSEs are less than 2% on the NASA

dataset (Shen et al., 2019).
However, the aforementioned ML-based estimation meth-

ods require either a non-trivial health features extraction pro-

cess or an extra cumulative capacity calculation process,

rather than directly use the measurements (e.g. current, termi-

nal voltage, surface temperature). In summary, the battery

capacity estimation is still a challenging topic due to a range

of time-varying situation-dependent internal and external fac-

tors. Traditional simplified models and ML tools are difficult

to capture these characteristics. As a class of deep NNs,

CNN is powerful to capture hidden information from a huge

amount of input data, making it an ideal tool for battery

capacity estimation. In order to make full use of the informa-

tion embedded in the direct measurements, while eliminating

the necessity to manually extract features as well as fully

charge a battery from a pre-defined state-of-charge, this

paper proposes a CNN-based battery capacity estimation

method using partial charging segment with flexible starting

point. The paper has the following four contributions:

� Firstly, the CNN-based method will eliminate the need

for priori knowledge and accurate battery physical

model, making the method intelligent and adaptive for

real-time capacity estimation.
� Secondly, the proposed method can deal with raw

signals directly, mapping the measurements such as
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the terminal voltage, current, and surface temperature
to the battery capacity, instead of relying on the pre-

extracted health features. The representative features
will be automatically learnt from the raw data.

� Thirdly, the paper introduces a novel data segmenta-
tion and time series-to-image transformation method
which makes it feasible to use CNN for battery capac-
ity estimation. Further, the proposed method only
requires flexible partial charging segment of voltage,
current and surface temperature curves, allowing fast
and accurate capacity estimation, a key issue in real-

time battery management.
� Finally, the proposed CNN-based method can self-

learn its parameters and weights by using optimization
algorithms like Adam. Once the parameters are prop-
erly learned offline, the model can be directly applied
for fast online estimation.

The remainder of this paper is organized as follows. In
Section 2, a brief introduction of the CNN is presented.
Section 3 details the proposed CNN-based battery capacity
estimation method, including the signal-to-image transforma-
tion method and the proposed CNN architecture. Section 4
validates the proposed method on two battery degradation

data-sets and the experimental results are presented and ana-
lyzed. Finally, Section 5 concludes the paper.

CNN

Overview

The CNN is probably one of the most popular NNs in recent
years. Compared with traditional deep neural networks
(DNNs) with the same number of layers, the number of para-
meters (weights) of a CNN that are required to maintain the
accuracy is significantly reduced, due to the sparse connectiv-

ity, shared weights, and pooling architectures. The sparse
connectivity is achieved by making the size of filter smaller
than the input, and enforcing a local connectivity pattern
among neurons of adjacent layers. This architecture can
reduce the overfitting risk, because the number of parameters
are dramatically reduced. Shared weights refers to using the
same weights for more than one activation function in a
model, that is, each filter is used across the whole visual field.

The architecture of shared weights has endowed the CNN
with a property called equivariance, meaning that the output
will change in the same way as the input changes (Liu et al.,
2017). Then, the use of pooling architecture replaces the out-
puts of the convolutional layer with summary statistic, and
this subsampling operation makes the output insensitive to
small translation of the input.

CNNs are effective tools for extracting features from a
high-dimensional data, and have been widely used in a range

of fields, such as image processing, text classification, and
speech recognition. These high-dimensional signals usually
have high spatial or temporal correlations in adjacent vari-
ables, which can be effectively extracted through the convolu-
tion operations. Due to the fact that time series data is
ubiquitous and is constantly generated in many engineering
processes and in our daily life, there are imperative needs to

develop efficient techniques to extract useful information

from time series data. Considering the merits of CNNs in

terms of automatic feature extraction and low overfitting risk,

their applications in dealing with large amount of time series

signals have also been investigated. For example, some

reports have confirmed the potential of CNNs in extracting

the representative features from time series data. In Yang

et al. (2015), a CNN is used for solving a human activity rec-

ognition problem where the inputs of the network are multi-

channel time series signals collected from inertial sensors, and

the outputs are related human activities. In this application,

the filters in the CNN move along the temporal dimension

for each sensor (each sensor corresponds to a row in the two-

dimensional (2D) input). In Cui et al. (2016), a multi-scale

CNN is used for time series data classification problems. The

CNN architecture has multiple branches in its first layer that

can extract features of different frequency and time scales.

Further, CNNs have also been used for time series forecasting

and estimation, and fault diagnosis.

CNN architecture

A three-layer fully connected feedforward neural network and

a simple CNN are compared in Figure 1. To illustrate the dif-

ferences in neuron connection between conventional neural

networks and CNNs, Figure 1(b) reformulates the 2D input

into a column, it is obvious that each output node in a convo-

lutional layer is connected to a small subset of the inputs. This

sparse connectivity is different from the fully connected NNs,

and this sparsity is achieved by replacing the matrix multipli-

cation in NNs with convolutions (Borovykh et al., 2017). The

filter (also called weight matrix) slides over the input space

and generates a set of output nodes, and each output node is

calculated by convolving the input with the filter. The number

of involved inputs for one output node is dependent on the fil-

ter size. All the output nodes produced by the same filter form

a feature map, which is a matrix, while the number of feature

maps is decided by the number of filters. In other words, all

the nodes in one output feature map share the same weights.

For the r th feature map in layer l, the node Ca, t
r, l at a th row

and t th column can be calculated by

C
a, t
r, l = f (

X
v

Xml�1

i= 0

Xnl�1

j= 0

xa�sl + i, t�dl + j
v, l vi, j

v, r, l + br, l) ð1Þ

where xv, l 2 Rp 3 q 3 v denotes the input of the l th layer, of

which the number of channels (also called depth) is v, and

each channel has a size of p 3 q. The inputs can be the initial

input signal or the output of the preceding layer. For the out-

put of the preceding layer, v refers to the number of feature

maps in the (l � 1) th layer. vv, r, l 2 Rml 3 nl refers to the v th

channel of the r th filter in layer l, with size ml 3 nl and stride

set to (sl, dl). br, l is the bias for the r th feature map. f (:) is the
activation function that endows the network with the ability

to learn complex nonlinear relationships in the data. The acti-

vation function used in this paper is rectified linear unit

(ReLU), which is given by
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f (x)=
0 for x\0

x for x ø 0

�
ð2Þ

The pooling layer is a down-sampling process which

reduces the size of the feature maps extracted in a convolu-

tion layer as well as the number of parameters introduced to

the following layers by either max pooling strategy

P
a, t
r, l+ 1 = max

0 ł i ł m(l+ 1)�1, 0 ł j ł n(l+ 1)�1
fCa�s(l+ 1) + i, t�d(l+ 1) + j

r, l g ð3Þ

or average pooling strategy

P
a, t
r, l+ 1 =

Pm(l+ 1)�1

i= 0

Pn(l+ 1)�1

j= 0 (C
a�s(l+ 1) + i, , t�d(l + 1) + j

r, l )

m(l+ 1) 3 n(l+ 1)
ð4Þ

where (m(l+ 1), n(l+ 1)) is the size of the pooling region, while

(s(l+ 1), d(l+ 1)) is the strides of the pooling filter in layer l+ 1.
In the example shown in Figure1(b), only one filter is used,

the filter size is 2 3 2 with stride being set to (1, 1), which

means four neurons of the input generate one output node,

the pooling size is 1 3 3 with stride being set to (1, 1), thus a 3-

by-3 matrix becomes a 3-by-1 matrix after the pooling stage.

Followed by adding selective convolution/pooling/flatten/

fully connected layer, the final output will be obtained

O= f
Xz

j= 1

x(j)v(j)+ b

 !
ð5Þ

where x denotes the input of the output layer, v and b are the

weights and bias that connect the x and final output, respec-

tively. In this paper, the output O is the estimated battery
capacity. To evaluate the accuracy of the estimation results,

the estimated capacity is compared with the reference value

Q(i) using the following measures: mean-square error (MSE)
Emse, root mean-square error (RMSE) Ermse and mean abso-
lute error (MAE) Emae, which are defined as

e(i)=Q(i)�O(i) ð6Þ

Emse =
1

N

XN

i= 1

(e(i))2 ð7Þ

Ermse =
ffiffiffiffiffiffiffiffiffi
Emse

p
ð8Þ

Emae =
1

N

XN

i= 1

je(i)j ð9Þ

where N is the sample size. Here one sample is referred to one
image input to the CNN.

All the weights and bias are tunable parameters (u) which

are updated by minimizing the loss function J (u) through an
optimization algorithm. For prediction problems, it is com-
mon to use MSE loss function (Reed and Marks, 1999), that
is J (u)=Emse. To update the parameters, the Adam algorithm
(Kingma and Ba, 2014) is used in this work, which has been
suggested as the default optimization method for deep learn-
ing applications (Ruder, 2016)

gt =ruJt(ut�1) ð10Þ

mt =b1mt�1 +(1� b1)gt ð11Þ

vt =b2vt�1 +(1� b2)g
2
t ð12Þ

~mt =
mt

1� bt
1

ð13Þ

~vt =
vt

1� bt
2

ð14Þ

Figure 1. (a) A fully connected three-layer feedforward neural network. (b) A CNN, with convolutional layer as the first layer and pooling layer as

the second layer. Here, the filter size is 232 with stride (1,1), and the pooling size is 133 with stride (1,1).
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ut = ut�1 �
a � ~mtffiffiffiffi
~vt

p
+ e

ð15Þ

where gt is set to be the gradient of the loss function J (u) at t

th training iteration. mt and vt are the estimated first moment
(the mean) and second moment (the uncentered variance) of
the gradient respectively, and ~mt and ~vt are their bias-
corrected values. b1 and b2 are exponential decay rates, while
bt

1 and bt
2 are b1 and b2 to the power t. ut is the updated

parameters.

Methodology

In this section, the proposed CNN-based battery capacity esti-
mation method is described in detail. First, the method to

transform the measured time series signals consisting of bat-
tery current, terminal voltage and cell temperature to a 3D
image representation is introduced. Then the CNN is designed
based on the classical LeNet-5 configuration (LeCun et al.,
1998).

Time series signal transformation

For other popular capacity estimation methods, the measure-
ment data are not directly used for capacity estimation, and
some features need to be extracted from the data first. For
these methods, the estimation performance is dependent on
both the number of extracted features and the way they are

combined (Cai et al., 2019). However, it is not easy to effec-
tively and efficiently extract features form the raw data. To
make full use of the large volume of historic measurements,
the correlations among different measured variables at differ-
ent sampling periods have to be investigated. This is, how-
ever, not a trivial task to handle manually. CNNs, however,
can overcome this difficulty, but to apply CNN for capacity
estimation, a transformation stage is first required, which is
elaborated below.

As illustrated in Figure 2, which shows one complete
charging and discharging cycle, n continuous data points are
extracted from each measured variable (e.g. current, voltage,
cell temperature) in one charging and discharging cycle, and
this operation is executed for M times. That is, M data chunks

are generated for each variable in a cycle. Then the n points in
each chunk are converted into a

ffiffiffi
n
p

3
ffiffiffi
n
p

matrix, and the
matrix represents a 2D image. The three variables together
form 3D images (

ffiffiffi
n
p

3
ffiffiffi
n
p

3 3) as the input samples to the
CNN, with each variable being associated to one channel of
the image. In this signal-to-image transformation, the number
of data chunks M for each variable in a cycle, which contains
L data points in total, is determined by the segmentation
length n and the overlap size c between two adjacent data
chunks

M = floor
L� n

n� c

� �
+ 1 ð16Þ

The function floor(.) gives the greatest integer less than or
equal to the input parameter. The samples generated from the
same cycle correspond to the same capacity value. Since each
sample intercepted from the full charging and discharging

cycle corresponds to a part of the charging/discharging pro-

cess, based on the model trained with such samples, it is pos-

sible to estimate the capacity of a battery only using a part of

the charging/discharging data. Besides, the part of the charg-

ing/discharging curve intercepted from the whole cycle may

start at any point, meaning that the trained model can esti-

mate the capacity of the battery charged/discharged from any
unknown initial SOC.

As shown in Figure 2, these measurements have different

scale, which may slow the training process and degrade the

estimation accuracy. Thus, data normalization is applied to

process the signals before feed them into the network. In this

work, the min-max normalization strategy is adopted, which

retains the original distribution of data and all transformed

data fall into the range of [-1,1], reflecting both the charging

and discharging phases. The normalized value z of the set of

measurement xk = fxk
i , x

k
2, :::, x

k
ng is calculated by

zk
i =

xk
i � min(x)

max(x)� min(x)
3 2� 1, i 2 1, :::, n ð17Þ

where xk refers to the measurements of the k th data chunk, x

denotes a collection of all data points used in the training, n is

the number of data points per chunk.

Figure 2. Transformation method: convert the time series

measurements to 3-D images.
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After the data normalization and time series to image

transformation step, the final input of the CNN is illustrated

in Figure 3. This data transformation method is simple to use

because no predefined parameters are required, and it is an

enabling block to apply the CNNs for time series signals.

Model construction

With the transformed 3D data, the CNN can then be trained

to estimate the battery capacity. Considering that the size of

the input sample is relatively small (15 3 15 3 3), a rather sim-

pler CNN structure is adopted. In this study, the architecture

of the proposed model is designed based on LeNet-5 (LeCun

et al., 1998), a classical and effective CNN structure. The pro-

posed CNN architecture consists of two alternating convolu-

tional and pooling layers, followed by two convolutional

layers, and finally a flatten layer and two fully connected

layers are utilized. The zero-padding method (Li et al., 2015)

is used in the last two convolutional layers to control the size

of the feature maps. This architecture is graphically illustrated

in Figure 4, and the output shape and number of parameters

for each layer are summarized in Table 1. The input image

has three dimensions: weight, height and depth, where the

weight and height are determined by the n data points in each

data chunk, and the depth is determined by the number of

variables. Take n= 225 for example, the weight and height of

the input both equal to 15, and the depth is 3 (the three vari-

ables are current, voltage and cell temperature). The input is

fed into the CNN model, it is first convolved with the filters.

The filter design, denoted as M@w 3 h 3 d means that there

are M filters with the size of w 3 h 3 d for a particular convo-

lutional layer, d is determined by the depth of this layer’s

input. The M feature maps generated by the convolutional

Figure 3. The input of the proposed CNN.

Table 1. Layer configurations and parameters of CNN models.

Layer CNN models Stride Output shape Parameters Activation

L1 Conv(16@23233) (1,1) (14314316) 208 ReLU

L2 Maxpool(232) (2,2) (737316) 0 ReLU

L3 Conv(32@232316) (1,1) (636332) 2080 ReLU

L4 Maxpool(232) (2,2) (333332) 0 ReLU

L5 Conv(16@232332) (1,1) (333316) 2064 ReLU

L6 Conv(16@232316) (1,1) (333316) 1040 ReLU

L7 Flatten - 144 0 ReLU

L8 FC - 50 7250 ReLU

L9 FC - 1 51 ReLU
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layer are then passed through the pooling layer with 2 3 2

pooling region and output smaller feature maps. After the last

convolutional layer, the flatten layer transforms the i 3 j 3 k

features into a vector with i 3 j 3 k neurons. Finally, the vec-

tor is fed into fully connected (FC) layers to calculate the

final output, which is the capacity value.

Experiment and analysis

In this section, the proposed CNN-based capacity estimation

method is applied to two battery experimental datasets. The

first is sourced from 124 commercial lithium-ion batteries

cycled to failure under fast-charging conditions (Severson

et al., 2019), and the other is the Oxford Battery Degradation

Dataset (Birkl, 2017). During the training process, the num-

ber of the maximum training epochs is set to 80 and the mini-

batch size is set to 128 samples. Early stopping method with

patience set to 4 is used to avoid overfitting problem. Further,

the learning rate is set to 0.001.

Case 1: 124 commercial cells

In this public available dataset, the 124 lithium iron phos-

phate (LFP)/graphite cells are manufactured by A123 System

(APR18650M1A), with a nominal capacity of 1.1 Ah and a

nominal voltage of 3.3 V. All the cells in this dataset are

charged at a constant temperature of 30�C with the fast-

charging policy, namely ‘‘C1(Q1)-C2’’. In this charging

scheme, the cell is first charged at a constant current (CC)

C1, and when the SOC reaches Q1, the CC switches to C2.

This CC step ends at 80% SOC, after which the cells are

charged at 1C until the battery voltage reaches its upper

cutoff potential 3.6 V. Then a constant voltage (CV) mode

continues until the charge current falls to 22 mA. All the

cells are discharged under a CC-CV protocol, discharging

at CC of 4C until the cell voltage falls to 2.0 V with a cur-

rent cutoff of 22 mA.
In this work, data of the first 16 batteries in dataset

‘batch3’ are used. These 16 batteries are divided into four

groups, each group contains four different batteries. The

detailed policies applied to charging these 16 cells from 0% to

80% SOC are summarized in Table 2, and the test cells in each

trial are given in details. Each trial, samples generated from

Table 2. Summary of the policies for charging the cells from 0% to 80% SOC, and estimation errors on test batteries for each trial in Case 1.

Battery Charging policies Cycles RMSE (Ah) MaxE (Ah) MAE (Ah)

Group 1(test dataset for Trial 1) 1 ’5C(67%)-4C’ 1008 0.0068 0.0415 0.0046

2 ’5.3C(54%)-4C’ 1062 0.0092 0.0533 0.0061

3 ’5.6C(19%)-4.6C’ 1266 0.0147 0.0835 0.0097

4 ’5.6C(36%)-4.3C’ 1114 0.0107 0.0617 0.0074

Group 2(test dataset for Trial 2) 5 ’5.6C(19%)-4.6C’ 1047 0.0093 0.0484 0.0061

6 ’5.6C(36%)-4.3C’ 827 0.0202 0.0798 0.0158

7 ’3.7C(31%)-5.9C’ 666 0.0279 0.0896 0.0206

8 ’4.8C(80%)-4.8C’ 1835 0.0107 0.0601 0.0072

Group 3 (test dataset for Trial 3) 9 ’5C(67%)-4C’ 827 0.0061 0.0330 0.0043

10 ’5.3C(54%)-4C’ 1038 0.0055 0.0404 0.0034

11 ’4.8C(80%)-4.8C’ 1077 0.0086 0.0424 0.0060

12 ’5.6C(19%)-4.6C’ 816 0.0062 0.0388 0.0038

Group 4 (test dataset for Trial 4) 13 ’5.6C(36%)-4.3C’ 931 0.0089 0.0444 0.0060

14 ’5.6C(19%)-4.6C’ 815 0.0079 0.0476 0.0053

15 ’5.6C(36%)-4.3C’ 857 0.0081 0.0450 0.0053

16 ’5.9C(15%)-4.6C’ 875 0.0083 0.0503 0.0048

Figure 4. Proposed CNN architecture with 1531533 inputs for battery capacity estimation.
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three of the four groups are first shuffled and randomly split

into a training set and a validation set with the ratio of 7:3,

which are then used to train the CNN model. The remaining

group is finally used for testing the performance of the trained
CNNmodel.

The size of one sample inputted to the CNN is 15 3 15 3 3,

and the training samples are first shuffled before they are fed

into the network to train the model. Once trained, the model
is used to estimate the capacity on the test group, some of

which may have slightly different charging policies from the

training dataset. For a test cell, 225 consecutive data points

are selected for each variable (i.e. current, voltage and tem-
perature) in each cycle, and the selected data chunks from the

three variables are then transformed to a 3D image as an

input to the network. It should be noted that the selected data
chunks for the three variables are from the same time seg-

ment, though the starting point can be randomly chosen. The

training and testing procedures are repeated 100 times, and

the estimation results with the lowest RMSE on the test data-
set among the 100 runs in each trial are illustrated in Figures

5–8 and listed in Table 2. In Figures 5–8, the estimated capaci-

ties are compared with reference values for all the test cells,
where the blue region represents 5% error boundaries of the

actual capacities. In Table 2, RMSE, max error (MaxE) and

MAE of the estimation results are all listed. It is shown that

the capacity degradation trend is well traced, and the RMSE,
MaxE and MAE of the capacity estimations for the test

batteries are less than 0.0279 Ah, 0.0896 Ah and 0.0206

Ah(2.54%, 8.15% and 1.87% of the rated capacity), respec-

tively. It is noted that the estimation errors of battery 7 are

slightly bigger than other battery cells. This is due to the fact

that the charging policy of battery 7 is not included in the

training dataset. However, as shown in Table 2, the estimation

performance reveals that satisfactory results can still be

achievable when the proposed method is applied to estimate

the capacity of a battery whose charging policy is different

from the training dataset.

Case 2: Oxford dataset

In this dataset, aging experiments are applied to eight com-

mercial Kokam pouch cells, with a nominal capacity of 0.74

Ah. The dynamic driving profile used to degrade these cells is

the Artemix urban drive cycle, and a characterization cycle is

carried out every 100 dynamic cycles. The data collected from

the characterization cycles, which charge and discharge the

cells under a CC profile (1C) and the thermal chamber is set

at a constant temperature of 408C, are used for capacity esti-

mation (Birkl, 2017). Each time data of seven cells are used to

train the model, of which the generated samples are shuffled

and split into training and validation sets with the ratio of 7:3,

while data from the remaining cell is used for testing. The

capacity estimation procedure in this case is the same as in

Figure 5. Capacity estimation results on Group 1 (Group 2, 3, 4 for training, and Group 1 for testing).

(a) Group 1 – Battery 1 (b) Group 1 – Battery 2 (c) Group 1 – Battery 3 (d) Group 1 – Battery 4.
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Figure 6. Capacity estimation results on Group 2 (Group 1, 3, 4 for training, and Group 2 for testing).

(a) Group 2 – Battery 5 (b) Group 2 – Battery 6 (c) Group 2 – Battery 7 (d) Group 2 – Battery 8.

Figure 7. Capacity estimation results on Group 3 (Group 1, 2, 4 for training, and Group 3 for testing).

(a) Group 3 – Battery 9 (b) Group 3 – Battery 10 (c) Group 3 – Battery 11 (d) Group 3 – Battery 12.
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case 1. The whole training and testing procedures are executed

100 times, the best estimation results on the testing dataset

out of the 100 runs are shown in Figure 9, and the related

RMSE, MaxE and MAE are summarized in Table 3. The

RMSE is less than 0.0217 Ah, which is 2.93% of the rated

capacity.

Analysis

To investigate the performance of the CNN model with dif-

ferent number of convolutional layers in both cases, the iden-

tical training and testing datasets are used for all tests. The

training and testing procedures are executed 100 times for

each CNN configuration, and the average RMSE, MaxE and

MAE of 100 runs are summarized in Table 4. Further, Figure

10 shows RMSE bar charts for different CNN models. It is

revealed that the CNN model with two convolutional layers

can achieve satisfactory results in Case 1, while four convolu-

tional layers are required in Case 2. This is because Case 2

has less samples for training, therefore requires deeper archi-

tecture than Case 1 to extract more detailed information from

limited training samples. Comparing the results of networks

with four, five and six convolutional layers, and considering

the total number of parameters involved in each configura-

tion (as shown in Table 4), the CNN with four convolutional

layers is the best trade-off, which can achieve satisfactory esti-

mation results with relatively fewer parameters.
In this paper, the length of consecutive data points cut

from the charging and discharging curves is chosen to be 225

for each variable, and the three data chunks for current, vol-

tage and temperature are fused to generate a 15 3 15 3 3

input sample (image) to the CNN, referring to a partial

charging/discharging segment with unknown initial and final

SOC. This is again the best trade-off between the number of

generated samples and the information embedded in each

sample. To illustrate this, experiments are conducted with dif-

ferent lengths of segmentation, where the training and testing

procedures are repeated 100 times on the identical training

and testing datasets in Case 1. Figure 11 shows the average

estimation error with respect to different length of segmenta-

tion. It is clear that 225 continuous data points provide rela-

tively small estimation errors, while too small or too large

segmentation both produce unsatisfactory estimation results.

This is because shorter segments contain less useful informa-

tion to describe the features, while longer segments will gener-

ate too few samples to train a proper model. In addition, the

larger the segment size, the more parameters are involved,

leading to longer training time.
Further, Table 5 compares the capacity estimation results

of CNN, ANN and DNN (with different number of hidden

layers and each layer has 40 neurons) using average RMSE,

Figure 8. Capacity estimation results on Group 4 (Group 1, 2, 3 for training, and Group 4 for testing).

(a) Group 4 – Battery 13 (b) Group 4 – Battery 14 (c) Group 4 – Battery 15 (d) Group 4 – Battery 16.
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Figure 9. Capacity estimation results of Cell1 to Cell8.

(a) Test results for Cell1; (b) Test results for Cell2; (c) Test results for Cell3; (d) Test results for Cell4; (e) Test results for Cell5; (f) Test results for

Cell6; (g) Test results for Cell7; (h) Test results for Cell8.
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MaxE and MAE of 100 runs in Case 1, and the error ratio

against the rated capacity are given in parenthesis. It is obvi-

ous that the CNN model has achieved the best results while

involving much less parameters.
In summary, the normalized RMSEs are less than 2.54%

and 2.93%, respectively, on the two datasets, outperforming

other machine-learning-based estimation methods.

Conclusions

This paper has proposed a novel CNN-based battery capacity

estimation method only using partial charging segment of the

direct measurements (e.g. current, voltage, and cell surface

temperature). Compared to other ML-based methods, the

proposed method is easy to implement, and can achieve fast

online capacity estimation without extra health features

extraction or cumulative charge calculation processes, while

only raw data of a partial charging process is required. The

CNN has demonstrated the capability of handling a massive

amount of data to learn representative features, and the fea-

ture extraction and capacity estimation are automatically exe-

cuted in one framework. To apply CNN for capacity

estimation using measurable variables, a transformation

method is developed to convert the time series to image repre-

sentations that are acceptable by CNNs, and the converted 3-

D images embed the spatially and temporally correlated

information among these variables. The data segmentation

Table 3. Estimation errors in test batteries for Case 2.

RMSE(Ah) MaxE(Ah) MAE(Ah)

Cell1 0.0196 0.0698 0.0140

Cell2 0.0175 0.0511 0.0129

Cell3 0.0185 0.0727 0.0131

Cell4 0.0196 0.0505 0.0158

Cell5 0.0148 0.0598 0.0101

Cell6 0.0217 0.0568 0.0163

Cell7 0.0188 0.0478 0.0151

Cell8 0.0178 0.0446 0.0137

Figure 10. Estimation RMSE (Ah) on test datasets versus the number

of convolutional layers.

Figure 11. Estimation error on test datasets versus the length of

segment.

Table 4. Comparison of estimation results with different number of

convolutional layers.

Number of

conv layers

2 3 4 5 6

Case 1 RMSE (Ah) 0.0104 0.0107 0.0101 0.0105 0.0105

MaxE (Ah) 0.0803 0.0873 0.0765 0.0847 0.0861

MAE (Ah) 0.0070 0.0070 0.0065 0.0069 0.0071

RMSE (Ah) 0.0385 0.0337 0.0210 0.0200 0.0198

Case 2 MaxE (Ah) 0.1077 0.1042 0.0651 0.0675 0.0645

MAE (Ah) 0.0281 0.0237 0.0152 0.0143 0.0142

Total

parameters

16789 11653 12693 13733 14773

Table 5. Comparison of estimation results under CNN, ANN and

DNN (() normalized by rated capacity).

RMSE MaxE MAE Parameters

CNN 0.0101 Ah 0.0765 Ah 0.0065 Ah 12693

(0.95%) (7.54%) (0.63%)

ANN 0.0189 Ah 0.1568 Ah 0.0129 Ah 27081

(1.72%) (14.25%) (1.17%)

2-layer DNN 0.0142 Ah 0.1930 Ah 0.0091 Ah 28721

(1.29%) (17.55%) (0.83%)

3-layer DNN 0.0135 Ah 0.1433 Ah 0.0090 Ah 30361

(1.23%) (13.03%) (0.82%)

4-layer DNN 0.0147 Ah 0.1476 Ah 0.0092 Ah 32001

(1.34%) (13.42%) (0.84%)

5-layer DNN 0.0145 Ah 0.1544 Ah 0.0094 Ah 33641

(1.32%) (14.04%) (0.85%)
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method performed priori to the transformation stage not only

increases the sample numbers, but also makes it possible to

achieve fast online capacity estimation only using partial

charging segment of direct measurements with flexible start-

ing point. The proposed method is evaluated on two battery

degradation datasets, the estimation results confirm that the

proposed CNN-based method can achieve satisfactory results

and can be used for fast online capacity estimation once the

model is properly trained offline. The CNN model developed

in this paper has a large number of parameters to tune, and

to reduce the size and number of tunable parameters in the

CNN model will be our future work.
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