

This is a repository copy of *Changes in groundwater bacterial community during cyclic groundwater-table variations*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/166221/

Version: Accepted Version

Article:

Xia, X, Stewart, DI orcid.org/0000-0001-5144-1234, Cheng, L et al. (4 more authors) (2020) Changes in groundwater bacterial community during cyclic groundwater-table variations. Hydrological Processes, 34 (25). pp. 4973-4984. ISSN 0885-6087

https://doi.org/10.1002/hyp.13917

© 2021 Wiley Periodicals LLC. This is the peer reviewed version of the following article: Xia, X, Stewart, DI, Cheng, L et al. (4 more authors) (2020) Changes in groundwater bacterial community during cyclic groundwater-table variations. Hydrological Processes, 34 (25). pp. 4973-4984. ISSN 0885-6087. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Changes in groundwater bacterial community during cyclic
2	groundwater-table variations
3	
4	Running title: Water-table variations affect bacteria
5	
6	Xuefeng Xia ^{1,3} , Douglas Ian Stewart ² , Lirong Cheng ^{1,3} , Kai Wang ^{1,3} , Jing Li ⁴ , Dan Zhang ⁵ ,
7	Aizhong Ding ^{1,3,*}
8	
9	¹ Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education,
10	College of Water Sciences, Beijing Normal University, Beijing 100875, China
11	² School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
12	³ Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water
13	Sciences, Beijing Normal University, Beijing 100875, China
14	⁴ Shandong Refresher Env. Eng. & Consulting, Jinan 250022, China
15	⁵ Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory for risk modeling
16	and remediation of contaminated sites, Beijing 100037, China
17	* Corresponding author: Aizhong Ding. Present address: 12#, Xueyuannan Road, Haidian District, 100875
18	Beijing, PR China.
19	
20	E-mail address:
21	xiaxuefengbnu@163.com (Xuefeng Xia)

22	D.I.Stewart@leeds.ac.uk	(Douglas Ian Stewart)
----	-------------------------	-----------------------

- 23 l.cheng@bnu.edu.cn (Lirong Cheng)
- 24 wangkaik@mail.bnu.edu.cn (Kai Wang)
- 25 liju8445@163.com (Jing Li)
- 26 zhangdan@cee.cn (Dan Zhang)
- 27 ading@bnu.edu.cn (Aizhong Ding)
- 28

29 Acknowledgments

- 30 This work was supported by the National Natural Science Foundation of China (No.
- 31 41672227) and National Key R & D Program of China (No. 2018YFC1800905).

32 Abstract

Column experiments containing an aquifer sand were subjected to static and oscillating water 33 tables to investigate the impact of natural fluctuations and rainfall infiltration on the groundwater 34 bacterial community just below the phreatic surface, and its association with the geochemistry. 35 Once the columns were established, the continuously saturated zone was anoxic in all three 36 37 columns. The rate of soil organic matter (SOM) mineralization was higher when the water table varied cyclically than when it was static due to the greater availability of NO_3^- and SO_4^{2-} . Natural 38 fluctuations in the water table resulted in a similar NO_3^- concentration to that observed with a 39 static water table but the cyclic wetting of the intermittently saturated zone resulted in a higher 40 SO₄²⁻ concentration. Rainfall infiltration induced cyclic water-table variations resulted in a 41 higher NO_3^- concentration than those in the other two columns, and a SO_4^{2-} concentration 42 43 intermediate between those columns. As rainwater infiltration resulted in slow downward displacement of the groundwater, it is inferred that NO_3^{-1} and SO_4^{2-1} were being mobilized from 44 the vadose zone. NO₃⁻ was mainly released by SOM mineralization (which was enhanced by the 45 infiltration of oxygenated rainwater), but the larger amount of SO_4^{2-} release required a second 46 mechanism (possibly desorption). Different groundwater bacterial communities evolved from 47 initially similar populations due to the different groundwater histories. 48

49

50 Keywords: Water-table variations; rainfall infiltration; natural fluctuations; SOM mineralization;
 51 NO₃⁻; SO₄²⁻; bacterial communities; groundwater histories

1. Introduction

54	Groundwater represents 95% of global freshwater and is thus an essential resource for
55	drinking water, agriculture and industry (Igor, 1993). The microbial community in an aquifer can
56	have a profound impact on groundwater quality, as microorganisms break down organic matter,
57	consume oxygen, change the oxidation state of inorganic compounds, recycle nutrients and break
58	down pollutants (Kim & Gadd, 2008). Thus, it is important to understand how microbial
59	community varies as a function of location, and how its metabolic activity varies as a function of
60	time (Griebler, Malard, & Lefébure, 2014).
61	The groundwater table in an aquifer can fluctuate in short-term, seasonally and from year to
62	year in response to variations in rainfall infiltration, groundwater flow, groundwater extraction
63	and recharge, surface water levels and other natural causes (Rühle, von Netzer, Lueders, &
64	Stumpp, 2015; Haack et al., 2004; Krause, Bronstert, & Zehe, 2007; Dobson, Schroth, & Zeyer,
65	2007). This produces a zone of intermittent saturation immediately above the continuously
66	saturated zone where there are cyclical variations in the redox state and geochemistry (Yang et al.,
67	2017; Stegen et al., 2016). Saturation, redox state and geochemistry are the principal factors that
68	shape the microbial community present at a location (Shade, Jones, & Mcmahon, 2008;
69	Medihala, Lawrence, Swerhone, & Korber, 2012; Zheng et al., 2019). Thus, temporal
70	heterogeneity associated with groundwater-table fluctuations will impose a selective pressure
71	that will favor microorganisms possessing metabolic plasticity and redox tolerance mechanisms
72	(Rosenberg & Freedman, 1994).

73	There have been numerous studies of the effect of groundwater-table variations on bacterial
74	processes in aquifers, but most have focused on the fate of natural and anthropomorphic
75	contaminants in the intermittently saturated zone of an aquifer (e.g. Banks, Clennan, Dodds, &
76	Rice, 1999; Van Driezum et al., 2018). Unsurprisingly, these show that electron donor and
77	acceptor availability determine both microbial community composition and biogeochemical
78	processes that the community mediates (e.g. Braun, Schröder, Knecht, & Szewzyk, 2016).
79	However, it is interesting to note that indigenous microorganisms exhibit greater activity in a
80	region of groundwater table variation than they would in equivalent zones above a static
81	groundwater table (Banks et al., 1999), possibly because alternative movements of groundwater
82	table transport nutrients and air to zone where air- and water-filled pores co-exist creating
83	microhabitats with optimized conditions for microbial activity (Rainwater, Mayfield, Heintz, &
84	Claborn, 1993; Banks et al., 1999). Moreover, different causes of a rising groundwater table may
85	result in different responses of the indigenous microbial populations in an aquifer, due to
86	difference in water chemistry and water-flow pathway (Zhou, Kellermann, & Griebler, 2012).
87	Local rainfall infiltration involves downward percolation of water from the atmosphere through
88	vadose zone, potentially eluting solutes and natural organics, and the upward displacement of
89	pore air from capillary fringe against the water flow direction (Rainwater et al., 1993). Whereas
90	regional recharge of an aquifer can result in upward permeation of groundwater from saturated
91	zone, which will displace the pore air from capillary fringe upwards ahead of the wetting front.
92	Such differences must lead to different redox conditions, affect the activity of indigenous

microorganisms, and impact on the evolution of the groundwater microbial community

94 (Pett-Ridge & Firestone, 2005).

95 Microbial communities often require time to respond to environmental change (Rezanezhad, Couture, Kovac, O'Connell, & Van Cappellen, 2014), particularly as metabolic responses to new 96 environment can themselves cause geochemical changes creating new ecological niches over 97 98 time (Broman, Sjöstedt, Pinhassi, & Dopson, 2017; Graham et al., 2016). Therefore, variations in 99 microbial community with the level of groundwater table depend on the period over which groundwater table is varying. With short-duration rainfall events, a single cycle may only cause a 100 101 small change in microbial population (Steenwerth, Jackson, Calderón, Scow, & Rolston, 2005), whereas slow seasonal changes in groundwater table can result in significant differences in DNA 102 103 "fingerprint" of microbial populations (Zhou, Zhang, Dong, Lin, & Su, 2015). However, with 104 more rapid wet/dry cycling, the geochemistry can evolve during initial cycles before a relatively steady state is reached (RoyChowdhury et al., 2018; Park, Yang, Tsang, Alessi, & Baek, 2018), 105 106 suggesting that laboratory studies involving a single wet-dry cycle must be interpreted with 107 caution.

This study investigated temporal changes in the groundwater bacterial community during cyclic groundwater-table variations in laboratory columns. Two different patterns of groundwater-table variation were simulated and compared with a static groundwater table. These represented rainfall infiltration (RI), and natural fluctuations (NF) in groundwater table resulting from variations in regional extraction and recharge. The bacterial communities were determined over three successive groundwater-table cycles and correlated with geochemical parameters to

determine how the bacterial community varied, both within a cycle and between cycles, as afunction of geochemistry.

116

117 **2. Materials and methods**

118 2.1. Experimental system and groundwater-table variation procedure

119 The pilot-scale aquifer columns, consisting of cylindrical acrylic vessels with a length of 120 cm and an internal diameter of 24 cm (Fig. 1), were established in the Water Sciences 120 laboratory at Beijing Normal University where the ambient temperature was typically 28 ± 0.5 121 °C. Fine-grained natural river sand was collected from uncontaminated floodplain sediments near 122 Cihe (Shijiazhuang, China). Prior to use, the sand was washed with tap water, dried at 105 °C for 123 10 h, and sieved < 0.25 mm. Properties of the sand are reported in Table 1(a). Aquifer columns 124 125 were packed with the sand using a wet-packing procedure (see the supplementary material). The water was completely drained after packing, when the packed height was 110 cm, the compacted 126 density was 1.60 g cm⁻³, and the effective porosity was 0.35. O₂-depleted tap water (prepared by 127 N_2 sparging for about 60 min; see Table 1(b)) was then injected from the column bottom using a 128 peristaltic pump until the groundwater table reached a position 40 cm above the bottom. In the 129 column with a static (ST) groundwater table, no further changes in the groundwater table were 130 131 imposed. In the other columns, a cyclic variation in the groundwater table was imposed. In both NF and RI experiments, a static groundwater table was maintained for 12 h, then the 132 cyclic pattern was commenced. Three full groundwater-table cycles were conducted. In the first 133 step the groundwater table was raised to 80 cm above the bottom of the columns over a period of 134

135	100 h. With the NF experiments O ₂ -depleted tap water was pumped into the bottom of the
136	column at a rate of 1.09 ml min ⁻¹ (see the supplementary material), whereas in the RI
137	experiments tap water (see Table 1(b)) was injected into the top of the column using a second
138	peristaltic pump (at the same flow rate). Subsequent steps were the same in the NF and RI
139	experiments; the groundwater table was held static for 40 h, and then was lowered to 40 cm
140	above the base over a period of 100 h by pumping groundwater out of the bottom of the columns
141	(flow-rate 1.03 ml min ⁻¹). The groundwater table was held static for 40 h between cycles and for
142	12 h after the last cycle. The intended pattern of groundwater-table variation during the NF and
143	RI experiments is shown in Fig. 2. A straight-forward cyclic pattern was used to allow
144	comparison between the two regimes, and between the cycles of the same column. However, it
145	had a similar periodicity to variations that occur in the agricultural region of Central Hebei (part
146	of the North China Plain) in response to (spring) irrigation and periodic heavy summer rainfall
147	(Hebei has a temperate continental monsoon climate). The rate at which the water table was
148	increased (0.4 cm/h) was a compromise between that observed in the Central Hebei during
149	irrigation (~0.04 cm/h) and that anticipated in response to more intense monsoon rainfall. This
150	created three zones within the columns, a continuously saturated zone from 0-40 cm above the
151	bottom of the columns, a zone of intermittent saturation from 40-80 cm, and a vadose zone from
152	80-110 cm.

153 2.2. Groundwater sampling

Triplicate groundwater samples (30 mL) were collected from the ST, NF and RI columns
after 12, 112, 152, 252, 292, 392, 432, 532, 572, 672, 712, 812 and 824 h (Fig. 2) using sampling

156 ports (VICI, USA) 30 cm above the base of the columns (Fig. 1; near the top of continuously

157 saturated zone). Each sample was separated into two subsamples, which were used for

158 geochemical and bacterial analysis, respectively.

159 2.3. Analytical methods

160 2.3.1 Geochemical analysis

161 The triplicate subsamples of each groundwater sample were filtered (< $0.45 \,\mu m$ Millipore), and stored at 4 °C for further analyses. Each subsample was analyzed less than 24 h after being 162 collected. Dissolved organic carbon (DOC) was measured using a Vario TOC system (Elementar, 163 Germany). NO₃⁻ and SO₄²⁻ were analyzed by ion chromatography (Dionex, America). Dissolved 164 oxygen (DO) was measured at a height of 30 cm above the base of each column (near the top of 165 continuously saturated zone) by an OXY-10 trace SMA technique (PreSens, Germany) with a 166 167 DP-Pst3 dipping probe (PreSens, Germany) (details can be found in the supplementary material). 2.3.2 Bacterial community analysis 168 169 The triplicate subsamples of each groundwater sample were pooled for bacterial analysis, 170 and labelled as ST1-ST13, NF1-NF13 and RI1-RI13 to indicate the experiment and the sample 171 number (Fig. 2). Total DNA was extracted from 6 ml of groundwater using a TIANamp Bacteria DNA Kit (TIANGEN, China) following to the manufacturer's instructions (see the 172 173 supplementary material for details). The V3-V4 hypervariable region of 16S rRNA gene was amplified by PCR using the broad specificity primers 338F 174 (5'-ACTCCTACGGGAGGCAGCAG-3') and 806R (5'-GGACTACHVGGGTWTCTAAT-3') 175

176 (Zhu et al., 2018). PCR conditions are described in the supplementary material. To reduce PCR

177	errors, amplification for each sample was performed in triplicate and mixed together, then the
178	amplicons were extracted from 2% agarose gels and purified by using the AxyPrep DNA Gel
179	Extraction Kit (Axygen Biosciences, USA) following the manufacturer's instructions, and
180	quantified using QuantiFluor TM -ST (Promega, USA). Subsequently, all purified amplicons were
181	pooled in equimolar concentrations and were paired-end sequenced (2×300) on an Illumina
182	MiSeq PE300 sequencer (Illumina, USA) according to standard protocols at Allwegene
183	Technology Co., Ltd (Beijing, China).
184	The extraction of high-quality sequences was firstly performed with the QIIME package
185	(version 1.2.1). Raw sequences were selected based on sequence length, quality, primer and tag,
186	and low-quality sequences were removed (see the supplementary material). The high-quality
187	sequences were assigned operational taxonomic units (OTUs) under the threshold of 97%
188	identity using USEARCH (Version 10). Chimeric sequences were identified and removed using
189	USEARCH (version 10). OTUs with only one sequence (singleton) were not included in
190	downstream analysis, other OTUs were assigned to taxonomic groups using the Ribosomal
191	Database Project (RDP) classifier (version 2.2) against the Silva128 16S rRNA database using a
192	confidence threshold of 70%.
193	2.4. Data analysis

Analysis of OTU alpha diversity, including rarefaction (Fig. S1), and calculation of
Shannon index, was performed using Mothur package (version 1.34.4). Heat map was generated
from the relative abundances of top 20 OTUs after column-normalization using pheatmap
package in R (version 3.6.1). Based on the detrended correspondence analysis (DCA) result

198	(gradient length < 3.0), redundancy analysis (RDA) was used to investigate multivariate
199	correlations between the microbial populations and geochemical properties of the columns using
200	Canoco (version 4.5). The 100 most abundant OTUs across all the samples were identified, and
201	their relative abundances in each sample were $\log (x + 1)$ transformed for the RDA.
202	
203	3. Results
204	3.1. Geochemistry
205	The DO concentrations near the top of continuously saturated zone showed the same
206	responses in the three columns, decreasing from an initial value of 2.5 mg L^{-1} to essentially zero
207	over a period of about 252 h. This corresponded with the end of the first groundwater-table cycle
208	in the NF and RI columns (Fig. 3a).
209	The DOC concentrations responded differently in the three columns. In the ST column,
210	DOC increased from an initial value of 3.5 mg L^{-1} to 7.1 mg L^{-1} after 112 h, then decreased to
211	3.8 mg L ⁻¹ after about 292 h, and finally remained steady at that value until the end of
212	experiments (824 h). The DOC in the NF column showed a cyclical response, which established
213	after the first increase in the groundwater table. Initially it exhibited little change over the first
214	112 h, then it increased while the groundwater table was static and while it was being lowered to
215	6.4 mg L^{-1} at the end of the cycle. During the subsequent groundwater-table cycles, DOC
216	decreased during the period when the groundwater table was rising and increased again during
217	the period when the groundwater table was static or falling. The DOC in the RI column exhibited
218	a slightly different cyclical response. It initially increased from 3.5 mg L ⁻¹ to 7.2 mg L ⁻¹ during

219	the first time when the groundwater table was rising. Thereafter, it increased during the period
220	when the groundwater table was falling but decreased during the period when the groundwater
221	table was static or rising (Fig. 3b).
222	The initial NO_3^- concentrations were about 4.0 mg L ⁻¹ in the three columns. In the ST
223	column, NO ₃ ⁻ increased to a value of 7.5 mg L^{-1} after 152 h, before decreasing to 0.4 mg L^{-1} after
224	824 h. In the NF column, the overall trend was a decrease in the NO_3^- concentration with time
225	from its initial value to 0.3 mg L^{-1} after 824 h. However, there was a cyclic pattern imposed on
226	this overall trend, the NO3 ⁻ concentration decreased during the period when the groundwater
227	table was static or rising, and increased when the groundwater table was being lowered. In the RI
228	column, the pattern in the NO_3^- concentration was less clear, with largely an increasing trend to
229	8.0 mg L^{-1} during the first two groundwater-table cycles, and a decrease to 2.1 mg L^{-1} followed
230	by recovery to 9.2 mg L ⁻¹ during the final cycle (Fig. 3c).
231	The initial SO_4^{2-} concentrations were about 42.0 mg L ⁻¹ in the three columns. In the ST
232	column, this increased to a value of 151.3 mg L ⁻¹ after 152 h, and then decreased smoothly to
233	11.6 mg L^{-1} after 824 h. In the NF column, the SO ₄ ²⁻ concentration exhibited a cyclical response,
234	which established after the first increase in the groundwater table, where the SO_4^{2-} concentration
235	increased when the groundwater table was lowered and decreased at it was raised, with an
236	average of about 70 mg L^{-1} during the third groundwater cycle. The SO ₄ ²⁻ concentration in the RI
237	column exhibited a similar cyclical response, but with an average of about 40 mg L ⁻¹ during the
238	third groundwater cycle (Fig. 3d).

3.2. Bacterial community composition

240	The diversity of the groundwater bacterial communities exhibits broadly same trend in the
241	three columns (Fig. 4). The Shannon diversity index remained broadly constant for the first 250
242	h, then decreased slowly over the next 300 h to about 50% of its initial value, before recovering
243	over ~100 h to broadly the initial value for the last 150 h of the experiments.
244	The initial populations of all three columns (ST1, NF1, RI1) clustered as small group in the
245	redundancy plot (Fig. 6), suggesting that these populations were similar. The distribution of
246	readings by phylum also indicates that these populations were similar (Fig. 5a). The initial
247	populations of the three columns were all dominated by readings within phyla Parcubacteria
248	(30-49%), Proteobacteria (21-33%), and Bacteriodetes (2-15%). The three most abundant OTUs
249	in each column contained $\sim 20\%$ of the readings (Table S1). In the ST column these OTUs were
250	all classified as Parcubacteria (OTU3 and OTU11 were candidate class Jorgensenbacteria,
251	OTU35 was unclassified class), whereas in the NF column they were OTU66 (genus
252	Rhodobacter in the class α -proteobacteria), OTU87 (genus Fluviicola in the phylum
253	Bacteroidetes) and OTU23 (unclassified class in the phylum Parcubacteria), and in the RI
254	column they were OTU4 (candidate class Jorgensenbacteria), OTU93 (Family Cryomorphaceae
255	in the phylum Bacteroidetes), and OTU23 (Table S2). 33 OTUs were abundant in all three
256	columns, representing typically a third of each population (Table S1).
257	The populations of the three column experiments at subsequent time points plotted in
258	different areas of the redundancy plot, suggesting divergence in their populations. After time
259	point 5 (the start of the second groundwater cycle), the populations of each column experiment

260	formed a loose cluster in slightly different regions of the redundancy plot (populations from the
261	ST column formed the tightest cluster; Fig. 6). The distribution of readings by phylum exhibited
262	a less clear trend over the first six time points, with as much variation between time points in the
263	same column, as between different columns at the same time, but all the populations were
264	dominated by phyla Parcubacteria and Proteobacteria (typically > 70% of all readings were from
265	these phyla) (Fig. 5a). Three OTUs were amongst the 20 most abundant OTUs in > 75% of
266	groundwater samples up to time point 6 (Fig. 5b, they were amongst the 100 most abundant
267	OTUs in every sample, Table S1), two (OTU3 and OTU4) were classified as Parcubacteria
268	(candidate class Jorgensenbacteria) and one (OTU1) was classified as Proteobacteria (genus
269	Variovorax belonged to the class β -Proteobacteria).
270	At time point 9 (572 h), when the Shannon diversity index reached its minimum, all three
271	columns were dominated by readings classified as proteobacteria (see Fig. 5a). At this time, 2/3 rd
272	of the readings in all three columns were from OTU2 (genus Pseudomonas belonged to the class
273	γ -proteobacteria; 24-59%) and OTU1 (genus Variovorax; 11-49%) mentioned above for its
274	(albeit more modest) abundance at earlier time points. It should be noted that such increases in
275	relative abundance may, in part, reflect a drop in overall bacterial abundance.
276	After time point 9, there were fewer common species amongst the abundant OTUs in
277	groundwater samples from the three columns (Table S1). At time point 13 (824 h), 26 OTUs
278	typically represented a third of the readings in each column. Further, a small number of highly
279	abundant OTUs represented a quarter of the readings in each column, and these highly abundant
280	OTUs were different (Table S1). In the ST column these were OTU3 (candidate class

281	Jorgensenbacteria, phylum Parcubacteria; 10%), OTU10 (order Clostridiales, phylum Firmicutes;
282	6%), an OTU9 (unclassified bacterium; 3%), OTU28 (genus Opitutus, phylum Verrucomicrobia;
283	3%), and OTU36 (family Nitrospiraceae, phylum Nitrospirae; 3%). In the NF column these were
284	OTU114 (family Comamonadaceae, class β -proteobacteria; 5%), OTU12 (genus Caulobacter,
285	class α -proteobacteria; 4%), OTU153 (genus Buchnera, class γ -proteobacteria; 3%), OTU69
286	(genus Azospirillum, class α-proteobacteria; 3%), OTU91 (genus Opitutus, phylum
287	Verrucomicrobia; 3%), OTU26 (genus Methyloversatilis, class β -proteobacteria; 2%), OTU33
288	(genus Novosphingobium, class α -proteobacteria; 2%), OTU138 (order Clostridiales, phylum
289	Firmicutes; 2%) and OTU1 (genus Variovorax; 2%). In the RI column these were OTU14 and
290	OTU34 (genus Desulfovirga, class δ -proteobacteria; 14% and 3%, respectively) and OTU27
291	(family Rhodocyclacea, class β -proteobacteria; 9%).
292	The RDA plot provided correlations between the groundwater bacterial communities and
293	the geochemical parameters (DO, DOC, NO_3^- , SO_4^{2-}). At time points 1-3 the bacterial
294	communities in all three columns were positively correlated with DO, but negatively correlated
295	thereafter. After time point 4, bacterial communities in the ST column were negatively correlated
296	with DOC and NO ₃ ⁻ , while bacterial communities in the NF column were positively correlated
297	with SO_4^{2-} and negatively correlated with NO_3^{-} and DOC, and bacterial communities in the RI
298	column were positively correlated with DOC and NO_3^- and negatively correlated with SO_4^{2-} .
299	

300 4. Discussion

The initial geochemical response in the continuously saturated soil below the oscillating 301 zone (or the equivalent zone of the ST column) was similar in the three columns. The DO 302 concentrations decreased continuously from 2.50 mg/L (~30% oxygen saturation) after column 303 preparation, to below detection over the first 250 h in the three columns, and did not increase 304 305 again despite the potential for air entrapment to occur with NF and RI. This indicates that once 306 the columns were established the consumption of oxygen within the natural fine-grained river sand exceeded the O₂ flux to the continuously saturated zone regulated by entrapment, advection 307 308 and diffusion (Dutta et al., 2015). The initial decrease in DO is the result of aerobic microbial metabolism coupled to oxidation of soil organic matter (SOM). The result was that the 309 biogeochemistry of the continuously saturated zone was essential anoxic or anaerobic in the 310 311 three columns after a time period that corresponded to the end of the first groundwater-table cycle in the NF and RI columns. 312 313 In the ST column, DOC increased from ~3.4 mg/L to ~7 mg/L over the first 100 h and then 314 decreased steadily towards a steady-state value of ~3.8 mg/L after about 250 h. Such a DOC variation is a footprint of microbial activity (Malik & Gleixner, 2013), as DOC is released by 315 microbial processing of SOM, although the labile hydrophilic neutral DOC fraction is itself 316 317 readily metabolized (Kiikkilä, Kitunen, & Smolander, 2005; Steinbeiss, Temperton, & Gleixner, 2008; Miltner, Bombach, Schmidt-Brücken, & Kästner, 2012). The tap water used in these 318 experiments contained ~3.4 mg/L DOC, which is likely to be a recalcitrant, hydrophobic acid 319

320 DOC fraction that is only degradable on long time scales (Polimene et al., 2018; Kiikkilä et al.,

321	2005), and thus 3.4 mg/L DOC should be regarded as a baseline for interpreting DOC variations.
322	The difference between the final and initial DOC concentrations may represent an increase in the
323	amount of recalcitrant DOC in the column after the labile fraction of initial DOC pulse has been
324	metabolized, or that there is an equilibrium between continued slow mineralization of SOM and
325	subsequent DOC metabolism. The NO_3^- and SO_4^{2-} concentrations initially increased, but both
326	peaked (at 152 h) shortly after the peak in DOC, and then gradually decreased with time as the
327	saturated zone became more reducing. The initial release of NO_3^- and SO_4^{2-} from the soil was
328	associated with increased microbial activity as the DO was consumed, whereas their subsequent
329	decrease was the result of their consumption by anaerobic microorganisms as anoxia developed.
330	Although SO ₄ ²⁻ reduction coupled to organic matter oxidation is an important process in
331	anaerobic systems (Zhou et al., 2015), it's interesting to find that SO_4^{2-} decreased under the
332	presence of NO_3^- , which is consistent with the work of Song et al. (2019), who showed that SO_4^{2-}
333	and NO ₃ ⁻ were synchronously depleted with DOC decreasing.
334	In the NF column, DOC concentration decreased when the groundwater table was raised,
335	while it increased when the groundwater table was static at its highest level, when it was lowered,
336	and when it was static at its lowest level. In these experiments water was added or removed from
337	the bottom of the column, displacing the groundwater upwards or downwards as a body. Thus,
338	during an increase in the groundwater table the water at the level of sampling port was replaced
339	by water from the zone just below it, and the displaced water was returned to the vicinity of
340	sampling point when the groundwater table was subsequently lowered (Fig. 2 illustrates how the
341	body of groundwater in the vicinity of the sampling port changes over time). If DOC

concentration is taken as an indicator of the rate of SOM mineralization (Song et al., 2018), then 342 initially there is a decrease in that rate with depth (DOC concentration in the vicinity of sampling 343 port decreased when the groundwater was displaced upwards and increased when it moved 344 downwards). The translocation of groundwater into a different region of soil matrix also seems to 345 increase the rate of DOC mineralization during the subsequent static period. This is probably a 346 347 transient effect resulting from the disequilibria associated with the introduction of different 348 groundwater bacteria and dissolved chemical species to SOM, chemical species and bacteria associated with the soil matrix. However, it was sufficient to maintain a DOC concentration in 349 350 the groundwater near the phreatic surface that was consistently higher than that in the ST column. The NO₃⁻ concentration in the vicinity of sampling port also decreased when the groundwater 351 was displaced upwards and increased when it moved downwards, but this pattern diminished 352 353 with time. After the first groundwater-table cycle the NO₃⁻ concentration in the NF column followed a similar trend to that in the ST column, suggesting that anoxia developed at a similar 354 355 rate to the ST column and that only a small amount of additional NO_3^- was carried from the 356 intermittently saturated zone into the continuously saturated zone. As a result, most of NO_3^- had been consumed after 800 h at an average rate similar to that during the ST experiments. Like the 357 NO₃⁻ concentration, the SO₄²⁻ concentration in the vicinity of sampling port decreased when 358 359 groundwater was displaced upwards and increased when it moved downwards, suggesting that SO₄²⁻ concentration similarly decreased with depth near the phreatic surface. However, unlike 360 NO_3^- concentration, the magnitude of the in-cycle variations in SO_4^{2-} concentration was little 361 changed after three cycles, suggesting the local depth trend in the SO₄²⁻ concentration persisted 362

363	throughout the experiments. Moreover, the transition from SO_4^{2-} release when the groundwater
364	table was static at the lowest level during the first cycle, to SO_4^{2-} consumption when the
365	groundwater table was static at the lowest level during the third cycle, meant the average SO_4^{2-}
366	concentration was decreasing slightly with the increasing number of cycles. As in the ST column,
367	the initial release SO_4^{2-} from the soil was associated with increased microbial activity as the DO
368	was consumed (it's detection at the sampling port was delayed by the position of the
369	groundwater table). This was probably due to desorption or dissolution of inorganic S from soil
370	minerals in the intermittently saturated zone, although mineralisation of organic S (either
371	C-bonded S or ester-bonded sulphates) might also be contributing (Edwards, 1998). The net
372	decrease in SO_4^{2-} concentration from the end of cycle 1 to the end of cycle 3, and particularly the
373	decrease when the groundwater table was static during cycle 3, were the result of sulphate
374	reduction by anaerobic microorganisms as anoxia developed.
375	The DOC response in the RI column was initially indistinguishable from the ST column,
376	but subsequently exhibited a clear cyclic pattern from the point where the groundwater table was
377	first lowered from its highest level. This pattern was an increase in DOC concentration during
378	the period when the groundwater table was being lowered, a rapid decrease when the
379	groundwater table was static at its lowest level, and a slower decrease when the groundwater
380	table was being increased or static at its highest level. Tap water was injected into the top of the
381	column, but groundwater was removed from the bottom of column. Thus, during an increase in
382	the groundwater table, the groundwater in the vicinity of sampling port remained static, but was
383	replaced by the simulated rainfall from the intermittently saturated zone when the groundwater

384	table was subsequently lowered (Fig. 2). Thus, the increase in DOC when the groundwater table
385	was lowered is an indication that the rate of SOM mineralization in the intermittently saturated
386	zone was higher than that in the continuously saturated zone in ~100 h after it had been
387	inundated with the simulated rainfall. This is associated with the transport of electron acceptors,
388	such as DO in the simulated rainfall and NO_3^- eluted from the vadose zone to the intermittently
389	saturated zone. The rate of decrease in DOC concentration through the subsequent stages of the
390	groundwater-table cycle (when groundwater in the vicinity of sampling port was static) reflects a
391	steady decrease in the rate of SOM mineralization with time (rainfall infiltration into the
392	intermittently saturated zone later in the cycle may have had a second order effect through
393	diffusive transport of electron acceptors from the recently saturated zone). The cyclic variations
394	in NO_3^- and SO_4^{2-} concentrations differed slightly between cycles, but the dominant pattern was
395	an increase in concentration when the groundwater table was lowered, and predominantly of
396	consumption when the groundwater table was static or increasing. Thus NO_3^- was consumed in
397	the continuously saturated zone when the groundwater table was static and replenished when the
398	simulated rainfall was drawn down into the continuously saturated zone. The mechanism of NO_3^-
399	replenishment might involve eluting soluble NO_3^- from the vadose zone or the intermittently
400	saturated zone (Huebsch et al., 2014), but almost certainly also involved mineralization of
401	organic-N. Mineralisation of nitrogen is most rapid when soil is warm, moist and well aerated
402	(Johnson, Albrecht, Kettrings, Beckman, & Stockin, 2005), so is likely to be enhanced by
403	periodic inundation by DO containing rainfall. The SO ₄ ²⁻ concentration decreased slightly with
404	successive groundwater-table cycles. Like the other columns, the initial increase of SO_4^{2-}

405concentration was associated with increased microbial activity as the DO was consumed.406Similarly, the mechanism was probably desorption or dissolution of inorganic S from soil407minerals, although mineralisation of organic S might also be contributing (Edwards, 1998).408However, the variation in the SO_4^{2-} concentration with time differed from the ST column because409each rainfall event mobilised further SO_4^{2-} from the vadose zone, but the downward movement410of the groundwater with each cycle prevented SO_4^{2-} accumulating near phreatic surface as it did411in the NF columns.

The RDA ordination indicates that the groundwater bacterial communities diverged with 412 413 time from initially similar populations due to groundwater-table variations (waterborne bacteria are subset of the bacteria in the columns, but bacteria attached to the soil particles were not 414 analysed). The initial populations were dominated by phyla Parcubacteria, Proteobacteria and 415 416 Bacteriodetes, which are widely found in marine and terrestrial environments (Sun et al., 2019; León-Zayas et al., 2017). The gradual decrease in bacterial community diversity over the first 417 two groundwater cycles (time points 1-9) was the result of the selective pressure of rapidly 418 developing anoxia (Humbert & Dorigo, 2005) and the dominance of OTUs from the initial 419 bacterial communities immediately being able to exploit the resulting ecological niche. At time 420 point 9, the dominant populations of all three columns were from the genera Pseudomonas and 421 422 Variovorax. Pseudomonas are facultative anaerobes capable of heterotrophic denitrification using a variety of carbon substrates (Wu et al., 2019; Dolan et al., 2020), and Variovorax genus 423 includes species capable of denitrification and sulphate reduction (Crevecoeur, Vincent, Comte, 424 & Lovejoy, 2015). The subsequent increase in diversity of each column and the further 425

426	divergence in their populations are then due to differences in relative competitiveness of the
427	species present as they adapt to the evolving geochemistry of each column by metabolic
428	regulation (Ayuso, Acebes, López-Archilla, Montes, & Guerrero, 2009). The final bacterial
429	population of the ST column was dominated by OTU3 (10% of all readings) and OTU10 (6% of
430	all readings). The first, which was also abundant in the initial population, was classified as a
431	Parcubacteria, a phylum of poorly characterised fermentative anaerobes (León-Zayas et al.,
432	2017). The second, which had low abundance in any of the columns until the start of the third
433	groundwater cycle, was classified as a Clostridiales, an order of fermentative obligate anaerobes
434	(Stackebrandt, 2014). Other highly abundant OTUs in the ST13 (together making up 25% of the
435	population) were closely related to anaerobic nitrate reducers (opitutus; Chin, Liesack, & Janssen,
436	2001) or sulphate reducers (currently known anaerobes within the Nitrospiraceae family are all
437	within the genus Thermodesulfovibrio; Daims, 2014).
438	The NF column had the most diversity amongst the highly abundant OTUs at time point 13,
439	with three different α -proteobacteria, three different β -proteobacteria, a clostridia, a
440	γ -proteobacteria and a Verrucomicrobia representing 25% of all readings. Based on their
441	similarity to well-characterised species, this population is likely to contain both facultative and
442	obligate anaerobes, including species capable of nitrate and sulphate reduction (Willems, 2014;
443	Chin et al., 2001; Smalley et al., 2015; Kaksonen, Spring, Schumann, Kroppenstedt, & Puhakka,
444	2007). What is really notable about these OTUs is that most were not abundant in the NF and RI
445	columns until the third groundwater cycle and not at all in the ST column (the exceptions were
446	OTU1, Variovorax, which was ubiquitous throughout all three column experiments, and OTU114,

447	Comamonadaceae family, which was briefly abundant in the ST5). This suggests that it can take
448	several groundwater cycles for the bacterial populations to evolve to fully exploit the
449	geochemical conditions produced by a varying water-table, possibly because the geochemistry
450	itself varies during the cycles.
451	The final bacterial population of the RI column had the least diversity amongst the highly
452	abundant OTUs, with just three OTUs representing 25% of the population. Two were classified
453	as Desulfovirga (a sulfate-reducing strict anaerobe; Kaksonen et al., 2007) within the class
454	δ -proteobacteria (OTU14 and OTU34; 14% and 3%, respectively), and the other was classified
455	to the family Rhodocyclaceae (OTU27; 9%) within the class β -proteobacteria (a disparate class
456	of mainly facultative anaerobic bacteria that includes many nitrate reducers; Oren, 2014). Other
457	abundant OTUs (OTU117 and OTU28, each representing $\sim 2\%$ of the population) were closely
458	related to anaerobic nitrate reducers (Thrash, Ahmadi, Torok, & Coates, 2010; Chin et al., 2001).
459	In summary, the RDA indicates that the bacterial populations of all three columns evolved
460	slightly differently over the course of the experiments, presumably as each community adapted
461	to its specific geochemical environment. However, the principal species in time point 13 suggest
462	that the population of the ST column has evolved the least (the most abundant OTU was
463	abundant in the initial population), and the high abundance of a probable fermentative species
464	(OTU10) may reflect the lower concentration of electron acceptors, such as sulphate and nitrate,
465	that support anaerobic respiration. The RDA indicates that populations of the NF and RI columns
466	differed from each other at time point 13, which may reflect the low nitrate, but elevated sulphate
467	concentrations in the NF column, and elevated nitrate, but moderate sulphate concentrations in

the RI column. However, nitrate and sulphate reducers appeared to be abundant in both bacterial
populations, perhaps indicating that even the modest nitrate release from the intermittently
saturated influenced the bacterial population of the NF column.

471

472 **5. Conclusions**

A cyclically varying groundwater table in an uncontaminated fine-grained natural river sand 473 representative of aquifer soils increased the rate of SOM mineralization in the continuously 474 saturated zone immediately below the intermittently saturated zone in comparison with a control 475 experiment with a static groundwater table. This was an anoxic zone, and enhanced 476 mineralization appeared to be associated with greater availability of electron accepting 477 compounds, particularly NO_3^- and SO_4^{2-} . When variations in the groundwater table resulted from 478 479 natural fluctuations, NO₃⁻ was consumed at similar rate to that observed with a static groundwater table. SO₄²⁻ was also consumed but was replenished by periodic wetting of the 480 481 intermittently saturated zone. However, when the varying groundwater table resulted from 482 rainfall infiltration, NO_3^- was consumed when the groundwater table was static, but was replenished when the simulated rainfall percolated down into the continuously saturated zone. 483 The mechanism of NO₃⁻ replenishment might involve eluting soluble NO₃⁻ from the vadose zone, 484 485 but almost certainly also involved mineralization of organic-N, which was likely to be enhanced by periodic inundation by DO containing rainfall. 486 The RDA ordination indicated that the groundwater bacterial communities at the top of 487

488 continuously saturated zone of the NF and RI columns diverged from the ST column with time

489	from initially similar populations due to groundwater-table variations. However obvious
490	differences in the most abundant OTUs in the three experiments only emerged after two
491	complete groundwater cycles (~500 h). In conclusion, variations in the water table and,
492	furthermore, the local flow direction during recharge have a strong influence on the
493	geochemistry and microbiology of the groundwater bacterial community just below the phreatic
494	surface of an aquifer.
495	
496	Declarations of competing interest
497	None.
498	
499	Data availability statement
500	The data used to support the findings of this study are available from the corresponding
501	authors upon reasonable request.
502	
503	Supporting file legend
504	Supplementary Material.
505	
506	References
507	Ayuso, S. V., Acebes, P., López-Archilla, A. I., Montes, C., & Guerrero, M. C. (2009).
508	Environmental factors controlling the spatiotemporal distribution of microbial communities
509	in a coastal, sandy aquifer system (Doñana, southwest Spain). Hydrogeology Journal, 17(4),

510 767-780.

511	Banks, M. K., Clennan, C., Dodds, W., & Rice, C. (1999). Variations in microbial activity due to
512	fluctuations in soil water content at the water table interface. Journal of Environmental
513	Science & Health Part A, 34(3), 479-505.
514	Braun, B., Schröder, J., Knecht, H., & Szewzyk, U. (2016). Unraveling the microbial community
515	of a cold groundwater catchment system. Water Research, 107, 113-126.
516	Broman, E., Sjöstedt, J., Pinhassi, J., & Dopson, M. (2017). Shifts in coastal sediment
517	oxygenation cause pronounced changes in microbial community composition and
518	associated metabolism. Microbiome, 5, 96.
519	Chin, K. J., Liesack, W., & Janssen, P. H. (2001). Opitutus terrae gen. nov., sp. nov., to
520	accomodate novel strains of the division 'Verrucomicrobia' isolated from rice paddy soil.
521	International Journal of Systematic and Evolutionary Microbiology, 51, 1965-1968.
522	Crevecoeur, S., Vincent, W. F., Comte, J., & Lovejoy C. (2015). Bacterial community structure
523	across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems.
524	Frontiers in Microbiology, 6, 192.
525	Daims, H. (2014). The Family Nitrospiraceae. In: E. Rosenberg, E. F. DeLong, S. Lory, E.
526	Stackebrandt, & F. Thompson (Eds.), The Prokaryotes (pp. 733-749). Heidelberg, Berlin:
527	Springer.
528	Dobson, R., Schroth, M. H., & Zeyer, J. (2007). Effect of water-table fluctuation on dissolution
529	and biodegradation of a multi-component, light nonaqueous-phase liquid. Journal of
530	Contaminant Hydrology, 94(3-4), 235-248.

531	Dolan, S. K., Kohlstedt, M., Trigg, S., Vallejo Ramirez, P., Kaminski, C. F., Wittmann, C., &
532	Welch, M. (2020). Contextual flexibility in Pseudomonas aeruginosa central carbon
533	metabolism during growth in single carbon sources. <i>mBio</i> ,11(2), e02684-19.
534	Dutta, T., Carles-Brangarí, A., Fernàndez-Garcia, D., Rubol, S., Tirado-Conde, J., &
535	Sanchez-Vila, X. (2015). Vadose zone oxygen (O ₂) dynamics during drying and wetting
536	cycles: An artificial recharge laboratory experiment. Journal of Hydrology, 527, 151-159.
537	Edwards, P. J. (1998). Sulfur cycling, retention, and mobility in soils: A review. USDA, General
538	Technical Report NE-250.
539	Graham, E., Crump, A. R., Resch, C. T., Fansler, S., Arntzen, E., Kennedy, D., Stegen, J. C.
540	(2016). Coupling spatiotemporal community assembly processes to changes in microbial
541	metabolism. Frontiers in Microbiology, 7, 1949.
542	Griebler, C., Malard, F., & Lefébure, T. (2014). Current developments in groundwater
543	ecology-from biodiversity to ecosystem functioning and services. Current Opinion in
544	Biotechnology, 27, 159-167.
545	Haack, S. K., Fogarty, L. R., West, T. G, Alm, E. W., Mcguire, J. T., Long, D. T., Forney, L. J.
546	(2004). Spatial and temporal changes in microbial community structure associated with
547	recharge-influenced chemical gradients in a contaminated aquifer. Environmental
548	Microbiology, 6(5), 438-48.
549	Huebsch, M., Fenton, O., Horan, B., Hennessy, D., Richards, K. G., Jordan, P., Blum, P.
550	(2014). Mobilisation or dilution? Nitrate response of karst springs to high rainfall events.
551	Hydrology and Earth System Sciences, 11(4), 4131-4161.

552	Humbert, J. F., & Dorigo, U. (2005). Biodiversity and aquatic ecosystem functioning: A mini
553	review. Aquatic Ecosystem Health & Management, 8(4), 367-374.
554	Igor, S. (1993). World fresh water resources. In: P. H. Gleick (Ed.) Water in crisis: A guide to the
555	world's fresh water resources. Oxford, New York: Oxford University Press.
556	Johnson, C., Albrecht, G., Kettrings, Q., Beckman, J., & Stockin, K. (2005). Nitrogen basics-the
557	nitrogen cycle. Agronomy Fact Sheet Series, Fact Sheet 2. Cornell University, Cooperative
558	Extension.
559	Kaksonen, A. H., Spring, S., Schumann, P., Kroppenstedt, R. M., & Puhakka, J. A. (2007).
560	Desulfurispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming
561	sulfate-reducer isolated from a sulfidogenic fluidized-bed reactor. International Journal of
562	Systematic and Evolutionary Microbiology, 57(5), 1089-1094.
563	Kim, B. H., & Gadd, G. M. (2008). Bacterial Physiology and Metabolism. New York: Cambridge
564	University Press.
565	Kiikkilä, O., Kitunen, V., & Smolander, A. (2005). Degradability of dissolved soil organic carbon
566	and nitrogen in relation to tree species. FEMS Microbiology Ecology, 53(1), 33-40.
567	Krause, S., Bronstert, A., & Zehe, E. (2007). Groundwater-surface water interactions in a North
568	German lowland floodplain-Implications for the river discharge dynamics and riparian
569	water balance. Journal of Hydrology, 347(3-4), 404-417.
570	León-Zayas, R., Peoples, L., Biddle, J. F., Podell, S., Novotny, M., Cameron, J., Bartlett, D. H.
571	(2017). The metabolic potential of the single cell genomes obtained from the Challenger
572	Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1).

- 573 *Environmental Microbiology*, *19*(7), 2769-2784.
- 574 Malik, A., & Gleixner, G. (2013). Importance of microbial soil organic matter processing in
- 575 dissolved organic carbon production. *FEMS Microbiology Ecology*, 86(1), 139-148.
- 576 Medihala, P. G., Lawrence, J. R., Swerhone, G. D. W., & Korber, D. R. (2012). Effect of
- pumping on the spatio-temporal distribution of microbial communities in a water well field. *Water Research*, *46*(4), 1286-1300.
- 579 Miltner, A., Bombach, P., Schmidt-Brücken, B., & Kästner, M. (2012). SOM genesis: Microbial
- 580 biomass as a significant source. *Biogeochemistry*, *111*(1-3), 41-55.
- 581 Oren, A. (2014). The Family Rhodocyclaceae. In: E. Rosenberg, E. F. DeLong, S. Lory, E.
- 582 Stackebrandt, & F. Thompson (Eds.), *The Prokaryotes* (pp. 975-998). Heidelberg, Berlin:
 583 Springer.
- Park, S. M., Yang, J. S., Tsang, D. C. W., Alessi, D. S., & Baek, K. (2018). Enhanced irreversible
- 585 fixation of cesium by wetting and drying cycles in soil. *Environmental Geochemistry* &
- 586 *Health*, 41(1), 149-157.
- Pett-Ridge, J., & Firestone, M. K. (2005). Redox fluctuation structures microbial communities in
 a wet tropical soil. *Applied and Environmental Microbiology*, *71*(11), 6998-7007.
- Polimene, L., Rivkin, R. B., Luo, Y. W., Kwon, E. Y., Gehlen, M., Peña, M. A., ... Jiao, N. Z.
- 590 (2018). Modelling marine DOC degradation time scales. *National Science Review*, 5(4),
 591 468-474.
- 592 Rainwater, K., Mayfield, M. P., Heintz, C., & Claborn, B. J. (1993). Enhanced in situ
- 593 biodegradation of diesel fuel by cyclic vertical water table movement: Preliminary studies.

Water Environment Research, 65(6), 717-725.

- 595 Rezanezhad, F., Couture, R. M., Kovac, R., O'Connell, D., & Van Cappellen, P. (2014). Water
- table fluctuations and soil biogeochemistry: An experimental approach using an automated
- 597 soil column system. *Journal of Hydrology*, 509, 245-256.
- Rosenberg, D. B., & Freedman, S. M. (1994). Temporal heterogeneity and ecological community
 structure. *International Journal of Environmental Studies*, 46(2-3), 97-102.
- 600 RoyChowdhury, T., Bramer, L., Hoyt, D. W., Kim, Y. M., Metz, T. O., McCue, L. A., ... Bailey,
- 601 V. (2018). Temporal dynamics of CO₂ and CH₄ loss potentials in response to rapid
- hydrological shifts in tidal freshwater wetland soils. *Ecological Engineering*, *114*, 104-114.
- Rühle, F. A., von Netzer, F., Lueders, T., & Stumpp, C. (2015). Response of transport parameters
- and sediment microbiota to water table fluctuations in laboratory columns. *Vadose Zone*
- 605 *Journal*, 14(5), 12.
- 606 Shade, A., Jones, S. E., & Mcmahon, K. (2008). The influence of habitat heterogeneity on
- 607 freshwater bacterial community composition and dynamics. *Environmental Microbiology*,
 608 *10*(4), 1057-1067.
- 609 Smalley, N. E., Taipale, S., De Marco, P., Doronina, N. V., Kyrpides, N., Shapiro, N., ...
- 610 Kalyuzhnaya, M. G. (2015). Functional and genomic diversity of methylotrophic
- 611 Rhodocyclaceae: Description of Methyloversatilis discipulorum sp. nov. *International*
- 612 *Journal of Systematic & Evolutionary Microbiology*, 65(7), 2227-2233.
- 613 Song, N., Xu, H., Yan, Z., Yang, T., Wang, C., & Jiang, H. L. (2019). Improved lignin
- 614 degradation through distinct microbial community in subsurface sediments of one eutrophic

615 lake. *Renewable Energy*, *138*, 861-869.

616	Song, Y. Y., Song, C. C., Hou, A. X., Ren, J. S., Wang, X. W., Cui, Q., & Wang, M. Q. (2018).
617	Effects of temperature and root additions on soil carbon and nitrogen mineralization in a
618	predominantly permafrost peatland. Catena, 165, 381-389.
619	Stackebrandt, E. (2014). The Family Clostridiaceae, Other Genera. In: E. Rosenberg, E. F.
620	DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes (pp. 67-73).
621	Heidelberg, Berlin: Springer.
622	Steenwerth, K. L., Jackson, L. E., Calderón, F. J., Scow, K. M., & Rolston, D. E. (2005).
623	Response of microbial community composition and activity in agricultural and grassland
624	soils after a simulated rainfall. Soil Biology & Biochemistry, 37(12), 2249-2262.
625	Steinbeiss, S., Temperton, V. M., & Gleixner, G. (2008). Mechanisms of short-term soil carbon
626	storage in experimental grasslands. Soil Biology & Biochemistry, 40(10), 2634-2642.
627	Stegen, J. C., Fredrickson, J. K., Wilkins, M. J., Konopka, A. E., Nelson, W. C., Arntzen, E.
628	V., Tfaily, M. (2016). Groundwater-surface water mixing shifts ecological assembly
629	processes and stimulates organic carbon turnover. Nature Communications, 7, 11237.
630	Sun, Y., Li, X., Liu, J. J., Yao, Q., Jin, J., Liu, X. B., & Wang, G. H. (2019). Comparative
631	analysis of bacterial community compositions between sediment and water in different
632	types of wetlands of northeast china. Journal of Soils and Sediments, 19, 3083-3097.
633	Thrash, J. C., Ahmadi, S., Torok, T., & Coates, J. D. (2010). Magnetospirillum bellicus sp. nov.,
634	a novel dissimilatory perchlorate-reducing alphaproteobacterium isolated from a
635	bioelectrical reactor. Applied and Environmental Microbiology, 76(14), 4730-4737.

636	Van Driezum, I. H., Chik, A. H. S., Jakwerth, S., Lindner, G., Farnleitner, A. H., Sommer, R.,
637	Kirschner, A. K. T. (2018). Spatiotemporal analysis of bacterial biomass and activity to
638	understand surface and groundwater interactions in a highly dynamic riverbank filtration
639	system. Science of the Total Environment, 627, 450-461.
640	Willems, A. (2014). The Family Comamonadaceae. In: E. Rosenberg, E. F. DeLong, S. Lory, E.
641	Stackebrandt, & F. Thompson (Eds.), The Prokaryotes (pp. 771-851). Heidelberg, Berlin:
642	Springer.
643	Wu, Z. S., Xu, F., Yang, C., Su, X. X., Guo, F. C., Xu, Q. Y., Chen, Y. (2019). Highly efficient
644	nitrate removal in a heterotrophic denitrification system amended with redox-active biochar:
645	A molecular and electrochemical mechanism. Bioresource Technology, 275, 297-306.
646	Yang, Y. S., Li, P. P., Zhang, X., Li, M. J., Lu, Y., Xu, B., & Yu, T. (2017). Lab-based
647	investigation of enhanced BTEX attenuation driven by groundwater table fluctuation.
648	Chemosphere, 169, 678-684.
649	Zheng, T. L., Deng, Y. M., Wang, Y. X., Jiang, H. C., O'Loughlin, E. J., Flynn, T. M., Ma, T.
650	(2019). Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial
651	aquifer systems. Journal of Hazardous Materials, 367, 109-119.
652	Zhou, A. X., Zhang, Y. L., Dong, T. Z., Lin, X. Y., & Su, X. S. (2015). Response of the microbial
653	community to seasonal groundwater level fluctuations in petroleum
654	hydrocarbon-contaminated groundwater. Environmental Science and Pollution Research,
655	22(13), 10094-10106.

656	Zhou, Y. X., Kellermann, C., & Griebler, C. (2012). Spatio-temporal patterns of microbial
657	communities in a hydrologically dynamic pristine aquifer. FEMS Microbiology Ecology,
658	81(1), 230-242.
659	Zhu, F. X., Zhu, C. Y., Doyle, E., Liu, H. L., Zhou, D. M., & Gao, J. (2018). Fate of di (2

- 660 ethylhexyl) phthalate in different soils and associated bacterial community changes. *Science*
- *of the Total Environment*, 637-638, 460-469.

663 Fig. 1. Schematic of the experimental system showing the static (ST), natural fluctuations (NF),

and rainfall infiltration (RI) columns.

Fig. 2. Schematic representation of the experimental timelines showing the sampling points. The grey (1), light blue (2), mid-blue (3) and dark blue (4) shading represents the movement of the groundwater body in the static (ST), natural fluctuations (NF) and rainfall infiltration (RI)

670 columns. Orange lines represent the intended pattern of groundwater-table in the NF and RI

671 columns.

672

Fig. 3. Variations of (a) dissolved oxygen (DO); (b) DOC; (c) NO_3^- and (d) SO_4^{2-} in groundwater samples from 10 cm below the surface of continuously saturated zone when the water-table is static (ST), and when natural fluctuations (NF) and the rainfall infiltration (RI) cause cyclic variations (the error bars represent the standard deviations of the mean values from triplicate measurements).

Fig. 4. Shannon index of bacterial community diversity in groundwater samples from 10 cm below the surface of continuously saturated zone when the water-table is static (ST), and when natural fluctuations (NF) and the rainfall infiltration (RI) cause cyclic variations.

Fig. 5. (a) Relative abundance of the main phyla (relative abundance > 0.1 %) and (b) heat map
of the 20 most abundant OTUs in groundwater samples from 10 cm below the surface of
continuously saturated zone when the water-table is static (ST), and when natural fluctuations
(NF) and the rainfall infiltration (RI) cause cyclic variations (heat map: red indicates high relative
abundance and blue indicates low relative abundance). Orange lines at the top of (a) and (b)
represent the intended pattern of groundwater-table in the NF and RI columns.

Fig. 6. Redundancy analysis (RDA) showing correlations between bacterial community structure
and key geochemical parameters (bacterial community structure was represented by the relative
abundance of the 100 most abundant OTUs across all samples). Grey circles, blue triangles and
dark red squares represent the static (ST), natural fluctuations (NF) and rainfall infiltration (RI)
columns, respectively.

699 Table 1:

Parameter		Value
Water satur	Water saturation (%)	
Bulk density (g cm ⁻³)		1.32
TOC (g kg ⁻¹)		1.46
TN (g l	kg ⁻¹)	0.20
TS (g ł	(g ⁻¹)	0.11
	< 0.02 mm	4.36
	0.02-0.1 mm	11.14
Size distribution (%)	0.1-0.25 mm	13.84
	0.25-1 mm	64.81
	> 1 mm	5.85

700 (a) Basic properties of the fine-grained natural river sand.

701 (b) Basic properties of the water.

Parameter		Value
DO (mg L ⁻¹)	oxygen-depleted tap water	1 ± 0.2
	tap water	8 ± 0.5
	DOC (mg L ⁻¹)	3.39
	NO ₃ ⁻ (mg L ⁻¹)	3.71
	SO4 ²⁻ (mg L ⁻¹)	30.44