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RESEARCH Open Access

GMP-grade neural progenitor derivation
and differentiation from clinical-grade
human embryonic stem cells
Loriana Vitillo1* , Catherine Durance1, Zoe Hewitt2, Harry Moore2, Austin Smith1,3 and Ludovic Vallier1

Abstract

Background: A major challenge for the clinical use of human pluripotent stem cells is the development of safe,

robust and controlled differentiation protocols. Adaptation of research protocols using reagents designated as

research-only to those which are suitable for clinical use, often referred to as good manufacturing practice (GMP)

reagents, is a crucial and laborious step in the translational pipeline. However, published protocols to assist this

process remain very limited.

Methods: We adapted research-grade protocols for the derivation and differentiation of long-term neuroepithelial

stem cell progenitors (lt-NES) to GMP-grade reagents and factors suitable for clinical applications. We screened the

robustness of the protocol with six clinical-grade hESC lines deposited in the UK Stem Cell Bank.

Results: Here, we present a new GMP-compliant protocol to derive lt-NES, which are multipotent, bankable and

karyotypically stable. This protocol resulted in robust and reproducible differentiation of several clinical-grade

embryonic stem cells from which we derived lt-NES. Furthermore, GMP-derived lt-NES demonstrated a high

neurogenic potential while retaining the ability to be redirected to several neuronal sub-types.

Conclusions: Overall, we report the feasibility of derivation and differentiation of clinical-grade embryonic stem cell

lines into lt-NES under GMP-compliant conditions. Our protocols could be used as a flexible tool to speed up

translation-to-clinic of pluripotent stem cells for a variety of neurological therapies or regenerative medicine studies.
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Background
The stem cell revolution started with the isolation of hu-

man embryonic stem cells (hESCs) [1] followed by the

arrival of induced pluripotent stem cells (iPSCs) [2], and

their differentiation to an ever-increasing number of cell

types has led to the prospect of shifting medicine to a

new paradigm based on cellular repair. Despite this en-

ticing prospect, the number of clinical trials based on

human pluripotent stem cells (hPSCs) remains limited

when compared to other cell types [3]. There is a con-

sensus that hPSCs have a complex and distinct set of

scientific, technical and regulatory bottlenecks that ham-

per their translation to clinical applications [4–7].

One hurdle is that the often-large lists of raw materials

used in differentiation protocols are designated of research-

grade and were never intended for cell therapy applications.

The developers of advanced therapeutic medicinal products

(ATMPs) need to follow strict good manufacturing practice

(GMP) guidelines to ensure quality and safety of the end

products before performing clinical trials. Therefore, raw

materials used in differentiation protocols must meet these

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: l.vitillo@ucl.ac.uk
1Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical

Centre; Department of Surgery, University of Cambridge, Cambridge CB2

0AW, UK

Full list of author information is available at the end of the article

Vitillo et al. Stem Cell Research & Therapy          (2020) 11:406 

https://doi.org/10.1186/s13287-020-01915-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-020-01915-0&domain=pdf
http://orcid.org/0000-0002-7184-1793
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:l.vitillo@ucl.ac.uk


guidelines. Although policies around raw materials for cell

therapeutics are currently flexible, clinical trials regulations

require for each reagent to be extensively risk-assessed and

qualified [8]. It is in this context that so called GMP-grade

materials suitable for clinical use will facilitate clinical trial

submission and will likely become standard in the field [9].

To comply with such regulations, hESCs have been de-

rived under clinical-grade conditions [10–12] and GMP-

compliant culture platforms have been developed [13,

14]. However, published GMP-compliant differentiation

protocols are still notably lacking, but their development

would significantly speed the translational pipeline for

pluripotent stem cells, particularly for academic groups.

Previous work, including ours, showed that hPSCs could

be differentiated into a long-term neuroepithelial-like

stem cell population, lt-NES, with stable neurogenic po-

tential towards several neuronal sub-types [15, 16]. In the

context of regenerative medicine, a source of neurons that

is expandable, bankable and intermediate (i.e. at progeni-

tor stage) has several advantages over run-through proto-

cols. Lt-NES would reduce processing steps, would be a

convenient quality control check point and could poten-

tially be used for several applications, facilitate scalability

and also by-pass intrinsic line-to-line variability associated

with iPSCs [16]. Here, we develop a novel protocol for the

derivation and differentiation of lt-NES from clinical-

grade hESC lines deposited in the UK Stem Cell Bank

based on GMP-grade media and factors.

Methods
Cell lines and culture methods

Derivation of the MasterShef-3, -4, -7, -8, -10 and -11 cell

lines was performed in the Stem Cell Derivation Facility at

the Centre for Stem Cell Biology, University of Sheffield,

under HFEA licence R0115-8-A (Centre 0191) and HTA

licence 22510, in a clean room setting, following strict

standard operating procedures. The embryos used to de-

rive MasterShef-3, -4, -7, 10 (frozen embryos) and

MasterShef-8 and -11 (fresh embryos) were donated from

different Assisted Conception Units, following fully in-

formed consent, with no financial benefit to the donors,

and were surplus or unsuitable for their IVF treatment.

Briefly, the embryos were cultured using standard IVF cul-

ture media (Medicult), to the blastocyst stage. Following

removal of the trophectoderm using a dissection laser, the

embryos were explanted whole onto either mitotically

inactivated human neonatal fibroblasts (human feeders) in

the case of MasterShef-3, -4, -7, -8 and -10 or onto

Laminin-511 (Biolamina) in the case of MasterShef11.

Derivation media for MasterShef-3, -4, -7 and -8 was

standard KSR/KODMEM (Life Technologies) medium

while MasterShef-10 and -11 were derived in Nutristem

medium (Biological Industries). All cell lines were initially

maintained at 37 °C under 5% O2/ 5% CO2, until the lines

were established, after which maintenance switched 5%

CO2 in air at 37 °C. Cultures were passaged using a man-

ual technique, cutting selected colonies under a dissection

microscope at an average split ratio of 1:2 every 7 days. All

cell lines have been deposited at the UK Stem Cell bank

(https://www.nibsc.org/ukstemcellbank). The H9 cell line

was obtained from the WiCell Institute, USA. lt-NES con-

trol line, here called AF22, was obtained from A. Smith,

Cambridge, UK. AF22 lt-NES were derived from the

hiPSCs line AF22 [16].

HESCs were routinely maintained on recombinant

VTN-N Vitronectin (A14700, Life Technologies), also

tested on the prototype CTS™ (Cell Therapy Systems)

Vitronectin with similar results (now A27940, Life Tech-

nologies), and GMP Essential 8 (A1517001, Life Tech-

nologies). For routine passaging, cells were washed once

with CTS™ DPBS−/− (A1285601, Life Technologies) and

incubated at room temperature for 1–2min with GMP

EDTA (15,575,020, Invitrogen). After aspiration of EDTA,

colonies were gently detached as small clumps and pas-

saged at a ratio of 1:6 without centrifugation. Cells were

frozen in animal-free freezing medium, CryoStem (K1-

0640, Geneflow), and thawed in presence of GMP ROCK

inhibitor Revitacell (1:100, A2644501, Life Technologies).

For traditional research-grade differentiation and re-

agents, refer to the supplemental experimental procedures.

Establishment of GMP lt-NES

Undifferentiated hESCs were dissociated into single cells

with StemPro Accutase (A1110501, Life Technologies) for

2–3min at 37 °C, suspended into GMP Essential 6

(A1516401, Life Technologies), counted with a haemocyt-

ometer and centrifuged at 300×g for 5min. Cells were sus-

pended at a concentration of 3 × 106 into 1.5 ml of (E6)

plus Revitacell, and gently mixed into one well of Aggre-

well 800 (Stem Cell Technologies) previously centrifuged

at 2000×g with 500 μl of E6 plus Revitacell. Embryoid bod-

ies (EBs) formed after 24 h and the media was carefully

and completely replaced with fresh E6. From day 2 till day

4 EBs were fed daily with half media change within the

Aggrewell. At day 5, EBs were detached from the Aggre-

well using a p1000 tip, while a large bore tip (Starlab,

E1011–9618) was used for careful collection and depos-

ition of the EBs on the top of a 37-μm reversible strainer

(Stem Cell Technologies). Multiple cycles were performed

with E6 until all the EBs were removed. EBs were then

plated onto 1 well of a 6-well plate (Corning) coated over-

night with 10 μg/ml of xeno-free human recombinant

Laminin 521 (LN521, Biolamina) prepared in GMP

DPBS+/+ (A1285801, Life Technologies) by reversing the

strainer and washing the EBs into the plate with GMP N2

media (CTS™ DMEM-F12, A1370801; CTS™ N2 1:100,

A1370701; CTS™ B27 1:1000, A1486701; 1% GMP Gluta-

max, A12860-01; Life Technologies). Neural induction
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was induced for 3–5 days by changing GMP N2 media

daily. Neural rosettes were derived between day 3 and 5

by addition of STEMdiff™ Neural Rosette Selection Re-

agent (05832, Stem Cell Technologies) for 45min–1 h at

37 °C. The rosettes were gently detached with N2 media

directed with a p1000 tip on the visible rosette clusters.

Purity of selection was checked under the microscope for

detachment of rosette clusters and non-differentiated

cells. Removed rosettes were collected in a tube and new

media was used to continue selection until 70% of the ro-

settes were collected. Rosettes were centrifuged at 300×g

for 5min and suspended into 400 μl of N2 media plus 10

ng/ml of GMP FGF and GMP EGF (233-GMP-025, 236-

GMP-01M; Bio-techne), named N2 EF media, plus Revi-

tacell. Cells were plated into one to 4 wells of a 48-well

plated pre-coated with 10 μg/ml Laminin 521 avoiding

over pipetting and formation of single cells. For critical

steps and troubleshooting, successful derivation of lt-NES

depends on proper attachment. It is recommended to pre-

pare several laminin plates of various sizes during early

derivation in order to have reserve plates readily available

in the event that attachment is not optimal. A high cell

density is required for lt-NES to survive and proliferate,

around 70%.

Cells were fed daily with GMP N2 EF media. Once

confluent, lt-NES were dissociated with accutase for 1

min at 37 °C, collected by pipetting on the surface and

suspended into 10ml N2 media prior to centrifugation

at 300×g for 5 min. Cells were passaged at a split ratio of

1:1 from a 48-well format to a 6-well plate with addition

of Revitacell for the first 24 h. Once cells were in 6-well

format, Revitacell was not used during passaging and lt-

NES were split at a ratio of 1:2 or 1:3.

GMP lt-NES maintenance

lt-NES were routinely cultured in GMP N2 EF media on

10 μg/ml Laminin 521. Cells were split every 3–4 days

when sub-confluent with incubation with Accutase 1–

2 min at 37 °C (without waiting for the cells to be float-

ing in the media) and suspended into 10 ml N2 media

before centrifugation at 300×g for 5 min. Cells were fro-

zen with CryoStem. lt-NES were thawed at 37 °C for 2

min and immediately resuspended into 10ml N2 media,

centrifuged at 300×g for 5 min and plated in N2 EF

media plus Revitacell for the first 24 h.

Spontaneous differentiation of lt-NES

lt-NES were plated at a density of 40,000 cells/cm2 on Lam-

inin 521-coated plates in N2 media plus Revitacell for 24 h.

The next day, media was changed to terminal differenti-

ation media composed of 50:50 parts of CTS™ DMEM-F12

(with CTS™ N2 1:100) and CTS™ Neurobasal (A1371201,

Life Technologies) (with CTS™ B27 1:50) media plus 300

ng/ml cAMP (Sigma Aldrich). Spontaneous differentiation

was induced with the media above for 21 continuous days.

Directed GMP differentiation into dopaminergic neurons

lt-NES were plated at a density of 40,000 cells/cm2 on

Laminin 521-coated plates in N2 media plus Revitacell

for 24 h. The next day, media was changed to dopamin-

ergic patterning medium composed of CTS™ DMEM-

F12 (with CTS™ N2 1:100) plus freshly added 200 ng/ml

GMP Sonic Hedgehog (SHH, 130-095-727, Miltenyi Bio-

tec), 100 ng/ml GMP FGF-8b (130–095-740, Miltenyi

Biotec) and 160 μM Ascorbic Acid (95210-250G, Sigma

Aldrich). Cells were cultured in dopaminergic patterning

medium for 2 weeks. On day 14, media was changed into

terminal differentiation medium composed of equal

parts of CTS™ DMEM-F12 (CTS™ N2 1:100) to CTS™

Neurobasal (CTS™ B27 1:50) plus 20 ng/ml GMP BDNF

(248-GMP-025, Bio-techne), 10 ng/ml GMP GDNF

(212-GMP-050, Bio-techne), 160 μM Ascorbic Acid

(Sigma Aldrich) and 500 μM dy-cAMP (Sigma Aldrich).

Cells were continuously fed with terminal differentiation

media until day 21, when neurons are ready for im-

munofluorescence characterisation.

Directed GMP differentiation into motoneurons

lt-NES were plated at a density of 40,000 cells/cm2 on

Laminin 521-coated plates in N2 media plus Revitacell for

24 h. The next day, media was changed to motoneuron

patterning medium composed of CTS™ DMEM F12 (With

CTS™ N2 1:100, CTS™ B17 1:50) plus 10 ng/ml GMP EGF

(Bio-techne), 10 ng/ml GMP FGF (Bio-techne) and 1 μM

retinoid acid (Sigma Aldrich). On day 5, the above media

was supplemented with 1 μg/ml GMP SHH (Bio-techne).

From day 7, the concentration of retinoid acid was re-

duced down to 0.01 μM and EGF and FGF were com-

pletely removed. On day 12, media was changed to

terminal differentiation media composed of equal parts of

CTS™ DMEM-F12 (CTS™ N2 1:100) to CTS™ Neurobasal

(CTS™ B27 1:50) plus 20 ng/ml GMP BDNF (Bio-techne),

20 ng/ml GMP GDNF (Bio-techne), 50 ng/ml SHH (Bio-

techne) and 300 ng/ml cAMP (Sigma Aldrich).

Results
Development of an efficient GMP-compatible protocol for

lt-NES derivation

In order to develop a GMP-compatible protocol for lt-

NES derivation, we used H9 hESCs routinely cultured on

a widely recognised and defined culture system based on

recombinant vitronectin and Essential 8 (E8) [13]. We

started by examining the performance of an embryoid

body (EB)-based neural differentiation system under

standard research-grade [16] versus GMP media condi-

tions. HESCs were allowed to aggregate spontaneously in

suspension for 5 days in research-grade knockout serum
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replacement differentiation media (KSR) as previously de-

scribed [16] or in GMP-grade essential 6 (E6), which is

composed similarly to GMP E8 but without bFGF or

TGFβ and thus is suitable for differentiation. The hESCs

formed compacted and round-shaped EBs in KSR, while

in E6 they showed an elevated level of attachment to the

ultra-low adherence dish and disaggregated into smaller

pieces over the 5-day period (Fig. S1A). Consequently, we

observed that poorly formed EBs in E6 were also ineffi-

cient during neural induction, assessed by the hallmark of

neural rosettes, compared to those in KSR (Fig. S1 B).

Moreover, although neural differentiation is clearly pos-

sible via classic spontaneous EB formation methods, this

system is not standardised, as the size and the shape of EBs

is uncontrolled and this impacts on the reproducibility of

differentiation and yield. Therefore, we next examined the

performance of an alternative method to produce EBs of

defined size based on seeding dissociated cells in micro-

wells. HESCs were dissociated into single cells and seeded

at a concentration of 10,000 hESCs per microwell in the

presence of a GMP-grade ROCK inhibitor (Revitacell, Life

Technologies) in either E6 or KSR. After 24 h, similar-sized

EBs were formed in both conditions and at day 5 they

remained aggregated (Fig. 1A and S1 C). Upon dissociation,

an equal number of same-sized EBs was obtained with this

protocol from both KSR and E6 media. We tested the

neural induction efficiency of standardised EBs by looking

for the emergence of neural rosettes after plating in neur-

onal inducing conditions. Surprisingly, neural rosettes

emerged more prevalently from EBs derived from E6 rather

than KSR, in contrast to the spontaneous differentiation

system (Fig. S1 C). Moreover, GMP-neural induction was

robust and highly efficient, as shown by rosettes forming

simultaneously and similarly at the centre of plated EBs

within 3 days (Movie 1). We also tested neural induction

on a defined laminin matrix, laminin 521, now available in

GMP-grade, showing similar results to standard research-

grade poly-L-Ornithine/laminin substrate (Fig. S1 D).

Derivation of lt-NES from neural rosettes has previ-

ously been described using a manual picking system with

needle dissection of rosettes [15, 16]. In the context of

future manufacturing applications for lt-NES, we tested

the suitability of a commercially available rosette selec-

tion solution (STEMdiff™ Neural Rosette Selection, Stem

Fig. 1 Development of an efficient GMP-compatible protocol for lt-NES. a Step-by-step diagram of GMP-compatible differentiation protocol of

hESCs into lt-NES. Scale bars (a, c, d) 100 μm, (b) 50 μm and (e) 20 μm. b Immunofluorescence for lt-NES markers Nestin and Dach1 in research-

grade line H9 after derivation with GMP-compatible protocol. Scale bars 200 μm
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Cell Technologies) with our GMP protocol. Application

of the reagent allowed the pipetting out of loosened

neural rosette cluster from a surrounding non-neural

rosette ring of differentiated cells without the need for

manual dissection (Fig. 1A). With this method, lt-NES

were derived after disaggregating the rosettes and plating

the cells at high density in the presence of GMP-grade

EGF and FGF and cultured thereafter until sub-

confluent. Under these culture conditions, it-NES could

be expanded every 2–3 days, a result of their typical self-

renewing capacity, while maintaining a highly pure

population (Fig. 1A). Indeed, characteristic lt-NES

markers Nestin and Dach1 were expressed homoge-

neously by the cultures differentiated with this protocol

(Fig. 1B).

We concluded that the simultaneous combination of

GMP-grade reagents (Table 1), standardised EB forma-

tion and regent-based rosette isolation provides an effi-

cient system for the derivation of lt-NES using a GMP-

compatible platform.

Neural differentiation potential of clinical-grade hESC lines

With a new GMP-compatible lt-NES derivation protocol

developed, we next examined its robustness by screening

a panel of 6 clinically derived hESC (MasterShef) lines.

MasterShef-3, -4, -7, -8, -10 and -11 were derived at, and

obtained from, the Centre for Stem Cell Biology, Univer-

sity of Sheffield, under a HTA licence for potential clinical

application (22510). With this approach, we aimed to also

examine the specific neural differentiation potential of

these clinical-grade lines which have been deposited in the

UK Stem Cell Bank. Since for the derivation of lt-NES it is

essential to generate neural rosettes, we decided to assess

the differentiation potential based on the ability of the

lines to give rise to morphologically distinct neural ro-

settes. The same number of cells for each line was differ-

entiated into neural rosettes following our protocol and

rosette formation was recorded by imaging the whole cell

culture vessel with high definition imaging using Biosta-

tion CT twice daily for 5 days following EB plating

(Fig. 2a). Four out of six MasterShef lines [4, 7, 8, 11], as

well as an additional hESC research line from a different

source, H9, were able to differentiate into neural rosettes,

showing that the protocol is robust across several different

lines (Fig. 2a). Next, we scored each line for the percent-

age of neural induction by counting the numbers of EBs

hosting neural rosettes in the whole-vessel images at the

end of the induction, normalised to the total number of

EBs attached (Fig. 2b). The efficiency of neural induction

is summarised in Fig. 2c. We defined ‘good’ scores when

more than 50% of the EBs carried rosettes, ‘medium’

scores when the value was below 50% but above 5%, and

null when rosettes were undetected. Good neural induc-

tion scores were obtained regardless of the general level of

spontaneous differentiation in pluripotency maintenance

conditions assessed by daily morphological monitoring of

the cultures for signs of differentiation (Fig. 2c).

Overall, these data demonstrate that our GMP-

compatible protocol is suitable for an efficient neural

differentiation of several clinically relevant hESCs with-

out the need for cell line-specific optimisation.

Establishment and characterisation of GMP-compatible lt-

NES

After screening clinical-grade hESCs with our protocol,

we examined if bona-fide GMP-compatible lt-NES could

be derived and maintained from these lines. We success-

fully established new lt-NES from both a good score,

MasterShef 8 and a medium score line, MasterShef 7,

hESC line, which we named NES8 and NES7, respect-

ively. NES7 and NES8 showed typical lt-NES morph-

ology and self-organised in rosette-like clusters (Fig. 3a),

similarly to the published research-grade lt-NES AF22

(Fig. S2). Furthermore, they homogeneously expressed

lt-NES markers Nestin, SOX2, DACH1, PLZF and the

polarity marker ZO-1 by immunofluorescence (Fig. 3a).

Consistently, NES7 and NES8 also expressed high level

of lt-NES-specific markers by Q-PCR, comparably to

control lt-NES AF22 (Fig. 3b). Our cells also preserved

particularly useful features of lt-NES in the context of

cell therapy manufacturing, such as good recovery after

freeze-thaw (Fig. 3c) and exponential proliferation in

GMP conditions (Fig. 3d) while retaining a rosette-like

morphology (Movie 2). Finally, lt-NES grown on laminin

521 maintained a normal karyotype (results from 30

spreads) after more than 15 passages (Fig. 3e).

These results demonstrate that GMP-compatible lt-

NES derived from clinical-grade hESCs are comparable

to research-grade lt-NES in morphology, markers and

proliferative attributes.

Spontaneous and directed GMP-compatible

differentiation of lt-NES

Lt-NES have been shown to have a spontaneous bias to-

wards hindbrain phenotypes, nevertheless retain multi-

potency and can be directed to differentiate into other

neuronal cell types [15–17]. Therefore, we examined

whether our GMP-compatible lt-NES were able to dif-

ferentiate into neurons in GMP-compatible differenti-

ation conditions, using laminin 521 as substrate.

Firstly, we assessed our lt-NES spontaneous neurogenic

potential by removing growth factors and allowing differ-

entiation in neurogenic GMP media for 21 days by adapt-

ing research-grade protocols [16]. We observed that both

NES7 and NES8 had a high neurogenic potential, giving

rise to a homogenous and interlinked network of neurons

over the course of the differentiation (Movie 3 and Fig. 4).

Indeed, the differentiated lt-NES expressed the neuronal
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marker Beta III tubulin (Fig. 4a). Moreover, we confirmed

the GABAergic propensity of the lt-NES since a large

number of neurons were positive for the GABA marker,

in line with previous reports [18] and similarly to the con-

trol line AF22 (Fig. 4a).

Secondly, we examined the potential of our lt-NES to

be redirected to alternative neuronal types under GMP

differentiation conditions. Substituting reagents from

previous lt-NES research methods [15] with GMP-grade

equivalents, we tested differentiation towards a dopa-

minergic phenotype, which could have interest for cell

transplant studies for Parkinson’s disease. Our results

show that our GMP lt-NES method was able to give rise

to neurons expressing dopaminergic markers tyrosine

hydroxylase (TH) and Nurr1 after 21 days (Fig. 4b).

Finally, lt-NES could also be directed towards a moto-

neuron phenotype in GMP conditions recapitulating

research-grade protocols [15], even if much less

Fig. 2 Neural differentiation potential of clinical grade hESC lines. a Representative phase contrast images of H9 and clinical-grade hESCs

differentiated under GMP-compliant protocol into neural rosettes. Enlarged neural rosettes are visible in the right-hand side panels. Scale bars

200 μm. b Formula for the calculation of neural induction efficiency based on neural rosette in hESC lines. c Summary of screening of research

and clinical-grade hESCs for neural induction capacity under GMP-compatible protocol
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efficiently than for the dopaminergic differentiation, as

showed by detection of the mature motoneuron marker

HB9 by immunofluorescence (Fig. 4c).

In conclusion, our data demonstrated the feasibility of

a fully defined and GMP-compatible protocol for the

derivation and differentiation of hESCs into neurons via

stable and expandable intermediate progenitor lt-NES.

Discussion
In this study, we established a system for the derivation,

maintenance and differentiation of neuroepithelial stem

cells lt-NES under GMP-compliant conditions suitable

for clinical applications. We substituted each reagent of

the original research-grade protocols [15, 16] with avail-

able reagents of sufficient quality standards to allow

their clinical application, so called GMP-approved

reagents or cell therapy-grade reagents. Manufacturers

of such reagents have either lodged ‘drug master files’

with regulatory authorities or are able to provide the de-

tailed quality documentation required to perform a full

risk assessment, which would in turn satisfy an appropri-

ate regulator. In a few circumstances, when such grade

was not readily available, we implemented reagents that

are fully defined or which are in the process of achieving

this standard by the manufacturers.

We also optimised the original differentiation protocol

for transition to cell manufacturing environments. We

found that a controlled and standardised EB formation

was not only desirable but necessary for use of GMP Es-

sential 6 media in the first phase of the protocol. In prac-

tice, this led to higher reproducibility and yield of neural

induction compared to the traditional KSR system. It would

Fig. 3 Establishment and characterisation of GMP-compatible lt-NES. a Representative phase contrast showing morphology of lt-NES derived

from clinical grade MasterShef 7 (NES7) and 8 (NES8). Scale bars 20 μm. NES7 and NES8 cells were immunostained for the lt-NES markers Nestin,

SOX2, Dach1, PLZF and the polarity marker ZO-1. Scale bars 50 μm. b Gene expression levels of lt-NES markers in NES7 and NES8 compared to

research-grade AF22 lt-NES line and assessed by Q-PCR (n = 3). c Recovery after thaw of NES cells at 24 h. Graph shown as mean plus SEM (n = 3).

d Representative growth curve of NES7, NES8 and control AF22 cultured under GMP-compatible conditions on L521. e Normal karyology of

established NES7 at passage 15 cultured in GMP-compatible system
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be interesting to investigate across a greater number of dif-

ferentiation platforms whether the use of GMP-grade re-

agents provides an avenue for improvement of current

research protocols. It would also be interesting to evaluate

whether the choice of routine pluripotency maintenance

conditions affects downstream differentiation.

A critical aspect of hESCs is their intrinsic line-to-line

variability [19]. In the context of cell therapy, our new

protocol demonstrated robustness when applied to six dif-

ferent clinical-grade hESC lines with a 66.6% efficiency.

Moreover, lt-NES derived from hESCs with different

neural differentiation propensities expressed similar char-

acterisation attributes between each other and to a control

research-grade line. These findings confirm previous data

reporting that lt-NES derivation may circumvent up-

stream differences between hPSC lines [16], but here also

showing comparability across different derivation condi-

tions (i.e. GMP vs research protocol). Indeed, our control

NES line used throughout this study, AF22 [16], not only

was derived under research-grade protocols but also from

a human iPSC line. The ability of hiPSC-derived AF22 to

be expanded and terminally differentiated with our GMP

protocol in parallel to hESCs-derived lt-NES suggest that

the protocol is applicable to both hESC and iPSC-derived

lt-NES. Nonetheless, it would be important to test the en-

tire GMP derivation on a set of clinical-grade hiPSCs as

Fig. 4 Spontaneous and directed GMP-compatible differentiation of lt-NES. a Spontaneous differentiation of NES lines into neurons under GMP-

compatible conditions. Spontaneous neurogenic potential shown by phase contrast (scale bars 100 μm) and immunostaining for neuronal marker BIII

Tubulin (NES7; scale bar 400 μm). Typical hindbrain bias of lt-NES shown by expression of GABAergic markers GABA (scale bars 400 μm). b Directed

differentiation of NES lines into midbrain dopaminergic neurons under GMP-compatible conditions. Immunostaining images showing positivity for

dopaminergic markers tyrosine hydroxylase (TH) and Nurr1. Scale bars 400 μm (200 μm for AF22 Nurr1). c Directed differentiation of NES lines into

motoneurons under GMP-compatible conditions showing motor neuron marker HB9 expression by immunofluorescence. Scale bars 100 μm
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they will become increasingly available to the cell therapy

community. As expected, a few of the screened lines were

not able to differentiate efficiently under this protocol,

reflecting the known characteristic of hESC lines to have

different developmental potentials. In this regard, this

study strengthens the view that screening a panel of pluri-

potent lines is crucial for cell therapy applications.

We also established that GMP-grade maintenance con-

ditions support the features of self-renewing lt-NES:

rosette-like morphology, homogeneous and stable expres-

sion of neural rosettes markers, long-term expansion in

EGF/FGF, resistance to repeated freeze/thawing and stable

karyotype. Moreover, our lt-NES displayed high neuro-

genic potential towards GABAergic sub-types upon

growth factors removal, in line with their hindbrain iden-

tity [15, 16]. lt-NES could be successfully re-specified to-

wards adjacent regional cell types such as dopaminergic

neurons and to a less degree also to motor neurons under

GMP-culture conditions, confirming their multipotential-

ity. Therefore, with these protocols, we intend to offer a

flexible starting point and cut the burden of time-

consuming and expensive process development.

The clinical future of pluripotent stem cell-derived

therapeutics will likely depend on our ability to tackle

several roadblocks associated with the development of

cell manufacturing processes, of which adaptation to

suitable qualified materials is a crucial phase [4–7]. This

study shows that translation of research-grade protocols

to GMP-compliant protocols can be effectively achieved

and that making these changes can lead to robust and

efficient processes. Stem cell researchers looking at tran-

sitioning to clinic can take our results as positive evi-

dence that the original research protocol blueprint can

be maintained and built upon. However, the time and

cost commitment to achieving this should not be under-

estimated, and with few reports in the literature to docu-

ment these processes, many developers have to start

from the beginning.

Conclusion
Overall, the findings of the present report demonstrate

feasibility of a GMP-compliant differentiation protocol

for intermediate neural progenitors that are easy to ex-

pand, bankable and amenable to downstream differenti-

ation into different neuronal sub-types. In the context of

the cell therapy field, we report pre-screening of the

neuronal differentiation capacity of 6 clinical-grade Mas-

terShef hESC lines deposited in the UK Stem Cell Bank

and established a resource in GMP lt-NES that could be

used for further optimization depending on the required

therapeutic goal. Recently, a method for differentiating

lt-NES towards astroglia has been developed, opening

new avenues for the downstream therapeutic use of

GMP lt-NES [17]. Considering the promising

comparability between our GMP lt-NES and the AF22

lt-NES also used by Lundin et al. [17], it would be inter-

esting to test the performance of our GMP lt-NES to-

wards astroglia in future studies. Given its robustness

and flexibility, our protocol could be applied for the gen-

eration of GMP-compliant neural progenitors that are

potentially employable for a variety of neurological ther-

apies, for cell manufacturing scalability studies, drug

screenings and other biomedical research applications

[20].
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