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Corniani G, Saal HP. Tactile innervation densities across the whole body. J
Neurophysiol 124: 1229–1240, 2020. First published September 23, 2020;
doi:10.1152/jn.00313.2020.—The skin is our largest sensory organ and inner-
vated by afferent fibers carrying tactile information to the spinal cord and onto
the brain. The density with which different classes of tactile afferents innervate
the skin is not constant but varies considerably across different body regions.
However, precise estimates of innervation density are only available for some
body parts, such as the hands, and estimates of the total number of tactile affer-
ent fibers are inconsistent and incomplete. Here we reconcile different estimates
and provide plausible ranges and best estimates for the number of different tac-
tile fiber types innervating different regions of the skin, using evidence from dor-
sal root fiber counts, microneurography, histology, and psychophysics. We
estimate that the skin across the whole body of young adults is innervated by
�230,000 tactile afferent fibers (plausible range: 200,000–270,000), with a subse-
quent decrement of 5–8% every decade due to aging. Fifteen percent of fibers in-
nervate the palmar skin of both hands and 19% the region surrounding the face
and lips. Slowly and fast-adapting fibers are split roughly evenly, but this break-
down varies with skin region. Innervation density correlates well with psycho-
physical spatial acuity across different body regions, and, additionally, on hairy
skin, with hair follicle density. Innervation density is also weakly correlated with
the size of the cortical somatotopic representation but cannot fully account for
the magnification of the hands and the face.

afferent; glabrous skin; hairy skin; homunculus; mechanoreceptor

INTRODUCTION

Sensory processing cannot be studied without understanding
the nature of sensory inputs. Careful study of the visual system
has revealed that �100 million photoreceptors in a single retina
convert light into electrical impulses, which are relayed through
roughly 1 million retinal ganglion cells in the optic nerve
(Curcio et al. 1990). In audition, �12,000 hair cells in each
cochlea transmit auditory information to the brain (Úlehlová et
al. 1987). The sense of touch puts to use our largest sensory
organ, the skin, which is innervated throughout by cutaneous
fibers signaling light touch, temperature, and pain. Despite the
importance of touch for manipulation (Witney et al. 2004),
movement (Panek et al. 2014), our sense of body ownership
(Tsakiris 2010), and affection (McGlone et al. 2014), we know
little about the number and distribution of cutaneous fibers
innervating different skin regions across the body. Estimates of
tactile fiber innervation in the current literature are few, often
incomplete and inconsistent, and range from a total innervation

of around 45,000 fibers (Taube Navaraj et al. 2017) into the mil-
lions (Grunwald 2017). Most textbooks do not even venture a
guess (Bear et al. 2016; Goldstein 2009; Kandel et al. 2000;
Purves et al. 2018). Reliable estimates exist only for a few
regions of glabrous skin. The gold standard is a study by
Johansson and Vallbo (1979) that estimated that around 17,000
myelinated tactile fibers innervate the palmar surface of each
hand.
Various techniques can be employed for counting fibers, but

individually they all suffer from problems, which explains the
discrepancy in estimates. Histological examination can provide
estimates for the number of fibers in the peripheral nerves but
cannot distinguish between afferent and efferent fibers.
Furthermore, peripheral nerves carry many types of sensory
fibers other than tactile ones, for example, proprioceptive fibers
or those innervating internal organs, such as the bladder.
Immunohistochemistry of samples taken by skin biopsies allow
receptor and fiber counts, but the regions covered are necessar-
ily very small, and innervation of the skin is not uniform.
Individual tactile fibers often branch and innervate tens of recep-
tors, and estimates of branching and convergence factors differCorrespondence: H. P. Saal (h.saal@sheffield.ac.uk).
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widely. Another approach estimates innervation density from
psychophysically determined two-point discrimination thresh-
olds. Here, the idea is that higher innervation density enables
improved spatial localization, so finer spatial discrimination
should be associated with higher fiber count. However, such
estimates are limited because discrimination thresholds likely
rely predominantly on only one of the multiple different afferent
classes that innervate the skin (Peters et al. 2009). A general
problem is that none of the methods described above can be
used to extrapolate between glabrous and hairy skin without tak-
ing into account the different composition in the types of tactile
afferent fibers. Much valuable insight into the prevalence of dif-
ferent fiber types also comes from microneurography, a tech-
nique for obtaining electrophysiological recordings from
individual fibers in human nerves. However, this technique has
mostly been applied to fibers terminating in the hand, the foot,
or the face. A handful of studies has investigated the hairy skin
of the arms and legs, but data from the body trunk is sorely lack-
ing, due to the technical challenges of applying the microneur-
ography technique in these areas. Finally, data from animal
models, specifically primates, can also provide valuable input;
however, stark differences in innervation density have been
observed across different primate species (Verendeev et al.
2015), so such data can only be used with caution.
Here, we combine published evidence from multiple meas-

ures—fiber counts in the dorsal root ganglia, histology of the
nerves and the skin, microneurography, and psychophysics—to
estimate plausible ranges for innervation densities of Ab my-
elinated tactile afferent fibers covering all skin regions of the
body. We estimate that the skin of young adults in the third dec-
ade is innervated by �230,000 tactile afferent fibers (plausible
range: 200,000–270,000) in total, with a subsequent decrement
due to aging of 5–8% every decade. The hands and the face are
the most highly innervated skin regions, as might be expected
from the exaggerated cortical representation of these body parts
(Penfield and Boldrey 1937). While we believe our estimates to
be robust, more fundamental work remains to be done, espe-
cially concerning the innervation of hairy skin.

TACTILE INNERVATION OF THE SKIN

The tactile innervation of the skin has been extensively cov-
ered in reviews (Abraira and Ginty 2013; Johansson and
Flanagan 2009; McGlone et al. 2014; Saal and Bensmaia 2014)
and textbooks (Goldstein 2009; Mountcastle 2005), so we will
only provide a brief overview. Here, as well as in the rest of the
paper, we will focus on data from humans. The main tactile
fibers underlying discriminative touch are myelinated Ab fibers.
Some tactile information is also carried by slow, unmyelinated
C fibers (e.g., C-tactile fibers), which are thought to be mainly
responsible for affective touch (Löken et al. 2009). However,
recent evidence has shown that C-tactile fibers are likely to con-
tribute to tactile sensibility (Cole et al. 2006) and that the spinal
pathways carrying signals from both types of fibers are more
intertwined than had previously been thought (Marshall et al.
2019). For the purposes of this review, we will focus on myelin-
ated Ab fibers and discriminative touch exclusively. However, a
similar approach to the one pursued here should allow estima-
tion of innervation densities for C-tactile fibers in future work,
completing the picture of tactile innervation.

Focusing on Ab fibers, two major afferent classes exist,
which are distinguished by their electrophysiological response
properties: fast-adapting (FA) fibers [also called RA (rapidly
adapting) or QA (quickly adapting) in the literature] that
respond exclusively to dynamic stimuli, that is when the skin is
in motion; and slowly adapting (SA) fibers, which, in addition
to dynamic responsiveness, also respond to sustained static skin
deformation or stretch. Both classes can be further subdivided
into type I afferents, which are more numerous and terminate
close to the surface of the skin, and type II afferents, which end
in deeper skin layers. In the hairy skin, two further classes of
fast-adapting afferents can be found, namely hair units and field
units; both of these exhibit response properties similar to those
of classical FA type I (FAI) units, but their receptive fields are
much bigger, and they might be more sensitive to higher fre-
quencies (see the Face and Hairy Skin sections below for further
detail). The presence and prevalence of different afferent classes
vary in glabrous (nonhairy) skin as found on the palm, sole, and
the lips, as compared with hairy skin, which covers the rest of
the body.
Tactile afferents are somatosensory neurons whose cell

bodies reside within the dorsal root ganglia (DRG) and the cra-
nial sensory ganglia, respectively. One branch of these sensory
neurons penetrates the spinal cord (for DRG neurons) or targets
the trigeminal nuclei of the brainstem (for trigeminal neurons).
The other branch extends to the periphery and either terminates
as a nerve ending or associates with cutaneous mechanosensory
end organs. Some of these associations are still debated and
might not apply to all skin types. In the following, we will note
links between afferent classes and mechanoreceptive end organs
that have been made in the literature, but our estimates will be
based on electrophysiologically characterized afferent types,
and we make no claim regarding their associated mechanore-
ceptors. We will report innervation densities as units per square
centimeter, where we take a unit as the structure composed of
an afferent fiber and all the mechanoreceptors (if any) inner-
vated by it. The following estimates apply to young adults; for a
discussion of the decrease of innervation with age, please see
Tactile Innervation over the Lifespan.

Glabrous Skin of the Hand

Unlike other body regions, the glabrous skin of the hand and
its tactile afferent innervation have been extensively studied,
owing to its importance in grasping and manipulation. The num-
ber of tactile afferent fibers in the glabrous skin of the hand of
young adults is estimated to be around 17,000 (Johansson and
Vallbo 1979). There are slightly more fast-adapting fibers
(56%) than slowly adapting ones (44%), a common feature of
glabrous skin (see Glabrous Skin of the Foot Sole).
Four major afferent types have been identified in the palmar

skin of the hand: fast-adapting type I (FAI) fibers that innervate
Meissner corpuscles; slowly adapting type I (SAI) fibers that in-
nervate Merkel cells; slowly adapting type II (SAII) fibers that
innervate Ruffini corpuscles; and fast-adapting type II (FAII)
fibers that innervate Pacinian corpuscles.
Forty-three percent of tactile afferent fibers or around 7,310

fibers are fast-adapting type I fibers (FAI). FAI afferents are
densely packed in the human fingertip with 141 units/cm2 at its
distal end. The density decreases in the proximal direction and
only 25 units/cm2 are present in the palm (see Fig. 1A). The end
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organs of FAI fibers are Meissner corpuscles (MCs). Each
Meissner corpuscle is innervated by one or two FAI fibers
(Matsuoka et al. 1983), and a single FAI fiber typically branches
several times, with each branch innervating a small number of
MCs (Cauna 1956; Paré et al. 2002). In the human fingertip, 3–
5,000 MCs/cm2 can be found (Nolano et al. 2003; Verendeev et
al. 2015). Meissner corpuscle density in the palm is consider-
ably lower with 500 MCs/cm2 at the thenar eminence (Bolton et
al. 1966). These numbers suggest that there are at least 20 times
more MCs than FAI fibers in the glabrous skin of the hand
(>155,000) and that each FAI fiber innervates around 40 MCs.
Twenty-five percent of tactile afferent fibers or around 4,250

fibers in the palmar region of a single hand are classed as slowly
adapting type I fibers (SAI). SAI fibers are densely concentrated
in the fingertips at around 70 units/cm2 at its distal end, and less
so in the more proximal area of the hand with 46 units/cm2 in
the middle phalanx and 10 units/cm2 in the palm (see Fig. 1A).
SAI fibers repeatedly branch and innervate Merkel cell neurite
complexes, which form clusters within the skin. In the fingerpad
of normal adults, up to 10,000 Merkel cells/cm2 can be found,
but not all of them appear to serve mechanoreceptive functions
or are connected to nerve fibers (Lacour et al. 1991).
Nineteen percent of tactile afferent fibers or around 3,230

fibers are classed as slowly adapting type II fibers (SAII). These
are uniformly distributed across the glabrous skin area of the
hand at an innervation density of �12 units/cm2. However, there
is some evidence for increased density at the skin/nail border on
the fingertips (Birznieks et al. 2009; Johansson and Vallbo 1979).

SAII fibers innervate Ruffini corpuscles (Halata 1988), but it is
unclear whether all SAII-like responses originate from Ruffini
corpuscles. Where they do, a one-to-one mapping between fibers
and corpuscles is assumed (Johansson and Vallbo 1980).
Finally, up to 13% of tactile afferent fibers or around 2,200

fibers are estimated to be fast-adapting type II (FAII). The inner-
vation density of this fiber type is low and relatively uniform
across the hand surface at around 10 units/cm2 but appears more
numerous in distal finger segments with around 25 units/cm2.
These numbers yield an estimated total of around 800 FAII
fibers terminating in the palm and 350 in each finger. FAII fibers
target Pacinian corpuscles, and each corpuscle is innervated by
a single fiber. It is possible for a single fiber to innervate multi-
ple corpuscles (Sathian and Devanandan 1983), which often
appear in clusters (Miller et al. 1958; Stark et al. 1998) close to
the digital nerves and their branches, and thus a count of cor-
puscles can serve to establish an upper limit on the number of
FAII fibers. Histological counts of Pacinian corpuscles show a
steep decline between the fetal stage and old age. However, data
from other age ranges is lacking, and the numbers presented
here might be an overestimation (see CALCULATIONS AND PRIOR

RESULTS for further details).
Receptive fields of the type I fibers on the glabrous skin of

the hand are small, circular, and well defined with a mean area
of 13 mm2 for the FAI and 11 mm2 for the SAI fibers. Receptive
fields of type II fibers are larger with diffuse borders and a mean
area of 101 mm2 for FAII and 59 mm2 for SAII fibers (Vallbo
and Johansson 1984).

Fig. 1. Innervation densities for the palmar surface of the human hand (A) and the plantar surface of the human foot (B). Each area is scaled and colored by its inner-
vation density (units/cm2) to reveal the hand and foot “homunculi.” In the hand, both slowly adapting type I (SAI) and fast-adapting type I (FAI) fibers are densely
packed in the distal ends of the fingertips and much less so in the palm, while the two other afferent classes are more evenly spread throughout the hand and exhibit
much lower innervation density overall. Compared with the hand, the foot sole is less densely innervated but displays a similar proximal-distal gradient for type I
afferents. Additionally, in the foot, a lateral gradient is evident with denser innervation of the lateral than the medial arch for all afferent classes. All illustrations were
generated from 2D region outlines using a flow-based algorithm that scales each region according to a target value while preserving border relationships between
regions (Gastner et al. 2018).
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Glabrous Skin of the Foot Sole

Somatosensory feedback from the lower limb, and in particu-
lar from the foot sole, plays an important role in controlling bal-
ance, posture, and gait (Inglis et al. 2002; Pearcey and Zehr
2019). The foot sole is covered with glabrous skin and inner-
vated by the same four classes of tactile afferents as the hand
(SAI, SAII, FAI, FAII).
We estimate the total number of plantar cutaneous tactile

afferent fibers innervating a single foot sole to be around 4,000,
divided as follows: 17% (�680) SAI fibers, 20% (�800) SAII
fibers, 51% (�2,040) FAI fibers, and 12% (�480) FAII fibers.
These numbers are higher than an earlier estimate provided by
Strzalkowski et al. (2018) (see CALCULATIONS AND PRIOR RESULTS

for details regarding our estimation methodology). Like the
hand, the foot sole contains more fast-adapting (63%) than
slowly adapting fibers (37%). The distribution of cutaneous
afferents is not uniform across the foot sole for type I afferents
(Fig. 1B). The overall highest innervation density is found in the
toes (48 units/cm2), followed by the lateral metatarsal (31 units/
cm2), the lateral arch (29.7 units/cm2), and the heel (15.7 units/
cm2). Innervation density is lowest in the medial metatarsals
(11.3 units/cm2). FAI afferents are considerably more dense in
the toes (24.5 units/cm2) than in the metatarsals/arch (9.1 units/
cm2) and in the heel (8 units/cm2). A similar distribution is
observed for SAI afferents. Similar to the hand, SAII and FAII
fibers are more uniformly distributed across the different areas
of the foot sole (Fig. 1B). In electrophysiological recordings,
fewer tactile afferents have been found terminating in the great
toe as would be expected given its size, and its innervation thus
appears lower than that of the neighboring toes; whether this
discrepancy reflects a statistical artifact or a genuine difference
remains to be seen.
The size of the receptive fields varies considerably for the dif-

ferent tactile fibers and across different foot areas with a mean
value of 76 mm2 for the SAI fibers, 248 mm2 for SAII fibers, 81
mm2 for FAI fibers, and 873 mm2 for FAII fibers. In general,
larger receptive fields are reported in the middle metatarsal and
heel, and smaller receptive fields are located in the toes
(Strzalkowski et al. 2018). Receptive fields on the foot sole are
thus several times larger than those measured in the hand, per-
haps owing to the less dense innervation of this skin region and
the different mechanical properties of the skin of the foot sole.

Face

The face is densely innervated by cutaneous fibers, especially
the region around the mouth and lips, and also the inside of the
oral cavity and the tongue, highlighting the essential sensory
contribution to mastication and other eating-related behaviors.
We estimate that around 43,000–46,000 tactile afferents inner-
vate the hairy facial skin and the lips, excluding the oral cavity,
which is likely to be innervated by around 16,000–19,000 fibers
(see CALCULATIONS AND PRIOR RESULTS for details). For the pur-
poses of this manuscript, we focus on the traditional notion of
skin as the outer tissue of the body, which differs considerably
in anatomy and physiology from the tissues within the oral cav-
ity. Consequently we will not discuss the innervation of the oral
mucosa further and instead refer the interested reader to reviews
by Trulsson (2006) and Haggard and de Boer (2014).
Four different classes of tactile afferents have been found in

the hairy skin of the face and the red zone of the lip: slowly

adapting type I and type II, fast-adapting type I and fast-adapt-
ing hair follicle afferents (Trulsson and Essick 2010). Slowly
adapting afferents are suggested to have two types of end
organs: Merkel cell-neurite complexes for SAI afferents and
Ruffini endings for SAII afferents (Nordin and Hagbarth 1989).
The hair follicle afferents (FA hair units) encountered in the fa-
cial skin are likely similar to hair units described in other hairy
skin but appear in some cases associated with a single hair only
(Trulsson and Essick 2010). The nature of the end organs of
FAI units in the facial skin is uncertain, as no Meissner cor-
puscles have been reported in this area (Nordin and Hagbarth
1989); possibly they are related to field units in other hairy skin,
though their receptive fields appear smaller. Notably, no FAII
afferents have been reported in the literature, and vibrotactile
thresholds on the face show no characteristic Pacinian sensitiv-
ity around 200 Hz (Barlow 1987), so this afferent class might be
absent on the face, while present in other body regions.
Slowly adapting afferents appear more abundant than fast-

adapting ones in the facial skin (Bukowska et al. 2010;
Johansson et al. 1988), with around 65% SA, resulting in 29,000
fibers, and 35% FA, resulting in 15,500 fibers. However, this
breakdown is extrapolated from relatively small samples, so it
should be treated with caution.
Innervation density is not uniform across the face: we esti-

mate an innervation density of 48 units/cm2 for the forehead,
eyes, and nose (V1); 67 units/cm2 for the central part of the face
(V2); and 84 units/cm2 for the lower lip, the chin, the jaw, and
an area around the ears (V3). Locally, some regions such as the
area immediately surrounding the mouth and the lips are likely
to exhibit much higher innervation densities.
The size of the receptive fields varies for the different tactile

afferent fibers with a mean value of 4 mm2 for the SAI fibers, 6
mm2 for SAII fibers, and 6 mm2 for FA fibers (Bukowska et al.
2010). Most receptive fields have a circular or oval well-demar-
cated area of high and relatively uniform sensitivity (Johansson
et al. 1988). The highest concentration and smallest size of the
receptive fields are measured around the corner of the mouth
and in the upper lip. The psychophysical and receptive field
properties observed in these areas, including the tactile acuity,
are similar to those found in the human fingertip (Nordin and
Hagbarth 1989), suggesting a similarly high innervation density.

Hairy Skin

Studies investigating the sensory innervation of human hairy
skin (other than facial) have often focused on C afferents or pro-
prioceptive fibers, with relatively few targeting Ab tactile affer-
ents. Data exists for the hand dorsum (Edin and Abbs 1991;
Edin et al. 1995; Järvilehto et al. 1976, 1981; Kakuda 1992;
Konietzny and Hensel 1977; Nagi et al. 2019), the arm
(Ackerley et al. 2014; Löken et al. 2009; Vallbo et al. 1995), the
leg (Aimonetti et al. 2007; Edin 2001; Ribot-Ciscar et al. 1996),
and the foot dorsum (Nagi et al. 2019; Ribot-Ciscar et al. 1989;
Trulsson 2001; Vedel and Roll 1982), but not for the body core,
back, or chest, where microneurography is technically challeng-
ing, due to the small size of the nerves involved and continuous
movement of skin in this area during breathing.
Hairy skin is innervated by afferent classes with similar

response characteristics as found in glabrous skin, though spe-
cific end organs might differ. As in all other types of skin, SAI
afferents are present and innervate Merkel cells, which in hairy
skin are organized into touch domes, as compared with the cell
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neurite complexes found in glabrous skin. Similarly, SAII affer-
ents have been identified electrophysiologically, though it is
unclear whether they always connect to Ruffini-like corpuscles,
as is thought to be the case in the hand (Chambers et al. 1972).
Afferents with response properties similar to FAI afferents are
frequently observed, but, unlike glabrous skin, hairy skin does
not contain Meissner corpuscles. Instead, three different types
of FA afferents have been identified in the hairy skin: hair units,
field units, and FAII units (Vallbo et al. 1995). Hair units branch
and terminate in close proximity to hair follicles. Each hair unit
is estimated to innervate around 25 individual hair follicles in
the forearm (Vallbo et al. 1995). Field units show remarkable
similarities with hair units, having numerous high-sensitivity
spots distributed over a fairly large area. The nature of the end
organs of field units is unclear. The presence of FAII afferents
has been demonstrated both in electrophysiological recordings
(Vallbo et al. 1995) and psychophysically (Verrillo 1966),
though Pacinian corpuscles appear to be extremely rare in hairy
skin. Innervation patterns vary for different body regions, with a
prevalence of SA afferents in the arms at 61% of all fibers, while
they only make up 47% in the legs (see CALCULATIONS AND PRIOR

RESULTS for further details).
Based on fiber counts and estimates of axon diameter distribu-

tion in the dorsal roots of the spinal cord (see CALCULATIONS AND

PRIOR RESULTS), we estimate that around 140,000 Ab fibers (range:
110,000–180,000) innervate the hairy skin of humans (excluding
the face). Innervation is most dense in the back of the head and
neck area with around 17 units/cm2 and in the arms with 12 units/
cm2, while is almost uniform in the rest of the body, with 8.9
units/cm2 covering the skin of the chest and abdomen, 9 units/
cm2 on the back, and 9.8 units/cm2 for the legs.
Hair units terminate on hair follicles in hairy skin, suggesting

a relationship between hair follicle density and FA afferent
innervation. Hair follicle density is not uniform across the adult
body but instead varies by more than an order of magnitude
across different body regions (Szabo 1967). If the number of
hair follicles innervated by a single afferent was relatively con-
stant across different areas, one would, therefore, expect a
strong correlation between our estimates of FA innervation den-
sity and hair follicle density. Indeed, we found a strong correla-
tion (r=0.94, P < 0.01) between both quantities (Fig. 2A). Our
estimates imply that each FA hair fiber innervates, on average,
25 hair follicles (range: 15–52), in strong agreement with earlier
estimates for the forearm (Vallbo et al. 1995). Hair follicles
include both vellus and terminal hairs, both of which have been
found to be innervated by nerve fibers (Hashimoto et al. 1990).

Whole Body

Summarizing all information above, across the whole body the
palmar skin of the hands and the perioral region of the face are
the most densely innervated regions. Relatively high innervation
can also be found in some sections of the foot, such as the toes,
while the hairy skin of the arms and legs are the least densely in-
nervated, closely followed by the trunk (see Fig. 3 and Table 1).

INNERVATION DENSITY IN CONTEXT

Innervation Density and Tactile Acuity

Innervation density limits the spatial resolution with which
tactile features can be resolved on the skin: lower innervation

results in a larger spacing between receptors and implies that
two tactile stimuli need to be further apart to be discriminated.
One might, therefore, expect a strong correlation between recep-
tor spacing and perceptual tactile acuity as determined in psy-
chophysical experiments. Previous work suggests that spatial
acuity is largely driven by SAI afferents (Peters et al. 2009),
which possess the smallest receptive fields and, therefore, the
highest spatial resolution. Indeed, a close relationship between
SAI receptor spacing and tactile acuity has been established
across the different regions of the hand (Craig and Lyle 2001,
2002). Following this line of research, we used psychophysical
two-point discrimination thresholds obtained from different
regions across the whole body (Mancini et al. 2014; Weinstein
1968) and correlated these values with estimated SAI receptor
spacing. We found a strong relationship between these two vari-
ables (r=0.93, P < 0.001; see Fig. 2B). As prior research has
shown, tactile acuity is not fixed but improves with training;
while the eventual plateau performance is likely determined by
innervation density, typical performance might not (Peters et al.
2009). Additionally, more reliable measures of spatial acuity
than the classical two-point threshold do exist (Craig and
Johnson 2000), and these suggest that, for example, the lips in
fact exhibit higher acuity than the fingertips (Sathian and
Zangaladze 1996; Van Boven and Johnson 1994). Nevertheless,
differences in innervation density across the whole body appear
large enough to yield a reliable correlation with two-point psy-
chophysical thresholds.
The reasoning above ignores the fact that receptive fields of

type I afferents are not uniform but contain several individual
subfields or hot spots, as demonstrated in both glabrous
(Johansson 1978; Pruszynski and Johansson 2014) and hairy
skin (Vallbo et al. 1995). The number of such hot spots might
ultimately determine perceptual limits on the spatial resolution
of the skin. Indeed, one of the first studies aiming to relate the
accuracy of tactile perception with afferent fiber counts (Ranson
1933) based their analysis on perceptual threshold mapping of
the skin on a spatial scale similar to individual subfields
(Strughold 1924). Based on the average estimated number of
subfields per fiber (FAI: 15, SAI: 6 for glabrous skin; hair units:
25, field: 10, SAI: 3 for hairy skin) one might therefore expect
around 1.5 million hot spots across the whole body, with around
150,000 on the palmar surface of each hand, mostly supported
by FA fibers.

Innervation Density and the Cortical Homunculus

As demonstrated by pioneering work in humans (Penfield and
Boldrey 1937; Penfield and Rasmussen 1950) and nonhuman
primates (Kaas et al. 1979; Marshall et al. 1937), body regions
are mapped somatotopically onto the primary somatosensory
cortex (S1), with nearby regions on the body generally repre-
sented by nearby patches in cortex. However, the size of indi-
vidual body region representations in cortex is not proportional
to that anatomical region’s skin surface area. For example, the
area devoted to the thumb in S1 is as large as the area devoted
to the entire forearm (Goldstein 2009). These findings have led
to the famous homunculus, in which body parts are scaled by
the size of their cortical representation, and which displays
enlarged hands, face, and tongue. In how far cortical magnifica-
tion is driven purely by innervation density, or whether usage
effects such as increased contact with some body parts over
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others also play a part, has been debated. Many studies and text-
books argue for a close correlation between innervation density
and cortical magnification (Catani 2017; Kandel et al. 2000),
though quantitative evidence is lacking. To test this idea
directly, we took estimates of cortical magnification from the lit-
erature (Gandhoke et al. 2019; Penfield and Rasmussen 1950)
and compared these with the innervation density estimates
described above. We found a positive, but nonsignificant, corre-
lation between a region’s peripheral tactile fiber count and the

size of its representation in cortex (r=0.40, P = 0.42, Fig. 2C),
when assessed as the length of the coronal section onto which
that body part is mapped. Crucially, some regions exhibited
much larger cortical magnification than would be expected from
their peripheral innervation alone. This included the heavily
enlarged cortical areas containing the hand and face representa-
tions. Thus, it appears that these body parts are further magni-
fied cortically, perhaps reflecting the fact that they are more
likely to receive tactile stimulation (Jenkins et al. 1990; Sur et

Fig. 2. A: estimated fiber density for fast-adapting (FA) hair cells on different skin regions versus average hair follicle density for the same skin regions. Colors denote
different body parts, as indicated in the inset. The gray line shows the line of best fit. B: estimated spacing between slowly adapting type I (SAI) termination sites ver-
sus perceptual tactile acuity as assessed by two-point discrimination tasks for different body regions (Weinstein 1968). There is a strong relationship between a body
region’s tactile innervation and our ability to spatially discriminate tactile stimuli. C: size of cortical somatosensory representation for different body parts versus esti-
mates for the total number of tactile fibers innervating that region. Innervation alone cannot explain cortical representation. Numbers refer to a single brain
hemisphere.

Fig. 3. Whole-body tactile innervation densities. The hand and face are the most densely innervated regions. A: total tactile innervation density for fast-adapting (red)
and slowly adapting (blue) afferents (including both type I and type II afferents), for different skin regions across the whole body. The ratio of fast and slowly adapt-
ing fibers is not constant but varies with skin region. B: illustration of the whole-body peripheral innervation homunculus using the same method as detailed in Fig. 1.
The color and scaling of each body area denotes its innervation density (units/cm2), combining both slowly adapting (SA) and fast-adapting (FA) fibers. V1, fore-
head, eyes, and nose; V2, central part of the face; V3, lower lip, chin, jaw, and area around the ears.
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al. 1980) or that they are especially behaviorally relevant.
Interestingly, the apparent cortical magnification of regions with
already high innervation mirrors the visual system, where the
fovea is further magnified cortically beyond its already higher
density of cone photoreceptors (Popovic and Sjöstrand 2001).

Tactile Innervation over the Lifespan

Our estimates of innervation density are based on data from a
range of ages, but we have tried, as much as possible, to focus
on young adults. It has been widely demonstrated that tactile
sensibility declines with age, as evidenced by increased sensory
thresholds (Dyck et al. 1972; Gescheider et al. 1994; Thornbury
and Mistretta 1981; Verrillo 1980) and decreased spatial acuity
(Manning and Tremblay 2006; Stevens and Choo 1996; Stevens
and Patterson 1995; Tremblay et al. 2003; Woodward 1993).
This decline might be partially explained by age-related me-
chanical changes of the skin itself, such as in stiffness or mois-
ture levels, but neural degeneration through changes in
myelination, and receptor and fiber loss are likely to play a
major part.
Focusing on the loss of tactile afferents specifically, a sub-

stantial decrease in the number of myelinated fibers in the spinal
cord dorsal root from early middle age onward has been well
documented (see Spencer and Ochoa 1981, for an overview of
the literature). After a considerable increase in the number of
myelinated fibers in the first life decade, a gradual loss of fibers
occurs throughout the lifespan from the third decade onward,
with an approximate loss rate of 5–8% per decade (Corbin and
Gardner 1937; Gardner 1940; Low and Dyck 1977). Therefore,
the proposed estimate of 230,000 tactile afferents in the whole
body of a young adult might be reduced to �160,000 tactile
afferents for people over 80 yr old. There is evidence that the
decrease in the number of fibers due to aging is more

pronounced in some body regions than others, and that the skin
of the face, arms, legs, hands, and feet is most affected, while
the number of fibers innervating the abdomen remains almost
unchanged (Decorps et al. 2014).
The mechanoreceptive end organs themselves are also

affected by aging and might change their morphology or disap-
pear completely over time. This effect has been best docu-
mented for type I afferents. For example, the density of
Meissner corpuscles at the fingertip decreases more than three-
fold from young adulthood to old age, and that of Merkel cells
declines more than fivefold (Garcı́a-Piqueras et al. 2019).

CALCULATIONS AND PRIOR RESULTS

In the following, we provide an overview of measurements
from the literature and detail the calculations that led to the esti-
mates of innervation density described in the previous sections.
Our approach relies on fiber counts from the dorsal root ganglia
and the trigeminal nerve, estimates of the proportion of tactile
Ab fibers within each segment, and finally measurements for
the surface area of skin innervated by each. The same basic idea
has been pursued before (Ingbert 1903b), but advances in histol-
ogy and immunohistochemistry, along with a much advanced
understanding of the different classes of fibers involved in tac-
tile sensibility, prompted us to provide a modern reassessment.

Hand

For the palmar surface of the hand we follow the original esti-
mates by Johansson and Vallbo (1979), which agree well with
later histological analyses: a count of myelinated fibers at both
the metacarpophalangeal (MCP) joint, covering all fibers inner-
vating a given finger, and at the terminal trifurcation, covering
innervation of the fingertips only, yielded 2,100–4,800 fibers per
finger and roughly 1,900–2,600 per fingertip (Auplish and Hall
1998). Assuming that around 45% of these fibers are tactile affer-
ents in the Ab range, similar to the proportion that has been esti-
mated at the wrist (Vallbo and Johansson 1978), yields 1,000–
2,200 tactile afferents per finger and roughly 800–1,200 per fin-
gertip. These numbers agree remarkably well with Johansson and
Vallbo’s original estimates of 2,500 for the whole finger and
1,000 for the fingertip of the index finger (Johansson and Vallbo
1979). Psychophysical measurements also suggest that innerva-
tion density decreases dramatically between the fingertip and the
palm, and SAI receptor spacing as calculated from Johansson and
Vallbo’s estimates correlates highly with spatial acuity across dif-
ferent regions of the hand (Craig and Lyle 2001, 2002).
Pacinian corpuscles are relatively large and can, therefore,

easily be identified in dissections, at least in principle. No dis-
section data has been reported from young adults and the few
existing studies focus on either fetal tissue or cadavers of elderly
individuals. These present a mixed picture. On the one hand, fe-
tal studies are in good agreement with the estimates made by
Johansson and Vallbo (1979). Cauna and Mannan (1958)
counted Pacinian corpuscles in the radial half of a fetal index
finger and found 178 in total, in almost perfect agreement with
Johansson’s estimates of afferent numbers (see also Brisben et
al. 1999 for further analysis). In support of these findings, recent
counts from the distal segment of several fetal fingers also
yielded numbers in close agreement and confirmed that PC
innervation is higher in the distal than in other finger segments
(Kim et al. 2018). On the other hand, studies in elderly

Table 1. Innervation across the whole body

No.

of Afferents

Innervation Density,

units/cm2

Skin Area

cm2 SA Afferents, %

Hand 16,500 90 184 43
Fingertips 5,061 241 21 42
Fingers 6,156 81 76 45
Palm 5,046 58 87 41
Foot sole 3,958 21 200 37
Big toe 261 16 16 37
Toes 913 48 19 37
Metatarsals 912 18 51 37
Arch 1,362 18 76 37
Heel 597 16 38 37
Face 46,000 69 675 65
Face V1 12,307 48 255 65
Face V2 14,676 67 219 65
Face V3 16,820 84 200 70
Neck+scalp 8,625 17 516 55
Front trunk 20,886 9 2,272 55
Back trunk 20,775 9 2,272 55
Arms 35,335 13 2,769 61
Legs 56,186 10 5,722 47
Total �230,000 15 �15,000 53

Estimated number of afferents, innervation density, skin area, and propor-
tion of slowly adapting afferents (of both types) for different body regions.
Italic rows indicate subregions of larger body parts. Entries for the hand and
foot sole refer to a single body part, while all other estimates are bilateral. SA,
slowly adapting; V1, forehead, eyes, and nose; V2, central part of the face;
V3, lower lip, chin, jaw, and area around the ears.

TACTILE INNERVATION DENSITIES ACROSS THEWHOLE BODY 1235

J Neurophysiol � doi:10.1152/jn.00313.2020 � www.jn.org
Downloaded from journals.physiology.org/journal/jn (176.253.025.198) on October 26, 2020.

http://www.jn.org


individuals report much lower numbers. Dissection of the whole
hand of several old-age human cadavers has found around 300
corpuscles per hand (Stark et al. 1998). A more recent count in
several distal finger segments yielded proportionally higher
numbers (around 40 corpuscles per segment), but these counts
were still much lower than those in fetal tissue (Kobayashi et al.
2018). Taken together, these results suggest a dramatic decrease
in the number of Pacinian corpuscles with age, but it is unclear
whether this decrease takes place early during development or
later in life, or whether it is spread out across the lifetime. As
the original estimates by Johansson and Vallbo (1979) are in
good agreement with the fetal data, we used them in our report.
However, it is possible that the true number of FAII fibers is
lower than reported here, perhaps by half or more. More
recently, it has been shown that Pacinian corpuscles can be
resolved using high-field MRI (Laistler et al. 2018; Rhodes et
al. 2019), opening the possibility to establish in vivo counts
across a range of age groups in the future.

Foot Sole

A recent study estimated that around 1,700 tactile afferents in-
nervate the plantar surface of a single foot (Strzalkowski et al.
2018). Our estimates suggest that the actual innervation is likely
higher, by a factor of approximately two, based on several obser-
vations. First, the original estimate was based on a study demon-
strating a ratio of roughly 10:1 in myelinated fibers between the
hand and the foot (Auplish and Hall 1998). However, fiber counts
were only taken at the metacarpophalangeal and metatarsopha-
langeal joints, respectively, and because innervation density gra-
dients are steeper on the hand than on the foot, this does not
imply a ratio of 10:1 in the total fiber count. Instead, a ratio of 4–
5:1 appears more realistic. Second, tactile acuity is higher on the
foot sole compared with the foot dorsum or other regions on the
leg (Mancini et al. 2014), suggesting a higher innervation density
in this region, in line with our estimates for hairy skin (see Hairy
Skin on Arms, Trunk, and Legs below). Taken together, a total
tactile innervation of 4,000 afferents per foot sole appears likely.
To arrive at updated estimates for different regions of the foot
sole, we took the total number of tactile afferents as estimated
above and distributed them across the foot sole according to the
relative densities established in Strzalkowski et al. (2018).
As has been done in the hand, Pacinian corpuscles can be

identified and counted in human fetal samples. Comparing the
results of a recent study that focused on the toes (Jin et al. 2020)
with our estimates yielded two to three times more corpuscles in
the experimental sample, a reasonably close match given the
low numbers involved. The discrepancy might be explained by
the fact that the number of corpuscles might decrease after the
fetal stage, that several corpuscles might be innervated by a sin-
gle fiber, or that we have underestimated the overall number of
fibers innervating the foot sole. Finally, in the toes Pacinian cor-
puscles appear much more numerous at the proximal rather than
the distal end, in contrast to the fingers, and, given the difficulty
of pinpointing FAII termination sites in microneurographic
experiments, it is possible that some have been attributed to the
forefoot region instead.

Face

The sensory innervation of the face is supplied by the sensory
root of the trigeminal nerve or fifth cranial nerve. In this root, the

total number of fibers is estimated at 170,000, and �62,000 of
these are myelinated and fall within the diameter range of Ab
fibers (Pennisi et al. 1991). The trigeminal nerve branches into
three major divisions that supply different areas of the face; the
ophthalmic branch, or V1, innervates the upper part of the face,
covering �38% of the facial skin; the maxillary branch, or V2,
innervates the mid-third of the face, including part of the nose
and down to the upper lip, corresponding to�32% of the total fa-
cial area; finally, the mandibular branch, or V3, innervates the
lower part of the face and the area around the ears, and covers
around 30% of facial skin. The maxillary division V2 gives rise
to six sensory branches, of which two are responsible for the sen-
sory innervation of the hard palate inside the oral cavity (greater
palatine and nasopalatine nerves). The mandibular division V3
includes five sensory branches, of which the lingual nerve and the
buccal nerve innervate the floor of the oral cavity and the inside
of the cheeks. Thus, four of 11 branches of the V2 and V3 divi-
sions innervate the inside of the mouth. Combining this fact with
recent histological analyses, which found that skin within the V3
innervation area contains almost twice the number of fibers than
skin innervated by V1 (Nolano et al. 2013), suggests by rough
approximation that around 25–30% of the 62,000 myelinated
fibers of the trigeminal nerve are responsible for the sensory
innervation of the oral mucosa, leaving around 43,000 to inner-
vate the facial skin and lips. The pattern of the sensory innerva-
tion changes across the three divisions and the density of
myelinated fibers was estimated by Nolano et al. (2013) as 8.0,
15.9, and 16.4 per mm2 in V1, V2, and V3, respectively. These
estimates include multiple branches originating from the same
afferent and also count any fibers merely traversing a given skin
area rather than terminating there, and thus cannot be used directly
to estimate the number of individual afferents. Nevertheless, in rel-
ative terms, these histological counts can be expected to scale pro-
portionally to the actual afferent counts. To arrive at estimated
innervation densities for V1, V2, and V3, we therefore divided the
total number of fibers estimated above across V1, V2, and V3 in
the proportions estimated by Nolano et al. (2013). A total facial
skin area of 675 cm2 was assumed (Siemionow and Sonmez
2008). See Supplemental Table S1 for precise calculations (https://
doi.org//10.15131/shef.data.12753650.

Hairy Skin on Arms, Trunk, and Legs

The dorsal roots of the spinal cord contain 1–1.2 million fibers
in total, ranging from large, medium, and small myelinated to
unmyelinated nerve fibers (Ingbert 1903a; Liu et al. 2015). The
region of skin innervated by all tactile afferents passing through a
given dorsal root is known as a dermatome. While the specific
territory innervated by each dermatome varies between people,
and dermatomes also generally overlap within individuals, they
nevertheless follow a systematic pattern. Fiber counts in individ-
ual dorsal roots can, therefore, be used to estimate the innervation
of their associated dermatomes. The estimates presented here are
based on recent fiber counts published by Liu et al. (2015). The
territory of each dermatome is derived from an evidence-based
map that assessed and combined multiple existing data sets (Lee
et al. 2008); we traced the published dermatome outlines and
then calculated the area of skin innervated by each dermatome as
the sum of the areas covering the front and back of the body,
respectively, assuming a total area of skin of 1.5 m2 (Yu et al.
2010). This analysis also takes into account that dermatomes
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generally overlap. We also compared the estimated peripheral
fiber innervation densities derived from these maps with ones
based on an older dermatome representation in a popular text-
book (Anderson 1983). We found only minor differences, sug-
gesting that our results do not hinge on a particular dermatome
map.
Only a subset of dorsal root fibers will be myelinated fibers in

the Ab range and underlie tactile innervation of the skin, rather
than internal organs. The fraction of myelinated fibers varies
across the spinal tract, being higher in the cervical and lumbar
tract (Davenport and Bothe 1934; O’Sullivan and Swallow
1968) and, on average, around 40% of axons have been classi-
fied as unmyelinated (Sheehan 1935). Assuming a 50:50 split
between Ad and Ab myelinated fibers, and considering around
10% of Ab fibers innervating deep structures (Vallbo and
Johansson 1978), an average fraction of 17% (range: 10–25%)
of the fibers in the dorsal roots are estimated to represent Ab
fibers involved in the transmission of tactile sensations. In the
dermatomes C6–C8, for example, we estimate that �53,500 of
the 210,000 fibers are tactile afferents. Considering that
�36,000 of these are in the ulnar and median nerve and inner-
vate the glabrous skin of the hand, the remaining tactile affer-
ents in the C6–C8 dermatomes cover the hairy skin of the hand
dorsum and forearm. This calculation leads to an estimated den-
sity of 12.7 units/cm2 in these areas, which is consistent with the
overall hairy skin estimations here proposed. Our estimates also
agree well with a recent count in the L4 and L5 dorsal roots that
found around 30% of axons had a diameter bigger than 5 mm,
not all of which contribute to the tactile innervation of the skin
(Sperry et al. 2020). Similarly, O’Sullivan and Swallow (1968)
estimated around 6,000 fibers/mm2 in the sural nerve. 40% of
these have a diameter in the range of 6–12 mm, which led to a
total of 13,000 Ab myelinated afferents in the sural nerve.
Considering not all of these fibers are cutaneous afferents, and
considering that the sural nerve contributes with other sacral
nerves to the innervation of a skin area of around 4,500 cm2 in
the leg and foot, these measures result in good accordance with
our estimates. Please see Supplemental Table S2 (https://doi.
org//10.15131/shef.data.12753650) for full calculations split by
dermatomes.
The main source of uncertainty in our estimates is the total

number of fibers in the dorsal root and, most importantly, the
proportion of myelinated Ab fibers for each dermatome
(Davenport and Bothe 1934; Sperry et al. 2020). This question
has only been investigated experimentally in a subset of dorsal
roots, and different studies report conflicting results. For this
reason, we repeated our calculations assuming a possible posi-
tive or negative variation of 20% on the number of tactile affer-
ents for each dermatome. When doing so, we noticed that we
fell short of or exceeded the physiologically plausible range in
several instances, lending credibility to our original estimates.
For example, in dermatomes C6, C7, and C8 considering that
18,000 of the total number of afferents can be expected to inner-
vate the palmar surface of the hand, a reduction of more than
20% of the dorsal root fiber portion considered as tactile affer-
ents, would result in a number close to zero (or even negative)
for tactile afferents innervating the hairy skin of the back of the
hand and part of the forearm. Similarly, an increase of more
than 20% in the portion of dorsal root fibers considered to be
tactile afferents would, in some dermatomes such as L1,
result in areas of hairy skin having a density of afferents

improbably close to that of the hairless skin of the foot and
some areas of the palm of the hand. Taking these limits into
account, the overall number of tactile afferents innervating
the hairy skin is likely to fall in the range 110,000–180,000,
leading to a total number of 200,000–270,000 afferents across
the whole body.
To determine the proportion of SA and FA fibers, we tallied

afferent numbers reported in different microneurography studies.
For the hand dorsum and arm, we found a total of 267 reported
afferents in the literature, 61% of which were slowly adapting
(Ackerley et al. 2014; Edin and Abbs 1991; Edin et al. 1995;
Kakuda 1992; Löken et al. 2009; Nagi et al. 2019; Vallbo et al.
1995). For the foot dorsum and leg, our sample included 315
afferents, 47% of which were slowly adapting (Aimonetti et al.
2007; Edin 2001; Nagi et al. 2019; Ribot-Ciscar et al. 1996,
1989; Trulsson 2001). Thus, a higher proportion of slowly adapt-
ing afferents innervates the arms than the legs. No data exists for
the trunk. We assumed that the proportion of SA fibers for this
region would fall in between those for the arms and the legs, as
does overall innervation density, and settled on an estimate of
55% slowly adapting fibers for the trunk. See Supplemental
Table S3 (https://doi.org//10.15131/shef.data.12753650) for a
detailed breakdown of afferent types reported in the literature on
hairy skin.
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