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Abstract 9 

The use of agent-based modelling (ABM) to tackle flood-related risk challenges is becoming 10 

increasingly popular in recent years. This paper reviews the literature at the interface of ABM 11 

and flood-related studies in view of understanding the technique’s advantages and limitations 12 

to flood risk management, based on a set of 61 representative articles. In particular, to 13 

understand how this process-based technique can help to link human (also institutional) 14 

decisions and behaviour with flood risks through the whole human-flood systems. Overall, the 15 

temporal and spatial distributions demonstrate a growing interest in this research area around 16 

the world, especially since 2017. Three topic areas are identified, addressing different research 17 

challenges in the field: real-time flood emergency management, long-term flood adaptation 18 

planning, and flood hydrological modelling. The review has shown that the potential 19 

contribution of ABM to future flood risk management lays in its practical application to 20 

decision-making in adaptation policy and strategy planning. The review also critically reveals 21 

the limitation of ad hoc implementations of decision-making and behaviour in the ABM models 22 

that could make the application less realistic in the field. It is recommended that the future 23 

development should be guided/influenced by the continuing development and refinement of 24 

ABM modelling framework and theoretical foundations, and enhancement of model testing 25 

and documenting capabilities. More importantly, active collaborations between disciplines and 26 

sectors such as to involve more social and psychological sciences in ABM decision-making 27 
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modelling should be encouraged; and knowledge sharing will encourage more effective uses 28 

of ABM by wider audiences.                                                                                                                                                                             29 

Keywords: Agent-based modelling (ABM); flood risk management; review; coupled human 30 

and natural systems (CHANS); adaptation planning; emergency management 31 

1. Introduction  32 

Among all weather-related natural hazards in the past two decades, floods are by far the most 33 

common (47%) that have affected 2.3 billion people around the world (CRED-UNISDR, 2015). 34 

Due to climate change and urban development, it is estimated the global cost from flood 35 

disaster will rise from about 46 trillion USD to 158 trillion in 2050 (Jongman et al., 36 

2012;Poelmans et al., 2010). The damages caused by the recent catastrophic flood disaster in 37 

Southern China (Everington, 2020), and the projections of even more extreme events around 38 

the world, again demonstrate the urgent need for resilient flood disaster risk reduction strategies 39 

globally (e.g., to provide effective flood risk assessment and management with resilient and 40 

sustainable adaptation and mitigation policies), as also emphasized by the international 41 

agreement on losses and damages (UNFCCC, 2013) and the Sendai Framework for disaster-42 

risk-reduction (UNDRR, 2015).  43 

The formation of flood disasters is driven by multiple factors, for example, urbanization can 44 

significantly increase flood damages due to population growth and assets exposures (e.g., 45 

infrastructures and buildings) within flood-prone zones (Jongman et al., 2012; Aerts et al., 2014; 46 

Hallegatte et al., 2013); the land use change of natural surfaces into artificial impermeable 47 

surfaces can result in an increase of flooding frequency due to poor infiltration (Huong and 48 

Pathirana, 2013); and inadequate planning, risk dissemination and policies can lead to an 49 

elevated number of exposures and vulnerabilities (Jha et al., 2012). Therefore, only focusing 50 

on understanding the extent and magnitude of the hazard itself is clearly not sufficient for flood 51 
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risk management, while other interconnected elements such as urbanisation, socio-economy, 52 

culture, community, institution and governance should also be taken into consideration (IPCC, 53 

2014, 2012;O'Connell and O'Donnell, 2013). Since flood disaster is becoming more people-54 

centred (e.g., adaptation, mitigation, and rescue planning can all have impacts to the 55 

consequence of a flood event) (O'Connell and O'Donnell, 2013), and due to the interactions 56 

between hazard and people that span across multiple spatial, temporal and organisational scales, 57 

as well as the influence of imperfect information, bounded rationality and continual adapting 58 

feature on human decision-making, flood disaster should be seen as a Complex Human And 59 

Natural System (CHANS) (Liu et al., 2007;Pahl-Wostl, 2015;Mitchell, 2009). In particular, in 60 

order to understand from multiple dimensions or scales of how human decision-making and 61 

behaviour lead to certain consequences of flood events, there is a clear need of a more process-62 

based approach to enable in-depth coupling of the two sub-systems (i.e., human and flood) (An, 63 

2012).  64 

Agent-based modelling (ABM) has become a major bottom-up tool to simulate CHANS, which 65 

is process-based and capable of mimicking the real-world systems as open-ended dynamic 66 

systems of interacting ‘agents’ (Tesfatsion, 2017; Tesfatsion et al., 2017). In particular, it is 67 

very useful in simulating situations where individual behaviour can lead to collective outcomes 68 

in ways that cannot be dealt with by aggregate models (Tonn and Guikema, 2018). With the 69 

substantial development from computer science and social science, ABM has the advantage in 70 

simulating the human decision-making process and behaviour and integrating these with the 71 

contextual socio-environmental conditions (Bousquet and Le Page, 2004). Therefore, it can be 72 

an efficient tool for understanding the human-flood systems, hence, useful for flood risk 73 

management related studies.     74 

The concept of ABM was first proposed in the late 1940s (e.g., (Von Neumann, 1951)). It is a 75 

computational modelling method which can simulate the actions and interactions of individual, 76 
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heterogeneous, autonomous agents, or decision-making entities in a network or system 77 

(Bonabeau, 2002). ABMs offer “a way to model social systems that are composed of agents 78 

who interact with and influence each other, learn from their experiences, and adapt their 79 

behaviours so they are better suited to their environment” (Macal and North, 2010). A typical 80 

ABM is comprised with three components: a set of agents (as representations of the real-world 81 

decision-makers); a set of agent relationships and methods of interactions (how and with whom 82 

agents interact), and agents' environment (interactions with the environment) (Macal and North, 83 

2010). Each agent (e.g., individuals, organisations) is encoded with behaviour rules to assess 84 

its situation and make decisions. Even a simple ABM can generate complex behaviour patterns 85 

due to a series of simple interactions between agents, and lead to rather complex system-scale 86 

outcomes that cannot be predicted by simply aggregating the behaviours of individual agents 87 

(e.g., due to interactions, feedback loops, nonlinearity and thresholds, heterogeneity) (Dawson 88 

et al., 2011). Since ABM is able to analyse the effects of interactions on the system as a whole, 89 

it has been widely used to provide decision-making guidance through many ‘what if …’ 90 

scenario simulations (Bankes, 2002;Dawson et al., 2011;Wilensky and Rand, 2015). With the 91 

emergence of high-performance computing, and the off-the-shelf modelling programs such as 92 

NetLogo (Tisue and Wilensky, 2004) and Multi-Agent Simulation of Neighborhoods 93 

(MASON) (Luke et al., 2003), ABM has been increasingly recognised and applied in a number 94 

of fields to tackle complex system problems, from civil violence (Epstein, 2002), land-use 95 

change modelling (Evans and Kelley, 2004; Magliocca et al., 2011), shared autonomous 96 

vehicle (SAV) operations (Fagnant and Kockelman, 2014), marketing and organisational 97 

behaviour (Gómez-Cruz et al., 2017), to evacuation routes plan to fire and terrorist events, and 98 

warning effectiveness test (Still, 1993; Owen et al., 1996; Wong and Luo, 2005), and business 99 

resilience assessment (Sauser et al., 2018), and the trend is still rising. Among these fields, 100 

research on artificial intelligence is noteworthy, for instance, in which multiple heterogeneous 101 
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agents are coordinated to solve planning problems (Bousquet and Le Page, 2004), also largely 102 

contributing to ABM development is electrical electronic engineering, for instance modelling 103 

the multi-carrier energy systems to understanding the interactions of production, delivery and 104 

consumption (Krause et al., 2010). With the increasing focus on the human part of the human-105 

flood systems, it seems ABM has also started to attract more interests for flood risk 106 

management studies (O'Connell and O'Donnell, 2013; O'Shea et al., 2020), albeit it is still 107 

considered to be in its infancy. Therefore, there is an important need to explore this field to 108 

encourage its research and application in flood-related studies. This paper aims to review the 109 

literature at the interface of ABM and flood-related studies in view of understanding the 110 

technique’s advantages and limitations to flood risk management for both long-term planning 111 

and real-time management applications. Although both research disciplines have gained 112 

traction over many years, a current literature review at the interface is absent from the 113 

publications. It is hoped that this review will benefit the flood research community by shedding 114 

light upon the following points：  115 

1) How has ABM made contributions to flood risk management development? 116 

2) What are the strengths and weaknesses of the methodology based on past contributions? 117 

3) What are the possible improvements that can be made for its future contributions in the 118 

field? 119 

The focus of this review paper is from that of flood risk management perspective and how the 120 

ABM approach helps link human (also institutional) decisions and behaviour to flood risks 121 

based on the whole human-flood systems. Section 2 presents the method to identify and analyse 122 

literature at the interface of flood risk management and ABM. Section 3 describes how ABM 123 

has contributed to flood risk management studies, from real-time flood emergency 124 

management to long-term flood adaptation planning and flood hydrological modelling. This is 125 
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not intended to be comprehensive in the detailed individual methods for the selected studies, 126 

but to touch on a variety of ways that ABM has been applied in the field. Section 4 discusses 127 

ABM’s benefits, limitations and potential areas for improvements in the field. Section 5 128 

provides the conclusion of this study.  129 

2. Methods 130 

To achieve the paper’s aim and objectives, the Web of Science was mainly used for the 131 

literature selection. The first step was to construct a Boolean expression (search string) by 132 

searching the Web of Science using the following combination of keywords: Topic  = “agent-133 

based model” or “agent-based simulation” AND Topic = “flood”. The first topic defined the 134 

methodology of interest, while the second topic restrained further to only show papers within 135 

the area of flood research. The second step was complementary to the first, which added journal 136 

articles via author’s personal archive (i.e., on ABM flood-related research) that has been 137 

established since 2017. The third step was to search in Google Scholar (with the searching 138 

keywords of ‘agent-based’ and ‘flood’, up to 2019 and articles only available online from 2020 139 

were not included in this study due to incompleteness) to pick up any important publications 140 

(research areas that were not covered by the papers selected from the first two steps) that were 141 

missed from the first two steps. As the quality of the selected literature was important to draw 142 

the conclusions of this review paper, any result that was not a journal article (e.g., conference 143 

proceeding, book chapter, lecture notes) was not selected.  144 

The main information extracted for each search included the title, author, institution, date of 145 

publication, abstract, keywords and URL. In the above online search, 301 pieces of published 146 

literature were found (up to 2019) from the first step. Out of these 301 papers, 200 were journal 147 

articles. After checking each article manually, 145 were further excluded (i.e., off-topic, 148 

unavailable to download due to paywall or similar, not written in English). The second step 149 
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resulted in another 23 articles, four of which were selected for the review after eliminating 150 

those that were found to be duplicated (already chosen in the first step). From the third step, a 151 

further two articles were added to the list. As a result, there was a total of 61 publications 152 

included in this review, which makes up an important and representative part of the reference 153 

list. The selected papers are listed in a table in the attached supplementary document. To the 154 

best of the authors’ knowledge, no particular ABM flood applications were categorically 155 

excluded by the searching.  156 

3. Results  157 

3.1 Temporal distribution of studies  158 

Figure 1 presents the temporal distribution of the selected 61 papers. The graph shows a clear 159 

upward trend over the past 15 years (2005-2019). Only around two papers containing the 160 

keywords agent-based model or simulation and flood in the topic were published each year 161 

before 2014. The number of publications grew significantly to 14 in 2017 which was a 180% 162 

increment from 2016 (5). This demonstrates a growing interest in applying ABM in the field 163 

of flood risk management. The number then remain relatively stable between 2017 and 2019 164 

(i.e., 14, 16, and 16 papers for 2017, 2018, and 2019, respectively). A similar trend pattern has 165 

been observed in other research fields (for example, ABM in ecology (An, 2012)). An 166 

exploration of the possible drivers of the sudden growth in 2017 and then stabilisation should 167 

be further investigated, but is beyond the scope of this review.  168 

3.2 Spatial distribution of studies 169 

The global distribution of the 61 papers has been plotted in Figure 2. It is based on the case 170 

study areas presented in the papers. It can be seen studies are distributed over all continents, 171 

with the highest number from Europe (26 papers), Asia (16 papers) and North America (9 172 

papers), covering both highly developed and developing countries. In Europe, the majority of 173 
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the studies were implemented by the UK (9 papers) and the Netherlands (8 papers). In Asia, 174 

most researches were carried out by China and Australia (9 papers). Four papers used synthetic 175 

cases and one paper was based on exploring the ABM application to the whole European Union.   176 

3.3 Using ABM to understand human-flood systems and increase flood resilience  177 

The techniques applied to modelling the coupled human-flood systems are mainly divided into 178 

two types, that is the ABM which is the main focus of this review paper, as well as the system 179 

dynamic models which are predominant in the flood risk domain (Barendrecht et al., 2017;Di 180 

Baldassarre et al., 2013;Viglione et al., 2014). System dynamic models are based on systems 181 

of a few coupled ordinary differential equations (Di Baldassarre et al., 2013; Viglione et al., 182 

2014), in a way that the change of one variable with time would depend on other variables. 183 

Most differential equations are conceptual representations of the lumped system behaviour, 184 

e.g., through aggregation or using a representative value for the whole domain. In contrast, 185 

ABM is built based on the behaviour of individuals and the interactions are described using 186 

decision rules. These interactions alter the agents’ state (Blair and Buytaert, 2016). However, 187 

for ABM, the outputs of the interacted behaviours are sometimes difficult to understand 188 

because the connection between the variables is less clear at the macro-scale than the ones for 189 

the system dynamic models (Barendrecht et al., 2017). In order to understand how ABM has 190 

been applied in flood risk management, the 61 identified publications have been categorised 191 

into three main areas: real-time flood emergency management, long-term flood adaptation 192 

planning, and flood hydrological modelling. This section briefly describes the existing 193 

contribution of ABM in the field.  194 

3.3.1 Real-time flood emergency management   195 

ABMs have been applied to model the movement of people, largely because of their flexibility 196 

in incorporating the various components that influence an individual’s movement through 197 
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space. By simulating an individual’s dynamic environment and internal state (e.g., behaviours, 198 

risk perception), ABMs are capable of simulating the two vital decisions that an individual 199 

must continually make: when to move, and where to move (An, 2012). The individual’s 200 

response (state) to potential flood events can be influenced by multiple factors such as 201 

individual’s previous experience of flood incidents, warnings (e.g., ‘false alarms’), 202 

government’s dissemination (e.g., flood warning, providing information on flood risk and 203 

escaping plans to increase the awareness of flood risks), as well as the adaptation processes 204 

(Parker et al., 2007); and accordingly, ABM can simulate these multi-interactional factors. 205 

Specifically, individual’s decision-making processes to flood response are often represented 206 

by a spectrum of predefined simple to complex behaviour rules within the models, which are 207 

mainly based on a combination of probabilistic and logical rules to take into considering the 208 

uncertainties of the environment and perception capabilities (An, 2012). Through reviewing 209 

the selected papers, a number of studies have been identified in the flood emergency 210 

management area that mainly focused on modelling the movements of people under flood 211 

threats. For example, Dawson et al. (2011) presented a quantified modelling approach to 212 

estimate the likely exposures of people to flooding under different storm surge conditions. A 213 

wide consideration of defence breach scenarios, flood warning times and evacuation strategies 214 

were also tested. For the proposed ABM framework, the interactions and feedbacks between 215 

floods and human responses were enabled through the simulation as the event evolved. In 216 

particular, a probabilistic finite state machine was used to identify agents’ behaviours, 217 

including their possible states, the actions they could take and the transitions between states. A 218 

similar concept was also adopted in Zhu et al. (2019) and Dai et al. (2020) for dynamic flood 219 

exposures and vulnerabilities assessments. In the proposed HazardCM (hazard-human coupled 220 

model) model, the probability of death or serious injury as a result of exposure to floods were 221 

mainly controlled by the defined water depth and velocity thresholds, as well as individual’s 222 
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characteristics including age, gender, employment status, education level, fitness level and 223 

travel model. As discussed in Dawson et al. (2011), although the uncertainties surrounding 224 

flood exposures might be large, by simulating a wide spectrum of events and parameterisations, 225 

more robust options connected with the uncertainties would be identified. Similar to the above 226 

studies but with a focus more on examining the effectiveness of emergency management 227 

measures is the Lumbroso and Davison (2018) paper. The study proposed an ABM model 228 

called Life Safety Model to particularly test a flood buddy system to potentially reduce loss of 229 

life during low-probability flood events. It described detailed human evacuation behaviours 230 

that were likely to occur within buildings (e.g., considering different floors, different building 231 

types etc.), which provided more detailed building-scale simulations than the studies described 232 

above. Moreover, a generic water depth versus velocity curve was adopted to assess the status 233 

of agents at each time step. To reduce the associated uncertainties of the model, Monte Carlo 234 

analysis was applied to run the model many times. Another interesting study was conducted by 235 

Li et al. (2019), which combined a cellular automata model and a ABM system to simulate 236 

crowd evacuations in flood disasters, and the model was evaluated by real-participant 237 

experiments based on virtual reality (VR) environments. Similar studies on ABM applications 238 

in flood evacuation are also found in Higo et al. (2017); Liu and Lim (2016, 2018); Yamamoto 239 

and Takizawa (2019); Nakanishi et al. (2019); and Eivazy and Malek (2019). 240 

Another challenging issue in flood risk management is the effectiveness of flood warning 241 

systems. Although flood warning systems have been recognised as efficient tools for damage 242 

mitigation and crisis management (Parker et al., 2007;Parker, 2017;Cloke and Pappenberger, 243 

2009;Pappenberger et al., 2015), their effectiveness can be influenced by various 244 

socioeconomic factors. ABMs have been used to explore this particular area. For example, Du 245 

et al. (2017b) adopted an ABM modelling framework to investigate how individuals’ 246 

evacuation behaviours could be affected by their behavioural heterogeneity to flood warning, 247 
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warning accuracy and lead time. In this study, the agents’ representations were simplified with 248 

three types of physical attributes (agent’s geographical location, maximum evacuation speed 249 

and evacuation status) that were relevant to the evacuation process, and a psychological 250 

attribute (a risk tolerance threshold based on agents’ behavioural parameters) that was related 251 

to the flood warning response. Being Carried out by the same lead author (Du et al., 2017a), 252 

the framework was further developed by including opinion dynamics through ABM to explore 253 

social media’s influences on individuals’ flood risk awareness, and the consequent 254 

effectiveness of a flood warning system. However, it was noted both studies were implemented 255 

based on a hypothetical residential area due to the lack of empirical data.   256 

Another application of ABM has been found in the exploration of transportation-flood systems. 257 

A common approach adopted in this area is by utilising existing ABM based traffic models and 258 

applying different behaviour rules to better understand the interactions between the two 259 

systems. For example, Suh et al. (2019) used the MATSim (Multi-Agent Transport Simulation) 260 

software (Waraich et al., 2015) to assess the benefit of ‘transportation infrastructure protection 261 

plans’ against sea level rise. Specifically, for each sea level rise and protection (levee) scenario, 262 

the corresponding inundated links from the original traffic network were removed and the 263 

resultant vehicle travel hour was then calculated. Similarly, Pyatkova et al. (2019) examined 264 

how flood events could affect road transportation by integrating flood (InfoWorks; (Innovyze, 265 

2020)) and traffic models (a microscopic ABM traffic model called SUMO (Simulation of 266 

Urban MObility), (Krajzewicz et al., 2012)). And the interactions were based on described 267 

behaviour rules (i.e., rerouting, reduced speed) and predefined threshold from water depth 268 

information. A further two studies by Zhu et al. (2018) and Saadi et al. (2018) were found in 269 

this research area, which adopted the similar research concept as described above (i.e., couple 270 

flood hazard map/model with existing ABM based traffic models).  271 

3.3.2 Long-term flood adaptation planning 272 
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Flood resilience in practice relies on an understanding of socioeconomic and environmental 273 

systems and importantly their interactions (Chandra‐Putra and Andrews, 2020), and is 274 

maintained/improved by applying sustainable adaptation plans against flood risks. However, 275 

because the adaptation measures often take a very long time (e.g., 30 years and more) to verify 276 

and involve large investments (Löwe et al., 2017), there is a desire of a modelling framework 277 

that could assess the effectiveness of different measures in advance for improved decision-278 

making. The assessment would focus on understanding how adaptation measures reduce risk 279 

and how much risk remains after adaptation. In particular, there is a need to test the 280 

effectiveness of rules, regulations, policies and implementations that aim to reduce flood risks, 281 

as well as considering individuals react towards these aspects and adaptations (Tonn and 282 

Guikema, 2018). ABM has the capabilities to realise these testing requirements, and assess the 283 

robustness of a wide range of potential future developments/policies/strategies. Studies by 284 

Dawson et al. (2011); Zhu et al. (2019); Du et al. (2017b); Lumbroso and Davison (2018) and 285 

similar have conceptualized both human and flood subsystems within ABM frameworks and 286 

considered the heterogeneous features within the decision making processes. But when it 287 

comes to long-term flood adaptation planning, the main issue of these studies is that they do 288 

not methodically consider the influence of socioeconomic factors (e.g., institutions, risk 289 

perceptions, development plans, policies, societal preferences) to understand the drivers of 290 

flood risks (Abebe et al., 2019b).  291 

A number of ABM papers have been published specifically focusing on the socioeconomic 292 

interactions for long-term flood adaptation and planning studies. For example, Jenkins et al. 293 

(2017); Crick et al. (2018); and Dubbelboer et al. (2017) presented an ABM framework to 294 

assess how Sustainable Drainage Systems, property level protection measures and flood 295 

insurance scheme could affect local surface water flood risk in the context of various climate 296 

change projections. With a similar research direction, a ABM approach has also been applied 297 
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to explore individual’s adaptive decision making behaviours against coastal flood risks and 298 

considered households’ risk perception, insurance policies, and local flood mitigation measures 299 

(Han and Peng, 2019).   300 

To support the identification of adaptation measures that were economically efficient and 301 

robust to changes of climate and urban layout, Löwe et al. (2017) proposed a framework based 302 

on the 1D-2D MIKE FLOOD hydrodynamic simulation and the DAnCE4Water agent-based 303 

urban development model to systematically understand the effectiveness of adaptations based 304 

on the changes of water drainage system and urban planning policies. The DAnCE4Water 305 

model simulated the urban evolution from a parcel level detail and directly provided 306 

information on the shape and location of urban features such as buildings and streets, and 307 

allowed the dynamic interactions among hazard, exposure and vulnerabilities. In a similar 308 

research area, Becu et al. (2017) integrated a coastal flooding model with a spatially explicit 309 

agent-based land planning model (LittoSIM) to simulate a coastal development area and its 310 

management of flood prevention measures. Similarly, studies by Haer et al. (2019) presented 311 

a multi-disciplinary approach integrating different types of adaptive behaviours of 312 

governments (proactive and reactive) and households (rational and boundedly rational) in a 313 

continental-scale risk-assessment framework for river flooding in the European Union. In 314 

particular, the adaptive behaviour of households was built based on an economic decision-315 

making model called discounted expected utility, and at each time step these agents decided to 316 

either flood-proof existing buildings or to elevate newly developed buildings. Similar micro- 317 

(household) and macro (government) integrated ABM approaches have also been observed in 318 

a number of papers that were reviewed, e.g., Abebe et al. (2019b); Mustafa et al. (2018); and 319 

Abebe et al. (2019a). 320 

For community flood risks, individual agents can mitigate risks by household mitigation or by 321 

moving based on risk and coping perceptions and are influenced by other agents’ mitigation 322 
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behaviours, whilst the community can mitigate or disseminate information to reduce risks. Both 323 

can have a significant influence on each other, therefore, community flood risks are the 324 

outcomes of an evolving process. To capture information on how community policies and 325 

individual decisions can affect on the evolution of flood risks under different future climate 326 

scenarios, Tonn and Guikema (2018) and Tonn et al. (2020) developed an ABM based 327 

approach to understand the temporal aspects of flood risk by integrating behaviour, policy, 328 

flood hazards and engineering interventions within a whole dynamic system. The ABM model 329 

focused on simulating a number of adaptation and mitigation methods from the dissemination 330 

of flood management information, installation of community flood protection, elevation of 331 

household mechanical equipment, to elevation of homes.  332 

To reduce the adverse impacts from flood events, risk communications play a vital role in the 333 

aspect of increasing people’s flood risk awareness. Risk communication is commonly done 334 

through a top-down manner from the governments and organisations (e.g., brochures, media 335 

campaigns, and internet websites). However, such an approach has been found less efficient, 336 

because of the lack of considering of cultural differences and local circumstances (INTERREG, 337 

2013;Burningham et al., 2008;Martens et al., 2009). ABM has been applied to assess the 338 

effectiveness of flood communication strategies and influences of social networks in the 339 

Netherlands (Haer et al., 2016). Its highlight was that the social-psychological simulation of 340 

individual’s flood-risk preparedness decision was firmly based on the Protection Motivation 341 

Theory (Rogers, 1983). By the same first author (Haer et al., 2017), three economic decision 342 

models were employed for simulating human behaviours (i.e., household investments in flood 343 

loss-reducing measures) in flood risk analysis, based on an Expected Utility Theory which is a 344 

traditional economic model of rational agents (Von Neumann and Morgenstern, 2007), a 345 

Prospect Theory which takes account of bounded rationality (Wakker, 2010) and a Prospect 346 
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Theory model that accounts for changing risk perceptions and social interactions through a 347 

process of Bayesian updating (Viscusi, 1989).  348 

Hazard migration could also be modelled by ABM, which might be triggered by environmental 349 

threats like flood events as well as temporal changes in resource availabilities (e.g., population 350 

growth, employability, house price) along with a number of other factors. Hassani-Mahmooei 351 

and Parris (2012) reported the development of an ABM tool on investigating the migration 352 

dynamics that might arise in Bangladesh as a result of extreme hazards (include flood) that 353 

were likely to occur due to climate change. This study was based on district-level, with each 354 

district represented in the model by one main agent only who managed the interactions within 355 

the district and made decisions on movement depending on the results of three factors (the push 356 

factors that are associated with climate change scenarios and socio-economic conditions such 357 

as poverty level and unemployment rate; the pull factors which are the socio-economic 358 

conditions in the potential destinations; and intervening factors such as house ownership and 359 

employment conditions). The districts were connected as a network with nodes representing 360 

the centroids of the districts and links representing possible migration paths between districts. 361 

Past stay/migration decision outcomes were used as inputs through feedback loops for their 362 

future decisions. Similarly, Husby and Koks (2017) applied the ABM approach for post-hazard 363 

household migration and coupled that with input-output and computable general equilibrium 364 

models to estimate economy-wide flood disaster losses.  365 

In addition to the aforementioned studies, ABM model has also been used in a wider range of 366 

flood adaptation and planning cases, for example, assessed the effectiveness of a range of 367 

physical/structural and social preparedness adaptation measures for manufacturing small and 368 

medium-sized enterprises to reduce the impacts of and expedite recovery from major flood 369 

events (Coates et al., 2019); determined when and where in a region flood investments should 370 

take place through coupling with a regional annual maximum floods model and cost–benefit 371 
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analysis (O'Connell and O'Donnell, 2013); coupled with a property value estimation model to 372 

simulate coastal real estate market performance after different storm-event scenarios (Chandra‐373 

Putra and Andrews, 2020); used as a flood risk management teaching tool to allow participants 374 

to play the role of decision makers in a developed ABM based gaming platform and found an 375 

appropriate balance between flood associated socioeconomic and environmental challenges 376 

(Taillandier and Adam, 2018;Shelton et al., 2018;Daré et al., 2018); as well as assessed various 377 

management and adaptation plans on flood risks in a general way (Valkering et al., 378 

2005;Erdlenbruch and Bonté, 2018;Dressler et al., 2016;Baeza et al., 2019).  379 

3.3.3 Hydrological modelling 380 

Another area that ABM has been lightly explored in the field is on hydrological modelling 381 

which is related to flood risk management. One specific application was on mapping the 382 

connectivity of potential runoff source areas and flow paths to reduce flood risks, in particular, 383 

to improve our understanding of the hydrological dynamics of low-frequency, high-intensity 384 

rainfall events in semi-arid catchments (Reaney, 2008). The challenges of modelling such 385 

events are due to the infrequent nature of the storms, as well as the complex interactions among 386 

runoff generation, transmission and re-infiltration over short temporal scales (Cerda, 387 

1995;Reaney et al., 2007). Most of the distributed hydrological models do not provide 388 

sufficiently accurate information on the origin of runoff within a catchment. To tackle this 389 

challenge, an ABM approach was applied in Reaney (2008) to trace the path taken by water 390 

through a semi-arid catchment. Specifically, autonomous software agents were given 391 

information on their local environment generated by the hydrological model and decided on 392 

their next spatial locations based on probability theory (i.e., stay in the current cell, infiltrate 393 

into the soil, or flow into a neighbouring cell). Another interesting area was explored by 394 

Sanchez et al. (2014) on adopting ABM for evaluating flow path in urban drainage networks, 395 

specifically to simulate raindrops movements over topography under the gravity rule. Each 396 



17 

 

agent has an elevation as a property and several agents can be stacked together until they reach 397 

a positive gradient from the location to the nearest minimum neighbouring cell, hence 398 

indicating the direction of flow in the pipes. Unlike most of the reviewed studies described in 399 

this paper, the agents in this study were manually generated by clicking the computer’s mouse 400 

at particular points of interest,  401 

 402 

4. Discussions 403 

4.1 ABM platforms/tools 404 

 405 

The availability of the off-the-shelf software has made the ABM developing procedures much 406 

easier for flood risk management applications. A variety of studies have been carried on 407 

evaluating different ABM tools in a general way (Abar et al., 2017;Allan, 2010;Arunachalam 408 

et al., 2008;Kravari and Bassiliades, 2015;Nikolai and Madey, 2009;Railsback et al., 2006). In 409 

particular, Abar et al. (2017) has compared over 80 ABM tools in the aspects of their technical 410 

features and specifications including model development effort and modelling strength; and 411 

Kravari and Bassiliades (2015) evaluated 24 ABMs platforms based on their operating ability 412 

and pragmatics. Although a number of ABM tools/platforms are available as either open-413 

sourced or close-sourced, based on the reviewed papers, the most commonly used are found to 414 

be Netlogo, Repast (Recursive Porous Agent Simulation Toolkit) (Collier, 2003), and MASON. 415 

The comparison of the three tools is summarised in Table 1. They all have limitations and 416 

benefits in relation to specific requirements, evaluation criteria and individual’s programming 417 

preference. Overall, Netlogo is the quickest to learn and the easiest to use which is particularly 418 

suitable for beginners, but might not be the best option for building large and complex models. 419 

Although Repast is slower than MASON, it has a significantly larger user base, meaning 420 

getting support and advice from the community is easier.  A comprehensive comparison of the 421 
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three tools is out of the scope of this study and interested readers are referred to Railsback et 422 

al. (2006) and the above review papers for more details.  423 

 424 

4.2 Advantages  425 

 426 

ABM is an ideal tool for dynamically modelling the heterogeneity of individuals for flood-427 

related studies (Dawson et al., 2011), and in principle, agents can be simulated to almost any 428 

level of details. Each agent can have state variables to represent their behaviour rules, as well 429 

as interactional history with its surrounding environments and other agents (DeAngelis and 430 

Grimm, 2014). Integrating each agent’s decision makings will result in an overall consequence 431 

of the whole community/population (Vincenot, 2018). Even the simplest decision-making rule 432 

based on logical “if-then” structure can result in rather complex interactions. Not to mention 433 

that the decision-making rules can become a lot more complicated such as probabilistic where 434 

an array of possible actions response to some stimulus is defined for each agent and also adopt 435 

complex theoretical models from economical, psychological and sociological fields as rule 436 

representations (Haer et al., 2017). ABM allows a model to be designed in a way that is more 437 

representative to the real-world systems rather than forcing the researchers to simplify system 438 

representations purely for analytical tractability (Tesfatsion et al., 2017). In particular, the key 439 

elements (e.g., physical, biological, institutional, individual, and communal) of the flood 440 

system can be simulated interactively under one modelling framework, and accordingly, 441 

important questions could be answered: under certain environmental conditions, what would 442 

the agents do? What could they do? And what should they do? (Tesfatsion et al., 2017) 443 

Although ABM models are only an approximation of the full complexity of the real-world 444 

entity’ behaviour, it is very effective for disentangling specific behavioural processes (Haer et 445 

al., 2016). Moreover, by adjusting certain ABM parameters, it can be very useful in 446 

investigating the key drivers, scope, and limitations for future flood adaptation and mitigation 447 
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plans, as well as visualize different planning scenarios for improved understanding among 448 

relevant stakeholders. As such ABM has the advantage as being a bottom-up supporting tool 449 

for flood-related policy-making (Van Dam et al., 2012). Besides, it can simulate real-time agent 450 

behaviours when facing flood threats (Yang et al., 2018), making the model suitable for 451 

delivering insights into emergent features such as evacuation, traffic plan, and exposure 452 

assessment which are difficult to be extracted from other approaches (e.g., Event and Fault 453 

trees, Bayesian Networks, Microsimulation, Cellular Automata, System dynamics as described 454 

in Gilbert and Troitzsch (2005)) (Dawson et al., 2011). Another benefit of the ABM framework 455 

is that it has the flexibility of quick revision and add/change modules (Crick et al., 2018). For 456 

example, when new policy or literature on improved decision-making methods become 457 

available, prompt updates could be made to the framework.   458 

4.3 Limitations and potential ways for improvements  459 

Despite a growing interest in ABMs across various research fields, there is still limited 460 

application of this technique for flood-related studies. The main challenges of the ABM 461 

modelling have been categorised into three areas: 1) model development, 2) model assessment 462 

and testing, and 3) model documentation.  463 

Model development 464 

First, the ABM models applied in the field lack a clear conceptual framework and theoretical 465 

support. As pointed out by Robinson and Rai (2015), the effectiveness of an ABM over other 466 

methodologies, relies on a rigorous combination of theoretical and empirical foundations. 467 

Therefore, when implementing ABM models to simulate studies that have an overall high 468 

degree of sophistication, the model rigour should also meet the same standard. However, most 469 

of the reviewed papers lack a sound theoretical underpinning (Kellens et al., 2013), and often 470 

with a plethora of independent ad hoc assumptions of the decision-making process without 471 
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being grounded on the established behavioural theories. Although there is a few studies focused 472 

on the testing of theories (Haer et al., 2016;Haer et al., 2017;Haer et al., 2019), they are based 473 

on economic theories only, and ignoring other relevant disciplines, such as psychological (e.g., 474 

the theory of planned behaviour) field (Groeneveld et al., 2017). Using decision-making 475 

models based on theory has several advantages over ad hoc implementations (Rai and Henry, 476 

2016). For examples, it fosters interdisciplinary communications, makes improvement of 477 

models easier, allows to test alternative theories even when data is sparsely available, and leads 478 

to more robust and faster scientific progress (Groeneveld et al., 2017;Bell et al., 2015;Klabunde 479 

and Willekens, 2016).  480 

Instead of relying on fixed theoretical rules to control the way agents make decisions, we can 481 

borrow concepts from other fields such as computing science and ecology to setup decision-482 

making processes and human behaviour based on technologies such as machine learning and 483 

artificial life studies (e.g., artificial neural network (ANN), genetic algorithm (GA)) (Hamblin, 484 

2013;Huse et al., 1999;DeAngelis and Diaz, 2019). For example, ANN can train the weights 485 

of different inputs by continuously modifying these weights until the resulting decisions and 486 

agent behaviours achieve required accuracy. It captures the decision-making processes by 487 

learning from how individual’s brain functions and once the model is trained, with any new 488 

inputs it can determine the decisions that meet the required degree of accuracy and evolve 489 

(Huse et al., 1999;Lek and Guégan, 1999). In ecology, when utilising ANN in ABMs, a 490 

common way of training is by using the GA, which was also adopted in one of the reviewed 491 

papers (Mustafa et al., 2018) for calibrating the ABM-based land-use change model. GA is an 492 

optimisation tool that is based on the principles of crossing over and mutation to essentially 493 

evolve the decision-making processes of individuals, without the need for probabilistic or 494 

logistical rules (DeAngelis and Diaz, 2019).  495 
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Alternative approaches to inform model structure can also be learnt from other more 496 

established fields such as ecology and land-use change. For instance, a strategy called Pattern 497 

Oriented Modelling (POM) could provide a unifying framework for decoding the internal 498 

organisation of the complex agent-based systems and might provide insight towards unifying 499 

algorithm theories for building up the relationship between adaptive behaviour and system 500 

complexity (Grimm et al., 2005), and reduce model uncertainty (Magliocca and Ellis, 2013). 501 

Patterns are the defining characteristics of a system, hence important indicators for underlying 502 

processes and structures. When modelling agent decisions with the POM, adopting “strong 503 

inference” (Platt, 1964) by contrasting alternative decision models or “theories” (Auyang, 504 

1998;Grimm and Railsback, 2005) is recommended as a useful strategy (Grimm et al., 505 

2005;Magliocca and Ellis, 2013).  506 

For the simulation of human behaviours, in the majority of ABM applications, a rational actor 507 

model is normally used, which is clearly insufficient to describe the complexity of the human 508 

system. Furthermore, various decision-making processes might be applied to different agents, 509 

and even by the same agent under various situations because humans are not constrained by 510 

one identity or act following the predefined rules (Haer et al., 2017; Kurtz and Snowden, 2003). 511 

Although there exist many theories scattered across different fields (Groeneveld et al., 2017) 512 

for simulating human behaviours, most of them cover only a certain aspect of decision-making 513 

and vary in their degree of formulation. A framework for behavioural theory comparisons and 514 

alternative theory communications such as the one proposed by Schlüter et al. (2017) could be 515 

useful in tackling those challenges.  516 

Furthermore, different approaches could be adopted to empirically inform ABM development, 517 

such as through sample surveys, participant observation, field and laboratory experiments, 518 

companion modelling, and GIS and remotely sensed data as reviewed by Robinson et al. (2007). 519 

In flood risk domain, for examples, survey data such as those about flood risk perception and 520 
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behaviour could be collected for model refinement through purposely designed questionnaires 521 

(Haer et al., 2019; Dawson et al., 2011; Wang et al., 2018), experiments (e.g., VR experiment 522 

used in (Li et al., 2019)) and role-playing games (e.g., Taillandier and Adam, 2018; Shelton et 523 

al., 2018; Daré et al., 2018)). Since data collection capabilities are enhanced rapidly by 524 

technologies, and global remote sensing data are becoming more available, it is expected the 525 

ABM approach would become more popular in the field. Nevertheless, more coordinated 526 

efforts are required for data sharing within the whole modelling community.   527 

Given the flexibility of representation by the ABM, and the increment of data availabilities, 528 

there is a need to identify the appropriate level of complexity in the models. If a model is too 529 

simple, it neglects essential mechanisms of the real system; however, if a model is too complex, 530 

it can become cumbersome and get bogged down in unnecessary details (Grimm et al., 2005). 531 

In practice, ‘a simple model that can be well communicated and explained is more useful than 532 

a complex model that has narrow applicability, high costs of data, and more uncertainty’ 533 

(Voinov and Bousquet, 2010). In order to find an optimal zone of model complexity, systemic 534 

methods such as the POM, stepwise approaches (e.g., either building up components starting 535 

with simple prototypes/models, or removing components progressively from complicated 536 

models), and modular design (e.g., extensive planning phase, the use of unified model language 537 

diagrams) can be used to guide modellers in reaching an appropriate level of model 538 

complexities (Sun et al., 2016).  539 

Model assessment and testing 540 

ABM assessment and testing is the key to understand if development is appropriate to address 541 

the question or problem at hand. While it is the advantage of an ABM that a wide range of 542 

flood adaptation plans and risk management strategies could be compared, the method is still 543 

limited by the lack of empirical data support for model testing. For instance, it is challenging 544 
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to firmly identify adaptive behaviours in a specific study area and obtaining these kinds of 545 

datasets for model testing is normally challenging. In order to make the model robust, 546 

uncertainty analysis to test a large range of parameter settings could be essential (Lumbroso 547 

and Davison, 2018;Dawson et al., 2011;Jenkins et al., 2017;Du et al., 2017a). Moreover, there 548 

is a continuing need for sensitivity analysis, especially in the forms tailored specifically for 549 

ABM (e.g., global sensitivity analysis (Magliocca et al., 2018)), not just standard measures 550 

such as Kappa that is more suitable for linear models (O’Sullivan et al., 2016).  551 

While the ability to replicate empirical evidence is often seen as the only truly decisive criterion 552 

for the quality of an ABM model, it has been suggested by Bert et al. (2014) that the ABM 553 

testing should also rely on the validation of model processes and components during the model 554 

development. This is because most ABM models are applied to non-observable scenarios such 555 

as the implementation of hypothetical adaptation policies. As a result, there are no 556 

observational data available for the testing. The model should show theoretical validity, agent-557 

behavioural validity, validity under extreme conditions and structural validity (Damgaard et al., 558 

2009). A number of approaches may be used for the model process validation, such as the 559 

TAPAS (Take A Previous Model and Add Something) (Polhill et al., 2010), “modelling for a 560 

purpose” (Takama and Cartwright, 2007), POM (Grimm et al., 2005), and the participatory 561 

modelling (Voinov and Bousquet, 2010). Clearly, such approaches are beneficial for both 562 

model development and testing. For the empirical testing, it is not only to assess how good the 563 

model can reproduce the reality, but also for the simultaneous calibration, tuning and further 564 

development of the model (Bert et al., 2014). For the latter, methods such as the “Post-hoc 565 

POM” could be used  (Topping et al., 2012). To find the balance between empirical validation 566 

and process validation, the “invariant-variant” method proposed by Brown et al. (2005) could 567 

be a useful guide which has been applied in the land-use field to help modellers to understand 568 
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the situations with good model results, and the instances with poor  model results due to either 569 

path dependence (Arthur, 1988) or stochastic uncertainty.  570 

When dealing with complex models especially these with a large number of different 571 

adaptation options and a large group of heterogeneous agents, the computational requirements 572 

could explode to infeasible levels that certainly cannot be handled by desktop PCs. With the 573 

rapid development of supercomputing facilities, this issue could be addressed through 574 

implementation in cluster environments as well as the application of surrogate models and 575 

design experiments with a minimal amount of simulations  (Löwe et al., 2017), for instance, 576 

sequential setups proposed by Kleijnen (2015).  577 

Model documentation  578 

Documentation for ABMs is often incomplete, opaque and difficult to understand, which 579 

hamper their applications and further developments by the community. Without a standard 580 

protocol, it would be difficult to understand, compare and duplicate the ABM models that have 581 

been developed. Grimm et al. (2006) has proposed a standard protocol called ODD (Overview, 582 

Design concepts, and Details) for describing ABMs, which has been widely received in the 583 

scientific community. First, the ‘Overview’ provides the purpose and main processes of the 584 

model with three subcomponents of purpose, state variables and scales, and process overview 585 

and scheduling; second, the ‘Design concepts’ describes the general concepts underlying the 586 

model design; and third, the ‘Details’ shows all the necessary information for the 587 

reimplementation of the model with three subcomponents of initialization, input, and 588 

submodels. A more recent version of the protocol (ODD + Decision) has been presented in  589 

Müller et al. (2013), which is added with a new component for human decision-making. The 590 

new version is more useful for documenting ABMs in general when human decisions are 591 

included which is more suitable for flood-risk related ABM models. The ODD and its extension 592 
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have been used widely for documenting ABMs including in flood-related studies (Tesfatsion 593 

et al., 2017;Noël and Cai, 2017). It is also expected if developed ABM models/frameworks 594 

could be shared and reused such as through open-source software platforms (e.g., 595 

http://www.comses.net, and https://github.com/), it might allow more researchers to focus on 596 

exploring the choices of appropriate decision models (Bell et al., 2015). 597 

5. Conclusions  598 

The utilisation of ABM to tackle flood-related challenges is becoming more popular in recent 599 

years. The variety of identified topic areas illustrates that, on one hand, there is a continuing 600 

prominence of real-time flood emergency management and planning focused studies; and on 601 

the other hand, there is a significant rise of studies interested in the application of ABM to 602 

flood adaptation policy and strategy planning support in recent years.  A particularly valuable 603 

area might be the latter. This is based on two reasons. First, studies in this area have significant 604 

potential to contribute to practically driving flood resilience by guiding and improving multi-605 

shareholder decision-making. Second, such a topic could tackle interdisciplinary issues and 606 

encourage cross-disciplinary collaborations more directly than other topics. As increasing 607 

flood resilience is high on the agenda of policy-makers and academics alike in many countries, 608 

it is expected that the importance of this topic in the context of flood risk management studies 609 

will remain.  610 

While technical comparisons of the ABM models are not the focus of this paper, the review 611 

however reveals the limitation of ad hoc implementations of decision-making and behaviour 612 

in the models, and lack of a consistent format of presentation and documentation. This, as a 613 

result, makes the model comparison difficult across the studies and is challenging to summarize 614 

a common framework for ABM applications in flood risk management. Future ABM 615 

development in the field will be influenced by the continuing development and refinement of 616 

http://www.comses.net/
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modelling framework and theoretical foundations, and enhancement of model testing and 617 

documenting capabilities. While the review has identified the limitations and potential areas 618 

for future improvement of ABM applications in the field, it would be the most efficient to 619 

develop across disciplines to include all actors in ABM systems. For instance, it would benefit 620 

from the interactive involvement of environmental scientists, social scientists, economists, and 621 

psychologists in the development process. Especially, for adaptation and mitigation planning, 622 

models that encourage collaboration between disciplines and sectors, will more likely promote 623 

knowledge sharing and allow easier acceptance by wider audiences/users naturally (Hansen et 624 

al., 2019).  625 

Based on the review, although ABM has shown valuable advancements for flood risk 626 

management studies, its application is still in a state of infancy, especially its contribution to 627 

the understanding of how human decisions and behaviours affect the whole human-flood 628 

systems has yet to be fully exploited.  629 
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Table 1. Comparisons of Netlogo, Repast and MASON. Source (Salgado and Gilbert, 2013).  1036 

 Netlogo Repast MASON 

Licence Free, but not 
open source 

General Public 
Licence 

General Public 
Licence 

Documentation Good Limited Improving, but 
limited 

User Base Large Large Increasing 
Modelling 

Language(s) 
NetLogo Java, Python Java 

Speed of Execution Moderate Fast Fastest 
Support for graphical 

user interface development 
Very easy to 

create using ‘point and 
click’ 

Good Good 

Built-in ability to 
create movies and 
animations 

Yes Yes Yes 

Support for 
systematic 
experimentation 

Yes Yes Yes 

Easy of learning and 
programming 

Good Moderate Moderate 

Easy of Installation Good Moderate Moderate 
Link to geographical 

information system 
Yes Yes Yes 
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Figure 1. Annual distribution of the identified articles. 1040 
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 1043 

Figure 2. The global distribution of ABM applications in flood risk management (by their case 1044 

study areas). Only countries appeared more than once are listed (49 papers). Additional seven 1045 

papers have one case study carried out in Bangladesh, Chile, Ethiopia, Germany, Ghana, Italy 1046 

and Pakistan, respectively. The remaining five papers are based on synthetic scenarios (four) 1047 

and the whole European Union (one), respectively.  1048 
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