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2 

 

Abstract 15 

Livestock production uses 37% of land globally and is responsible for 15% of anthropogenic 16 

greenhouse gas emissions. Yet livestock farmers across Europe receive billions of dollars in annual 17 

subsidies to support their livelihoods. This study evaluates whether diverting European subsidies into 18 

the restoration of trees on abandoned farmland represents a cost-effective negative-emissions 19 

strategy for mitigating climate change. Focusing on sheep farming in the United Kingdom, and on 20 

natural regeneration and planted native forests, we show that, without subsidies, sheep farming is 21 

not profitable when farmers are paid for their labour. Despite the much lower productivity of upland 22 

farms, upland and lowland farms are financially comparable per hectare. Conversion to ‘carbon 23 

forests’ is possible via natural regeneration when close to existing trees, which are seed sources. This 24 

strategy is financially viable without subsidies, meeting the net present value of poorly performing 25 

sheep farming at a competitive $4/tCO2eq. If tree planting is required to establish forests, then 26 

~$55/tCO2eq is needed to break-even, making it uneconomical under current carbon market prices 27 

without financial aid to cover establishment costs. However, this break-even price is lower than the 28 

theoretical social value of carbon ($68/tCO2eq), which represents the economic cost of CO2 emissions 29 

to society. The viability of land-use conversion without subsidies therefore depends on low farm 30 

performance, strong likelihood of natural regeneration, and high carbon-market price, plus 31 

overcoming potential trade-offs between the cultural and social values placed on pastoral livestock 32 

systems and climate change mitigation. The morality of subsidising farming practices that cause high 33 

greenhouse gas emissions in Europe, whilst spending billions annually on protecting forest carbon in 34 

less developed nations to slow climate change is questionable. 35 

 36 

Keywords: greenhouse gas mitigation, livestock, pasture, forest regeneration, subsidies, carbon costs 37 
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Introduction 38 

Livestock production occupies ~37% of land globally for grazing (IPCC, 2019), plus an additional 20% 39 

of cropland dedicated to feed-crop production (Foley et al., 2011).  As an industry, livestock production 40 

is responsible for ~15% of total anthropogenic greenhouse gas (GHG) emissions, of which grazing 41 

systems directly contribute 20% (Garnett et al. 2017), with fluxes dominated by methane from enteric 42 

fermentation and nitrous oxide release from excreta (Herrero et al. 2016, Garnett et al. 2017). 43 

Livestock also degrade land resulting in flooding, demand and pollute freshwater, and adversely affect 44 

biodiversity (FAO 2006). Despite this environmental damage, the livestock industry is widely 45 

subsidised. In 2013, the net value added of grazing livestock farms in the European Union (EU) 46 

constituted ~50% of direct payment subsidies (European Commission 2016). ‘Less favoured areas’, 47 

regions inherently unsuited to production, are further subsidised to support farming livelihoods and 48 

to prevent land abandonment. Between 2007-2013, €12.6 billion was allocated for this purpose 49 

(European Commission 2018; equivalent to ~US$ 14.1 billion). 50 

Juxtaposing this European subsidy for a GHG-emitting land-use, tree planting is being 51 

promoted at the global scale as a cost-effective negative-emissions strategy for mitigating climate 52 

change, restoring forests, and progressing sustainable development goals (Chazdon et al. 2015; 53 

Griscom et al. 2018, FAO 2018).  While there is engagement with this movement in Europe, current 54 

forest conservation and restoration actions focus primarily on less developed nations, especially in the 55 

tropics. For example, although the Bonn Challenge, a German and IUCN (International Union for 56 

Conservation of Nature) initiative, is intended as a global effort to restore degraded land, only 0.1% 57 

of currently committed land is in Europe (Bonn Challenge 2019). Despite Europe’s disproportionate 58 

historical contributions both to emissions and deforestation (Kaplan et al. 2009; Althor et al. 2016), it 59 

has the lowest percentage of protected forest area of any vegetated sub-region and limited recent 60 

increase in forest cover (Morales-Hidalgo et al. 2015, EEA 2017).  61 

Converting pastureland to forest across Europe has potential as a climate change-mitigation 62 

strategy, contributing to the restoration ambitions of the Bonn Challenge, whilst simultaneously 63 
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mitigating the GHG emissions from livestock agriculture. The technical potential of such a strategy has 64 

already been investigated in the United Kingdom (UK). Read et al. (2009) established that a 4% change 65 

in land cover to forestry could achieve an annual abatement of GHGs equivalent to 10% of UK 66 

emissions by 2050. This mitigation potential is an important pillar of recent GHG removal scenarios 67 

(Committee on Climate Change, 2018; Royal Society & Royal Academy of Engineering, 2018). More 68 

drastic land-use transformation is possible without compromising food production. For example, 69 

Lamb et al. (2016) proposed that, by increasing productivity, 5 million ha of agricultural land could be 70 

spared, which, if coupled with habitat restoration, could reduce predicted emissions in 2050 by 80%.  71 

Thus, there are both strong moral and logical arguments for pasture conversion to forest. However, 72 

this strategy also has significant economic, social and cultural implications for rural communities, 73 

which are likely to limit its practical implementation (Lamb et al. 2016). It is therefore necessary to 74 

analyse the socio-economic viability of such a strategy.  75 

In this study, we use sheep farming in the UK as a case study to assess the financial 76 

implications of converting pasture lands to forestry. We first establish the economic viability of sheep 77 

pasture relative to ‘carbon forests’ under different production and tree-recovery scenarios. Secondly, 78 

we explore the circumstances under which conversion of pasture to forestry might be economically 79 

viable and discuss the cultural implications. 80 

 81 

Strategy  82 

Pasture covers ~29% of UK land area, making it the most extensive land class (Rae 2017). The UK 83 

livestock industry is heavily dependent on subsidies: in 2018, up to 94% of livestock farm business 84 

income was from EU subsidies under the Common Agricultural Policy (CAP) (DEFRA 2018a). Sheep are 85 

the most numerous livestock animal in the UK (excluding poultry), it is one of the top 10 sheep 86 

producers worldwide (DEFRA 2020, FAO 2018), and production is commonly focused on marginal and 87 

unproductive land. There are over 70,000 farms holdings with breeding ewes and, in 2017, sheep 88 

farming generated 4.7 million tonnes of CO2 equivalent accounting for ~1% of total UK emissions 89 
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(AHDB 2018, NAEI 2020). Simultaneously, UK tree cover is 8%, making it one of the least densely 90 

forested countries in Europe (FAO 2015, Forestry Commission, 2017a). Historically covered in forest 91 

and with a suitable climate, the UK possesses large potential for reforestation as a climate change-92 

mitigation strategy (Read et al. 2009).  93 

To assess the economic potential of conversion, the profitability of pasture and forest must 94 

be established. The economic success of pasture depends on the income from animal products and 95 

the costs incurred producing them. Here, the profitability of sheep farming is assessed without 96 

subsidies to evaluate the economic viability of alternative land uses without government support. The 97 

economic viability of pasture is then compared with land conversion to forest. Although the 98 

profitability of timber and coppice is competitive with pasture (Heaton et al 1999, Nijnik et al. 2013, 99 

Hardaker 2018), there is a long time-lag between the costs of forest establishment and financial 100 

returns, which often discourages conversion (Lawrence and Edwards 2013). Therefore, instead of 101 

assuming income from timber production, this study assesses the feasibility of receiving payments 102 

solely for carbon sequestration.  103 

Previous studies have investigated the relative profitability of carbon payments in the tropics 104 

(Fisher et al. 2011, Gilroy et al. 2014, Warren-Thomas et al. 2018) and Australia (Comerford et al. 2015, 105 

Evans et al. 2015), showing that carbon farming can be economically competitive with pasture, but 106 

that viability depends on opportunity costs and attainable carbon price. However, as European 107 

countries have previously lacked a platform for carbon payments, there is a deficit of relevant research 108 

for Europe and temperate regions more broadly, making it necessary to assess the strategy in the 109 

European ecological and economic environment. The Woodland Carbon Code (WCC) is a UK scheme 110 

recently developed by the Forestry Commission that incentivises forestry, enabling landowners to 111 

claim money for every tonne of carbon dioxide (tCO2) they sequester (SI text 1). Landowners enter 112 

carbon credits on the UK Woodland Carbon Registry, which are voluntarily bought by companies or 113 

individuals to compensate for their own emissions (Forestry Commission, 2018a).  114 
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Economic feasibility was evaluated under three distinct scenarios: the continuation of farming, 115 

natural forest regeneration and forest planting (as summarised in Table 1).  116 

● Scenario 1:  Sheep farming on pasture continues, but without EU subsidies or equivalent. Farm 117 

accounting often does not incorporate unpaid labour carried out by the farmer(s). Since 118 

farming is compared to forest management, which has negligible labour requirements in 119 

comparison, we evaluate the profitability of sheep farming with and without labour costs. 120 

Farm performance in the UK is not spatially predictable by environmental conditions, instead 121 

being determined by individual farm efficiency (Wilson et al. 2012). Varying productivity (in 122 

kg per ha) was therefore used to reflect the range in farm performance. 123 

● Scenario 2:  Sheep farming is abandoned and forests naturally regenerate, with carbon 124 

payments claimed. Crucially, Scenario 2 assumes that a seed source from nearby trees ensures 125 

that regeneration in pastureland is not limited by tree dispersal and establishment. Both 126 

mixed native deciduous woodland and coniferous scots pine forests are assessed. 127 

● Scenario 3: Forests are established through planting, carbon payments claimed. Forest 128 

planting involves different levels of disturbance to the existing environment. Ground 129 

disturbance results in loss of soil carbon, reducing the overall amount of carbon that can be 130 

claimed (Forestry Commission, 2018a). Consequently, a conservative approach was adopted 131 

and planting was assumed to incur maximum disturbance. 132 

A common issue with carbon-offsetting schemes is permanence, i.e., the risk that the carbon 133 

sequestration can be reversed. The WCC accounts for this with a pooled buffer in which each WCC 134 

project contributes 20% of its carbon credits to the buffer to cover any loss of carbon (e.g. through 135 

storm damage) and any trees lost that must be replanted (Forestry Commission, 2018a). In addition, 136 

woodlands cannot be felled in Britain without a licence (Forestry Commission, 2018c). WCC projects 137 

must also conform with the UK Forestry Standard (Forestry Commission, 2017b).   138 

Given the negative environmental impacts of exotic conifer plantations, including loss of 139 

ground vegetation, acid run-off, modified hydrological systems and lower biodiversity (Brockenhoff et 140 
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al. 2008, Bunce et al. 2014), we only considered the conversion of pasture to native woodland. 141 

However, the productivity and, therefore, sequestration potential of exotic conifers is significantly 142 

greater than that of natives (Read et al., 2009). 143 

 144 

Methods 145 

Assessing economic feasibility 146 

The net present value (NPV) of sheep pasture and forests receiving payments for carbon was 147 

calculated. This represents the benefits minus costs over a given time period; a positive NPV indicates 148 

net profit whereas a negative NPV signifies net loss. Following HM Treasury (2018), NPV was calculated 149 

over a 25-year horizon with a discount rate of 3.5%. Rates of 7% and 10% were also applied to reflect 150 

higher discount rates in the private sector (Moran et al. 2008, HM Treasury 2017). This range is 151 

consistent with existing literature (Nijnik et al. 2013, Gilroy et al. 2014, Warren-Thomas et al. 2018).  152 

 153 

Farming NPV 154 

NPV was calculated, without any subsidies, for sheep that lamb in spring. Income and cost values were 155 

taken from the 2018 John Nix Pocketbook for Farm Management, which is produced by the Andersons 156 

Centre of Farm Business Consultants (Redman 2017). The pocketbook provides estimates of costs and 157 

income for low-, average- and high-performing farms. Values are based on the UK Farm Business 158 

Survey using 2017/18 prices and presented separately for upland and lowland farms due to their 159 

distinct characteristics. Upland farms deemed ‘Less Favourable Areas’ are characterised by lower-160 

stocking densities and poor-quality land. Lowland farms are generally more intensive and have better 161 

access to markets (Hardaker 2018).  The values in Redman (2017) were used to establish the range of 162 

farms in the UK, with the resulting distribution resampled 10,000 times to account for uncertainty and 163 

variability within these parameters. The underlying distribution of farm productivity across the UK was 164 

unknown, and consequently a uniform distribution was adopted, bounded by the values for high- and 165 

low-performing farms in each case. Productivity and NPV were then calculated for each iteration as:   166 
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𝑆ℎ𝑒𝑒𝑝𝑁𝑃𝑉 = ∑𝑛
1

(𝑂 − 𝑉 − 𝐹)(1 + 𝑟)𝑛  
(1) 

where: O is output, the income from lamb and wool sales less depreciation costs, calculated using a 167 

fixed price for lamb and wool; V is variable costs, those that vary with output and include feed 168 

concentrates, veterinary and medicine, forage and miscellaneous costs (e.g. contract shearing etc.); 169 

F is fixed costs, which do not vary with output, including labour, power and machinery, and overhead 170 

costs. NPV is calculated both with and without labour costs. Rent was excluded from the analysis 171 

because prices can be distorted by subsidies (Patton 2008, DEFRA 2018a). r is discount rate and n is 172 

year (up to 25 years).   173 

 174 

Forest NPV 175 

The quantity of claimable carbon sequestered was determined using look-up tables provided by the 176 

WCC, based on forest carbon models (Randle and Jenkins 2011). Carbon sequestration was estimated 177 

for native woodland over 25 years and accounted for the soil carbon loss through disturbance, 178 

depending on the establishment method adopted (SI Text 1).  179 

The amount of claimable carbon per ha was then multiplied by the price of carbon to estimate 180 

income from forests.  Payments were assumed to be made each time carbon sequestration is verified: 181 

after the first 5 years, then at 10-year intervals. Forestry costs include carbon validation and registry 182 

use (Table S1). Values were provided by Dr Vicky West, a member of the WCC executive board. When 183 

planting trees (Scenario 3, Table 1), there are additional establishment costs; these were taken from 184 

Haw (2017) and cover the first 15 years (Table S1). NPV was then calculated as 185 

    𝐹𝑜𝑟𝑒𝑠𝑡𝑁𝑃𝑉 = (𝐵0−5−𝐶0−5)(1+𝑟)5 + (𝐵5−15−𝐶5−15)(1+𝑟)15 + (𝐵15−25−𝐶15−25)(1+𝑟)25   (2) 

where B0-5 is the benefit received from forestry (i.e. the income from carbon payments) in years 0-5, 186 

B5-15 the benefit received in years 5-15, and B15-25 the benefit received in 15-25 years. B was based on 187 

carbon price, which we resampled across 10,000 iterations, under a uniform distribution bounded by 188 

the lowest price in the current UK carbon market (~US$4 per tCO2) and the social price of carbon 189 
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estimated by the UK government (US$68 t-1 CO2eq). C is the costs associated with carbon payments, 190 

allocated to 5- or 10-year verification intervals. Following the WCC guidelines, no net carbon 191 

sequestration was assumed on pasture prior to conversion. 192 

Total costs were divided by forest area, which was resampled under a uniform distribution 193 

10,000 times, since a farmer may not turn their entire farm to forest. Forest size was assumed to range 194 

from 5-125 ha, since forests <5 ha do not qualify as ‘standard’ in the WCC and >125ha is the largest 195 

farm considered by Redman (2017), representing an upper limit to forest conversion. r is the discount 196 

rate. In both forest scenarios, it was assumed that the landowner prepares documentation for the 197 

WCC rather than contracting a project developer and, as such, no additional cost has been applied. 198 

 199 

Results 200 

Sheep farming continues (Scenario 1) 201 

The NPV of sheep pasture increases with lamb productivity (Figure 1a).  When the farmer and spouse 202 

are paid for their labour, farmers normally make a net loss with only the most productive farms 203 

breaking even. Upland farms make smaller losses (median: $-6016/ha) than lowland farms (median: 204 

$-8010/ha) because of their lower costs (Figures 1c and 1d). However, upland farms are also less 205 

productive (median: 364 vs. 563 kg/ha).  206 

When labour is unpaid, sheep farming can generate net profit (Figure 1b), although the 207 

median remains negative ($-586/ha). The difference between upland and lowland farms narrows, with 208 

median losses of $-1150/ha for upland farms and $-26/ha in lowlands, making lowland farms more 209 

profitable (Figures 1e and 1f).   210 

Varying discount rate produces the same patterns in NPVs. However, because future costs are 211 

reduced, the lowest NPVs are elevated as discount rate increases (Figure S1).  212 

 213 
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Natural regeneration (Scenario 2) 214 

The NPV of forests receiving carbon payments was calculated in relation to carbon market price and 215 

forest size (Figure 2). The size effect arises because the verification costs of the WCC are fixed 216 

regardless of forest size. For a naturally regenerating deciduous woodland, at a low carbon price ($4 217 

per tCO2), forests larger than ~25 ha make a profit, but all forests become profitable at higher carbon 218 

prices (≥$20 per tCO2) (Figure 2a). Deciduous woodland is projected to sequester a net total of 85 219 

tCO2eq/ha over 25 years. For conifer forests, changing carbon price has less effect on NPV (Figure 2b). 220 

The largest conifer forests (>100 ha) break even at ~$14 per tCO2, although even under the highest 221 

carbon prices, profit is minimal. Carbon sequestration is also markedly lower (7 tCO2eq/ha) than 222 

deciduous woodland over 25 years.  223 

For naturally regenerated deciduous woodland, increasing discount rates lowers the NPV. 224 

Higher discount rates reduce the gradient of NPV over carbon price: with a discount rate of 10% under 225 

the highest current carbon market price ($20 per tCO2), NPV only reaches ~$170/ha (Figure S2).  226 

 227 

Planted forest (Scenario 3) 228 

Planted forests were not profitable within the 25-year time-horizon, except under the highest carbon 229 

prices, breaking even at a carbon price of $55 per tCO2eq (Figure 3). However, net carbon 230 

sequestration was high, at 147 tCO2eq/ha.  231 

Varying discount rates had the same effect as seen in the natural regeneration; increasing 232 

discount rate reduces the effect of carbon price and the range in NPV (Figure S3).  233 

 234 

Discussion 235 

Under what circumstances is pasture conversion to forest financially viable? 236 

Sheep farming without subsidies is only profitable if farmer and spouse labour are unpaid (Figure 1), 237 

even then, only the most productive farms break even (Figures 1 and 4). In contrast, farmers can 238 

generate profits without subsidies by claiming payments for the carbon sequestered in deciduous 239 
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forests that have naturally colonised former pasture land (Figures 2 and 4). This is because of the 240 

minimal costs involved, particularly for forests larger than 10 ha when the carbon market price is high, 241 

and is consistent with previous studies showing that the natural regeneration of forest can be cost-242 

effective (Macmillan et al. 1998, Gilroy et al. 2014, Evans et al. 2015). However, slow carbon 243 

sequestration by naturally regenerated scots pine woodland means that this land-use conversion is 244 

only profitable when allowed (and is possible without deer fencing) across a large area and under high 245 

carbon prices (Figures 2 and 4).  246 

Without financial aid, planting woodland to claim carbon payments is not financially viable 247 

within a 25-year time frame under current market prices ($4-20 per tCO2eq) because of high 248 

establishment costs, requiring a price of ~$55 for the largest forests to become financially viable 249 

(Figure 3). Though this exceeds the current market price of carbon, it is comparable to estimates of 250 

the social price of carbon. The social value of carbon is the economic cost generated by the additional 251 

emission of one tCO2 (Nordhause 2017), and represents the market price that society should be 252 

theoretically willing to pay. Estimates range by three orders of magnitude, with the UK government 253 

valuing the social cost at $68 t-1 CO2eq (2009 prices) (Valatin 2011), which exceeds the break-even 254 

value for large planted forests. 255 

Compared to a naturally regenerating woodland, plantations sequester more carbon because 256 

higher yield classes and tree densities can be achieved. Consequently, NPV increases more rapidly 257 

with increasing carbon price, making plantations a more favourable climate change mitigation 258 

strategy. If a minimal disturbance scenario is adopted and the ground is prepared by hand, the net 259 

carbon sequestration and therefore NPV of plantations increases further. Moreover, planting trees 260 

produces timber of a higher quality, giving greater potential for the wood to substitute more 261 

greenhouse gas intensive materials or fuels, further enhancing the climate change mitigation potential 262 

(Cannell 2003, Morison et al. 2012). We do not account for timber revenue however, if managed 263 

effectively, this can generate future economic return (Heaton et al 1999, Nijnik et al. 2013, Hardaker 264 

2018) and could generate different outcomes between plantations and natural regeneration over the 265 
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longer-term. Carbon payments could be implemented as a means of revenue for farmers awaiting 266 

forest establishment and timber returns.  267 

Plantations become more profitable if tree planting is subsidised. In England, the government-268 

funded Woodland Carbon Fund (WCF) grant currently covers 80% of the establishment cost (Forestry 269 

Commission, 2018b). Applying this grant allows larger forests to profit at carbon prices ~$12-270 

14/tCO2eq, and NPV to increase as high as $500/ha under the highest current market price for carbon 271 

(Figure S4). The benefits of forestry are diminished when subject to higher discount rates. However, 272 

the market price of carbon is expected to increase over time as restrictions on emissions are tightened 273 

(Valatin 2011), countering the effects of discounting. In addition, payments for carbon are often 274 

received upfront (Vicky West, Forestry Commission, pers. comm.), meaning they would not be subject 275 

to de-valuation over time.  276 

 277 

Where would pasture conversion to forest be feasible? 278 

Although the profitability of pasture conversion is greatest under natural regeneration, this is 279 

unpredictable. Forest regeneration depends on site-specific conditions, including the presence of seed 280 

sources, and the absence of competition and seed predation (Harmer 1994, 1995; Hodge and Harmer 281 

1996; Harmer et al. 2005). Establishment and carbon sequestration could thus take significantly longer 282 

than the five years assumed by the WCC (Harmer et al. 2001, Poulton et al. 2003), lowering profits. 283 

However, natural regeneration is preferable, due to negligible loss of soil carbon and creation of 284 

woodlands that are environmentally well-suited, with greater structural diversity than plantations 285 

(Hodge and Harmer 1996, Harmer et al. 2001). Where conditions are favourable, natural regeneration 286 

has been successful in the UK (Watt 1934, Hodge and Harmer 1996, Harmer et al. 2001), and 287 

elsewhere in Europe (Lasanta et al. 2015).  288 

Natural regeneration is most likely to occur in close proximity to existing woodland, where 289 

agriculture has been less intense, and seed predation is minimised (Harmer 1995, Harmer et al. 2005, 290 

Tasser et al. 2007, Harmer et al. 2011). Natural regeneration is also more likely on lower quality land, 291 
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where there is reduced competition from other species (Harmer 1999, Thomas 2004). Presently, the 292 

WCC adopts a conservative approach and does not accept projects on organic soils to avoid an overall 293 

loss of carbon (Forestry Commission, 2018a). Increasing the comprehensiveness of woodland target 294 

areas to incorporate different types of establishment would help land owners make decisions about 295 

their conversion potential. In addition, the benefits of ecosystem services are spatially sensitive and 296 

this should be reflected in grant or subsidy allocation (Bailey et al. 2006, Gimona and van der Horst 297 

2007).  298 

It should be emphasised that the scenarios of natural regeneration and planting with 299 

maximum disturbance are extremes between which there is a gradient of intervention that varies with 300 

site requirements. An intermediate strategy of direct seed planting would be a cheaper alternative on 301 

better quality sites (Willoughby et al. 2004). Similarly, nucleation, where a few trees are planted and 302 

left to spread naturally, would be cheaper than planting the full forest, but more reliable than natural 303 

colonisation where natural seed sources are distant (Corbin and Holl 2012). Predation intensity also 304 

affects the viability of woodland; if deer fencing is required, this will incur greater costs than stock 305 

fencing. Future research should evaluate the cost-effectiveness of alternative establishment methods 306 

under different site-specific conditions.  307 

Although the profitability of pasture is not spatially defined in our analysis, it is likely that the 308 

farms most dependent on subsidies, i.e. upland farms in ‘less favourable areas’, would benefit most 309 

from conversion if subsidies cease. Consistent with our analysis, estimates in Hardaker (2018) range 310 

from $-16,566/ha to $-14,496/ha, while Heaton et al. (1999) observed a large reduction in the NPV of 311 

upland sheep pasture with subsidy withdrawal. They estimate a 25-year NPV with 4% discount rate of 312 

$1,862/ha (now ~$2,500/ha), but do not account for unpaid labour, machinery or overhead costs. 313 

Sheep farming in upland areas is less productive than in the lowlands and is associated with higher 314 

greenhouse gas emissions, with upland flocks producing 13.8 versus 12.6 CO2eq per kg meat in lowland 315 

farms, because animals take longer to reach the same body mass (EBLEX 2009, Garnett et al. 2017). 316 

An alternative spatial model would have captured the environmental heterogeneity of UK farming; 317 
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however, this would overlook variability in farming practices which is highly influential for profitability 318 

(Wilson et al. 2012).   319 

 320 

Is tree planting all about money and carbon? 321 

Planting exotic conifers such as Sitka spruce would generate a higher revenue from carbon payments 322 

because they are over three-times more productive than native deciduous trees (Read et al., 2009). 323 

However, maximising carbon sequestration and associated payments are unlikely to be the sole 324 

objectives of tree planting, and both pasture and native woodland provide uncosted additional 325 

ecosystem services (Table 2). Conversely, plantations of exotic tree species are considered ecologically 326 

and environmentally damaging (Brockenhoff et al. 2008, Bunce et al. 2014).  327 

Pasture is managed primarily for the provision of forage for grazing animals and this often 328 

comes at the cost of other ecosystem services. For example, fertiliser application and increased 329 

stocking densities can reduce biodiversity (Petit and Elbersen 2006, Firbank et al. 2008, Emmerson et 330 

al. 2016). Carbon storage is the only service explicitly considered in this study, but WCC projects 331 

provide multiple co-benefits, including recreation, water pollution regulation and flood control (eftec 332 

2016; Table 2). Consequently, the social and environmental benefits of forests in Great Britain was 333 

estimated at £2 billion a year (currently ~US $2.5 billion; Table 3; eftec 2015, ONS 2017), although this 334 

may not scale linearly with increased forest area. Regardless of their theoretical value, the relevance 335 

of ecosystem services depends on which ones, and by how much, governments choose to support. 336 

We may see subsidies re-structured to pay “public money for public goods” (e.g. DEFRA, 2018c) but 337 

there will inevitably be trade-offs among services (Rodríguez et al. 2006).  338 

 339 

Potential barriers to land conversion 340 

Leakage or ‘indirect land-use change’ is a potential problem for all carbon-offsetting schemes 341 

(Searchinger et al., 2018), especially if livestock production expands elsewhere, reducing or removing 342 

the overall abatement of emissions. We assume that future demand for meat is met by the sustainable 343 
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intensification of agriculture to spare land for trees (Lamb et al. 2016, Röös et al. 2017; Committee on 344 

Climate Change, 2018), coupled with reduced consumption of red meat, following scientific and 345 

government recommendations for a healthy, sustainable diet (Tilman and Clark 2015, Public Health 346 

England 2016, Yip et al. 2018). Intensifying agriculture raises profit, such that carbon prices have to 347 

match the increase to remain competitive (Phelps et al. 2013). However, given the dramatic loss 348 

incurred by sheep farming without subsidy, the majority of farms would require remarkable profit 349 

increases to break even. 350 

Economic return is not the only factor influencing farmers, and forest grant uptake is low 351 

(Lawrence and Dandy 2014). Reduced flexibility, frequent changes to grant schemes, and the 352 

complexity, effort and uncertainty associated with the application process are barriers to uptake 353 

(Lawrence and Edwards 2013, Wynne-Jones 2013, Lawrence and Dandy 2014). Farmers were assumed 354 

to complete their own documentation (see SI Text 1 for details), and while required documentation is 355 

limited and support is provided through the WCC, this represents an uncosted time investment. 356 

Furthermore, employment of a project developer would raise the break-even carbon price. There is 357 

also a strong cultural divide between farmers and foresters, and a sense that it is wrong to plant trees 358 

on productive land (Lawrence and Edwards 2013, Wynne-Jones 2013, Lawrence and Dandy 2014, 359 

Thomas, 2015). Attempts to change these attitudes will likely be more successful if farmers’ social 360 

networks are utilised, rather than imposing change externally (Torabi et al. 2016). 361 

The view that sheep farming is a heritage livelihood and the romanticising of pastoral 362 

landscapes throughout Europe are founded on the misconception that the pastoral environment is 363 

natural; yet it is a product of pre-historic and historic anthropogenic deforestation (Kaplan et al. 2009, 364 

Woodbridge et al. 2014). Moreover, the ‘high nature value’ placed on European pasture can be 365 

identified as a casualty of shifting baseline syndrome (Pauly 1995, Vera 2009). When compared to the 366 

pre-Neolithic ecosystems that predated agricultural expansion, their ‘high nature value’ becomes 367 

equivocal (Navarro and Pereira 2012).   368 
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Our results raise the question of whether the EU and other governing bodies should continue 369 

to subsidise financially and environmentally costly sheep farming, particularly when it does not do so 370 

for many other industries. The preservation of these landscapes based on cultural preference may be 371 

defensible locally, notwithstanding the strong embodied and uncosted negative environmental 372 

externalities. However, whether it is morally sound considering the pressure put on developing 373 

nations to prioritise climate change mitigation is highly questionable. Through payments which 374 

discourage pasture abandonment, developed nations actively prevent reforestation within their 375 

borders, whilst condemning tropical deforestation (Navarro and Pereira 2012) and advancing climate 376 

change-mitigation agendas in a neo-colonialist manner. 377 

 378 

Conclusions 379 

Sheep farming in the UK is not profitable without subsidies. Forests that sell carbon credits can be 380 

economically viable, but this depends on the level of intervention required in forest planting. Shifting 381 

subsidies to support a greater range of ecosystem services, would allow management of forests in 382 

exchange for carbon payments to prevail. Financial aid for forest establishment makes planting forest 383 

to sequester carbon financially viable. At present, subsidies in Europe sustain the uneconomic and 384 

environmentally detrimental livestock industry. Converting low-productivity pastureland to forest 385 

could ameliorate these detrimental impacts and break from the colonial tendencies that persist in 386 

climate change-mitigation strategies. The ultimate cost-benefit analysis depends on whether the 387 

cultural and social value placed on pastoral livestock production outweighs the global costs of climate 388 

change.  389 
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Figure 1: Net Present Value ($/ha) of sheep farming calculated over 25 years applying a discount rate 646 

of 3.5%. a, NPV accounting for labour costs, b, NPV when labour costs are not accounted for. c, d, e 647 

and f illustrate the distribution of NPVs accounting for the uncertainty and variation in parameters. 648 

Panels c and d represent the distribution of values when labour is included, i.e. the values shown in a. 649 

Panels e and f represent the distribution of values when it is not, i.e. the values shown in b. Points 650 

represent iterations of NPV at varying outputs and costs. Estimates of lamb weight, lambs per ewe, 651 

ewes per ha, forage cost per ha, as well as variable and fixed costs were resampled under a uniform 652 

distribution and NPV was calculated from equation 1. Colour signifies farm type (upland or lowland). 653 

 654 

 655 
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Figure 2. Net Present Value ($/ha) of a naturally colonised native a deciduous woodland and b 656 

coniferous woodland over a range of carbon prices and forest size. NPV is calculated over a 25-year 657 

horizon with a discount rate of 3.5%. Points represent iterations of NPV at varying CO2 prices and forest 658 

area. CO2 prices and forest area were resampled under a uniform distribution and NPV was calculated 659 

from equation 2. Colour gradient indicates forest size.  660 

 661 

 662 
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Figure 3. Net Present Value ($/ha) of planted mixed native woodlands over a range of carbon prices 663 

and forest size. NPV is calculated over a 25-year horizon with a discount rate of 3.5%. Points represent 664 

iterations of NPV at varying CO2 prices and forest area. CO2 prices and forest area were resampled 665 

under a uniform distribution and NPV was calculated from equation 2. Colour gradient indicates forest 666 

size.  667 

 668 
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Figure 4. Summary of NPVs under each scenario. NPV is calculated over a 25-year horizon with a 670 

discount rate of 3.5%. The calculations for livestock farming account for unpaid labour, and the greater 671 

range in livestock than carbon forest NPVs arises from the higher variation in parameters. 672 

 673 

Page 30 of 33AUTHOR SUBMITTED MANUSCRIPT - ERL-108427.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



31 

 

Table 1.  The scenarios for which economic viability was assessed and the benefits and costs 674 

incurred by each. 675 

Scenario Benefits Costs 

1. Sheep farming continues 

Farmer and spouse paid for 

labour 

 

Income from sale of 

lamb and wool (no CAP 

subsidies) 

 

 

Variable Costs: feed concentrates, 

veterinary and medicine, forage and 

miscellaneous costs (e.g. contract 

shearing etc.)  

 

Fixed Costs: include regular labour, 

unpaid labour, power and machinery, 

and overhead costs 

 

Farmer and spouse not paid for 

labour 

 As above but excluding a value for unpaid 

labour 

2. Natural regeneration  

Sheep farming ceases and land is 

left for forest to grow naturally 

With either 

a.) Deciduous trees 

b.) Conifer trees 

 

 

 

Payments for carbon 

sequestration 

 

 

 

Costs of getting the carbon verified and 

of using the WCC register  

  

 

3. Planted forest  

Forests are artificially 

established. Maximal ground 

disturbance is assumed, 

e.g. agricultural ploughing  

 

 

Payments for carbon 

sequestration 

 

 

 

 

 

Costs of carbon verification and of using 

the WCC register 

Establishment costs (first 15 years)  

 676 

  677 
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Table 2: Ecosystem services provided by forests and semi-natural grassland according to the UK National 678 

Ecosystem Assessment (UK NEA 2011). 679 

Ecosystem 

Service 
Forest Semi-natural grassland 

Provisioning  Trees for timber and wood fuel Livestock: meat and wool 

Water supply Water storage and recharging aquifers 

Non-timber forest products (berries, honey, fungi, deer cull 

etc.) 

  

Regulating  Climate: carbon sequestration and avoid climate stress  Climate: sequestration of carbon 

Detoxification and Purification: of soil, water and the air. 

Can also reduce noise pollution.  

Purification: can reduce pollution  

Pollination: provide habitat for a diversity of pollinators Pollination and pest control spillover to 

crops   

Hazard: soil protection and flood and water protection  Wild species diversity: seed for 

restoration projects 

Disease and pests: woodland organisms can help regulate 

the spread 

  

Cultural  Environmental settings: social value, education, artistic 

influence, outdoor pursuits and recreation (which health 

benefits), increase the diversity of landscape character   

Environmental setting: heritage, grazing 

of rare species, ecological knowledge, 

training areas 

Wild species diversity: habitat for a wide range of species   

Supporting  Facilitate soil formation, nutrient cycling, water cycling, 

oxygen production 

  

Biodiversity   

 680 

  681 
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Table 3: Annual monetary values of ecosystem services provided by forests and farmland estimated by the 682 

ONS (2017). The estimate is not comprehensive and considers farmland rather than pasture specifically, but 683 

illustrates the generally higher natural capital value of forest. 684 

 685 

Type of service  Service Forest 

(£million) 

Farmland 

(£million) 

Provisioning  Total timber removals 227.5 - 

 Crops and grazed biomass  - 1330.1 

 Water abstraction  - 3.8 

Regulating Carbon sequestration 1045.7 - 

 Pollution removal (thousand tonnes) 767.0 176.0 

Cultural  Time spent at habitat 290.8 197.8 

 Education visits - 1.8 

Total  2331 379.4 

 686 

 687 

 688 
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