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Abstract

In this Letter we report on the first inverse kinematics measurement of key resonances in the 22Ne(p, γ)23Na reaction which forms

part of the NeNa cycle, and is relevant for 23Na synthesis in asymptotic giant branch (AGB) stars. An anti-correlation in O and

Na abundances is seen across all well-studied globular clusters (GC), however, reaction-rate uncertainties limit the precision as to

which stellar evolution models can reproduce the observed isotopic abundance patterns. Given the importance of GC observations

in testing stellar evolution models and their dependence on NeNa reaction rates, it is critical that the nuclear physics uncertainties

on the origin of 23Na be addressed. We present results of direct strengths measurements of four key resonances in 22Ne(p, γ)23Na

at Ec.m. = 149 keV, 181 keV, 248 keV and 458 keV. The strength of the important Ec.m. = 458 keV reference resonance has been

determined independently of other resonance strengths for the first time with an associated strength of ωγ = 0.439(22) eV and

with higher precision than previously reported. Our result deviates from the two most recently published results obtained from

normal kinematics measurements performed by the LENA and LUNA collaborations but is in agreement with earlier measurements.

The impact of our rate on the Na-pocket formation in AGB stars and its relation to the O-Na anti-correlation was assessed via

network calculations. Further, the effect on isotopic abundances in CO and ONe novae ejecta with respect to pre-solar grains was

investigated.

Keywords: Inverse Kinematics Measurements, Radiative Capture Reactions, Stellar Nucleosynthesis

1. Introduction

Globular clusters (GCs) are dense aggregates of predomi-

nantly old stars found in the galactic halo and have long fas-

cinated astronomers for the unique insight they provide into

the processes driving galaxy formation and chemical evolution.

In particular, GCs are ideal test sites for answering open ques-

tions about the interplay between primordial and evolutionary

chemical enrichment [1]. These objects have therefore war-

ranted significant observational efforts and, through recent stud-

ies a complex picture of GCs abundance patterns has emerged,
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with strong evidence supporting multiple epochs of star forma-

tion [2]. Despite clear variability in observed abundances, some

ubiquitous trends become apparent, such as the anti-correlation

in oxygen and sodium abundances [3]. Currently stellar mod-

els are unable to reproduce many of the abundance patterns

present in GC stars along the red-giant branch (RGB), but ab-

sent in their field star counterparts [2, 4, 5]. AGB stars undergo-

ing Hot Bottom Burning (HBB) are currently the most favored

astrophysical sites to explain the O-Na anti-correlation [6, 7].

HBB occurs during the quiescent phase between two thermal

pulses (TP) when part of the H-shell is included in the envelope

convection and the H-shell has enhanced access to fuel which

is convectively mixed into its outer layers. In TP-AGB stars,

sodium is primarily synthesized by proton-capture on 22Ne in

the outer-most layer of the core-envelope transition zone, re-

sulting in the formation of a so-called 23Na pocket [8, 9]. This

pocket forms when 22Ne and 12C abundances are comparable,

and the 22Ne(p, γ)23Na and 12C(p, γ)13N reactions compete. In
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low-mass AGB stars, at solar metallicity, models predict the
23Na pocket to be the main sodium source, and the overproduc-

tion of sodium to result from the ingestion of the 23Na pocket

during the thermal dredge up [8]. The 22Ne(p, γ)23Na reaction

further affects the 20Ne/22Ne, 21Ne/22Ne and 20Ne/21Ne abun-

dance ratios of pre-solar grains found in meteorites. These

grains are important signatures of nucleosynthesis in different

stellar environments and mixing in stellar ejecta before the for-

mation of our solar system. The 22Ne(p, γ)23Na reaction is also

influential in nova nucleosynthesis as has been identified by a

sensitivity study by Iliadis et al., showing that nuclear uncer-

tainties associated with this reaction rate can significantly in-

fluence the final abundances of 22Ne and 23Na [10].

In recent years the 22Ne(p, γ)23Na reaction has been targeted

intensively at three facilities, all employing normal kinematics

techniques [11, 12, 13, 14]. The low-energy regime was in-

vestigated by the LUNA and LENA collaborations, since the

rate is dominated by narrow low-energy resonances. With

the exception of the low-energy resonance strength measure-

ments by LUNA [13, 14] with Ec.m. ≤ 248 keV, all previ-

ously reported strengths were either measured relative to ref-

erence resonances at Ec.m. = 458 keV or 1222 keV or de-

pended on these resonances to determine target stoichiome-

tries. The 458 keV resonance strength directly influences the

strengths of the low-energy resonances reported by the LENA

collaboration [12], and was used as reference for target stoi-

chiometries in 22Ne+α [15] and normal kinematics studies of

the 22Ne(p, γ)23Na reaction [11]. Moreover, this resonance is

particularly relevant for reaction-rate compilations conducted

by Sallaska, Iliadis et al. [16], for which all other measured

strengths were normalized to the 458 keV strength value of ωγ

= 0.524(51) eV [17]. The latter was determined relative to the

Ep = 405.5(3) keV (ωγ = (8.63(52)×10−3) eV [18]) resonance

strength in 27Al(p, γ)28Si, and depends on the background con-

tribution of the Ep = 326 keV and 447 keV resonances in the

same reaction. We note that there is a more recent result for

the 405.5(3) keV strength of ωγ = 1.04(5)×10−2 eV [19]. Us-

ing this value for re-normalization would reduce the 458 keV

strength reported by Longland et al. to ωγ = 0.435(42) eV.

Further, the strengths of the resonances affecting the back-

ground in that measurement have also been normalized to the

405.5(3) keV strength. Though the 458 keV resonance has been

investigated numerous times [17, 11, 20], our measurement re-

veals that the situation for its strength is still not resolved. In

fact, the strength of this resonance has never been measured

independently of other resonances. However, this work puts

forward a direct, reference-independent measurement which is

largely independent of knowledge of the relevant branching ra-

tios (BRs). This letter further presents the results of the direct

strengths measurements of the astrophysically important reso-

nances in 22Ne(p, γ)23Na at Ec.m. = 149 keV, 181 keV, 248 keV.

2. Experimental Details

The measurement was performed using the DRAGON (De-

tector of Recoil and Gammas Of Nuclear reactions) recoil sep-

arator [21] at the ISAC beam facility at TRIUMF, Vancouver,

Canada. DRAGON is designed to conduct studies of radiative

capture reactions in inverse kinematics and consists of: (1) a

windowless, differentially pumped, recirculated gas target sur-

rounded by a high-efficiency γ-detector array consisting of 30

BGO detectors; (2) a high-suppression electromagnetic mass

separator with two stages of charge and mass selection; (3) a

variable heavy ion detection system in combination with two

micro-channel plate (MCP) based timing detectors for time-of-

flight (TOF) measurements. The recoil-detection system con-

sisted of a double-sided silicon strip detector (DSSSD) [21, 22].

A high intensity (∼2 × 1012 ions/sec) isotopically pure
22Ne4+ beam was delivered to the hydrogen-filled gas target.
23Na recoils were transmitted through the separator and de-

tected in the DSSSD. To contain the entire yield profile of the

resonances within the target, an average gas pressure of 5 Torr

was used (∼3.9×1018 hydrogen atoms/cm2). The maximum

charge state was selected by transmitting the beam through the

magnetic dipoles. Equilibrium charge-state distributions for
23Na ions in hydrogen were measured at recoil energies to elim-

inate systematic uncertainties associated with semi-empirical

calculations. Two silicon surface barrier detectors positioned at

30◦ and 57◦ relative to the beam axis inside the target detected

elastically scattered protons for a relative measure of the beam

intensity. The elastic scattering rate was normalized to auto-

mated hourly Faraday Cup readings. The energy loss across the

target was determined by measuring the incoming and outgoing

beam energy via the magnetic field of the first magnetic dipole,

which centered the beam on-axis. The incoming beam-energy

spread was ∼0.1% FWHM [23]. Stopping powers were calcu-

lated based on the energy loss, the gas density derived from con-

tinuously recorded pressure and temperature, and the effective

target length [21]. This reduces uncertainties induced by the

commonly used software packages SRIM [24] and LISE [25].

The beam heating effect on the measured yield under the exper-

imental conditions, i.e., beam powers, beam energies and gas

pressures given in this work has been found to be negligible

with a dissipated power of ∼0.12 Watts and an average heating

of ∼0.18 to ∼0.24K. For further details on the effect of intense

ion beams on gas target densities we refer to Ref. [26]. Reso-

nance energies were determined via the position sensitive BGO

array by relating the centroid of the distribution (γ yield vs tar-

get position) to the incoming and outgoing beam energy [23].

3. Analysis

For improved background suppression, the resonance

strengths were extracted in a coincidence analysis, where the

GEANT3 [27] simulation used to determine the BGO detection

efficiency relies on literature BRs. For the 458 keV measure-

ment the DSSSD energy spectrum was fitted with a double

Gaussian to set appropriate energy cuts for the ”golden” re-

coil gate at ±3.5σ relative to the peak centroids, and to account

for the satellite peak at the low energy side of the main recoil

peak (Fig. 1). The satellite peak results from the additional en-

ergy loss of ions passing the ∼3% aluminum DSSSD grid [28].

Accounting for satellite peak and inter-strip events results in a

DSSSD efficiency of (96.15 ± 0.1stat. ± 0.43sys.)% [29]. The
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Figure 1: Singles (black histogram) and coincidence (blue histogram) DSSSD

energy spectra of the 458 keV yield measurement. In red, the triple Gaussian fit

of the singles spectrum is shown. The black dashed line denotes the unreacted

beam component (not present in coincidence measurement) of the fit and the

red dashed vertical lines indicate the recoil gate.

established DSSSD and BGO energy gates were then placed

on the separator TOF, i.e., the time between γ- and recoil

event detection, spectrum to extract the number of recoils. The

background was estimated by sampling the time-random back-

ground and calculating an average expectation over the width of

the signal region using a poissonian background model. High

statistics and a clear separation of unreacted beam and recoils

also allowed for a singles analysis of the 458 keV resonance

to eliminate uncertainties introduced by the dependence of the

coincidence analysis on BRs and BGO efficiency. Using the fit

parameters of the coincidence spectrum as guide for the singles

analysis, a triple Gaussian function was applied to the DSSSD

energy spectrum, and the integral of the main recoil peak and

satellite peak comprises the number of recoil events. Figure 2

presents the 458 keV resonance-strength values based on co-

incidence and singles analysis, which are mutually consistent,

relative to previous measurements.

The resonance strengths were calculated using the standard

formula for thick target yield in inverse kinematics [30],

ωγ =
2ǫY

λ2
c.m.

m

m + M
, (1)

with the recoil yield, Y , the stopping power in the laboratory

system, ǫ, the center-of-mass de-Broglie wavelength, λ2
c.m. as

well as the proton (m) and 22Ne (M) masses. Our result for

the 458 keV strength of ωγcoinc = 0.441(50) eV (ωγsingles =

0.439(22) eV) is lower and not in agreement within errors with

the two latest results [11, 20]. However, it agrees with three pre-

vious values [17, 31, 32]. The result from Meyer et al. [32] was

normalized to the 612 keV resonance strength, and the Endt et

al. [31] value is based on Ref. [32], however, normalized the

1.222 MeV resonance strength from Ref. [33]. The sensitiv-

ity of former studies to reference resonances underlines the ne-

cessity of reference-independent measurements as well as more

precise measurements of reference-resonance strengths.

To determine the 149 keV, 181 keV and 248 keV resonance

strengths, conservative recoil gates for DSSSD and BGO en-

ergy were placed on the separator TOF vs MCP TOF spectrum

Coinc. Singles [11] [20] [17] [31] [32]

0.30
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Figure 2: Previous 458 keV strength values (black circles) in relation to the

DRAGON results (red squares) obtained from singles and coincidence analysis.

or separator TOF spectrum (Fig. 3). The 248 keV yield mea-

surement does not have an associated separator vs MCP TOF

spectrum since the MCP detection efficiency was too low to

give enough statistics; this issue was resolved for the lower en-

ergy measurements.

For the analysis of the 149 keV and 181 keV yield mea-

surements the branching ratios for the Ex = 8943(3) keV

and 8972(3) keV levels given in Ref. [12] were used for the

GEANT3 simulation. The BRs from Ref. [12] were chosen over

those reported in Ref. [34] as the analysis in Ref. [12] did

not require additional background subtraction or coincidence-

summing corrections, and accounted for escape peaks and

Compton continuum. To investigate how the choice of BRs

propagates to the BGO detection efficiencies and resonance

strength, respectively, simulations were performed for both sets

of BRs. A difference of 1.1 % and 3.7% in simulated efficiency

was found for the 149 keV and 181 keV resonances, respec-

tively, which has been taken into account in the uncertainty

budget.

4. Results

For the 149 keV resonance we report a strength of ωγ(149)

= (1.67 ± 0.28 (sys) +0.39
−0.28

(stat))×10−7 eV, which is lower but

in agreement with all previous values. Our 181 keV strength

of ωγ(181) = (2.17+0.32
−0.31

(sys) +0.2
−0.17

(stat))×10−6 eV is in good

agreement with the LUNA HPGe result [14] and lower but

also in agreement with the TUNL result. Further, our result

is 20% lower than the LUNA BGO measurement [13] (com-

pare Tab. 1), though the two values are still consistent within

1 σ. Regarding the 248 keV resonance we report a strength

of ωγ(248) = 8.5(1.4)×10−6 eV. The dominant contributions to

the systematic uncertainty result from uncertainties on coinci-

dence efficiency (10%), stopping power (4.3 - 5.9%), charge-

state fraction (1.8%(181 keV) - 2.4%(149 keV)), MCP effi-

ciency (5%) and beam normalization (1.1 - 4.9%).

In view of the significant deviation of the DRAGON

ωγ(458 keV) result from the value used to normalize the

strengths of the low-energy resonances in the TUNL mea-

surement [12], we carefully reviewed the latter. In fact, re-

normalizing the TUNL 149 keV strength to our ωγ(458 keV)

result, brings it into better agreement with DRAGON, and a re-

3
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Figure 3: Separator TOF spectrum for the 248 keV resonance, and separator vs MCP TOF spectra for the 181 keV and 149 keV yield measurements. The red dashed

lines represent the recoil timing gates. Each spectrum is gated on the recoil peak in the DSSSD energy spectrum and a minimum BGO energy threshold of Eγ >

2.2, 2.0, and 2.5 MeV, respectively.

Table 1: Overview of resonance strengths. (S) marks results from a singles

analysis.

Ec.m.[keV] ωγ [eV]

Lit. This work

458.0(3) [35] 0.583(43) [20] 0.441(50) 0.439(22) (S)

0.594(38) [11]

248.3(6) [36] 8.2(7)×10−6 [14] 8.5(1.4)×10−6

9.7(7)×10−6 [13]

181.2(7) [36] 2.2(2)×10−6 [14]

2.7(2)×10−6 [13] 2.17+0.37
−0.35
×10−6

2.32(32)×10−6 [12]

149.4(7) [36] 1.8(2)×10−7 [14]

2.2(2)×10−7 [13] 1.67+0.48
−0.40
×10−7

2.03(40)×10−7 [12]

Ref. [12] re-normalized to this work

181.2(7) [36] 1.75(29)×10−6

149.4(7) [36] 1.53(33)×10−7

normalized 181 keV strength is compatible with the DRAGON

and LUNA HPGe results.

5. Astrophysical Impact

Figure 4 displays an overlay of the rates determined from

this work and those of LUNA and TUNL measurements. For

the DRAGON reaction rate evaluation, the analysis results from

higher energy resonances at 610 keV, 632 keV and 1222 keV as

well as the direct-capture contribution as detailed in Ref. [37]

were included in addition to the here discussed resonance

strengths. The dramatic enhancement of the LUNA rate up-

per limit is mainly due to the inclusion of the Ec.m. = 68 keV

resonance, which has been excluded in the median rate and for

which only an upper limit has been reported [13]. Our rate maps

closely with the TUNL rate, with a slight reduction due to our

reduced 149 keV and 181 keV strengths.

The effect of the DRAGON rate compared to the Iliadis 2010

rate [38] on the sodium and neon abundances in neon-oxygen

(ONe) novae with underlying white-dwarf (WD) masses of

1.15 M⊙ and 1.25 M⊙, as well as carbon-oxygen (CO) no-

vae (1.15 M⊙ and 1.00 M⊙) was investigated using hydro-

dynamical nova models [39, 40]. Changes of more than 10%

in the isotopic abundances within the Ne-Al region (20,21,22Ne,
22,23Na, 25,26Mg, 26,27Al) in 1.15 M⊙ CO novae, and a factor

of 2 enhancement in 23Na abundance are observed for both

CO nova mass models. For ONe novae, a factor of 2 reduc-

tion of the 22Ne content is observed for both WD mass mod-

els. Further, the 24Mg abundance is enhanced by ∼15% in the

1.25 M⊙ model, whereas only slight differences are seen for

the remaining isotopes considered in both models. Regarding

CO novae, our rate increases the differences in the 25Mg/26Mg

and 26Mg/25Mg ratios between the 1.0 and 1.15 M⊙ models.

Using the DRAGON rate in the 1.15 M⊙ model increases the
25Mg/24Mg ratio by 24% and decreases the 26Mg/25Mg ratio by

13% compared to the STARLIB2013 rate. This can be explained

by the sensitivity of Mg synthesis to the peak temperature [41].

Due to the larger rate, the mass flow is pushed up to Mg syn-

thesis temperatures. As a result of this correlation these ratios

become relevant in the identification of pre-solar grains, as they

function as probe for the peak temperature reached in the out-

burst, and the underlying WD mass. In a sensitivity study [10],

the final abundances of 24,25Mg for 1.0 M⊙ CO novae varied

by up to a factor of 5, when varying the 22Ne(p, γ)23Na rate

(STARLIB2013) within its uncertainties, whereas the DRAGON

rate, which as stated above closely maps with the TUNL rate,

strongly limits the reaction rate uncertainty in the temperature

range of interest (Tpeak = 170 MK). Varying the new rate within

its limits only changes the Mg isotope mass fractions by up to

7% in the 1.15 M⊙ CO nova model. For ONe novae, the cy-

cling back to 20Ne is irrelevant for both mass models, as 20Ne

is sufficiently available. This is reflected in the same 20,21Ne

final yield, independent of the model. Abundances of 23Na,
24Mg or higher mass isotopes remain unaffected. Instead, the

observed difference in 22Ne abundances may be relevant for

studies of pre-solar grains. For further details on the impact

of the rate from this work on isotopic abundances compared to

the STARLIB2013 rate the reader is referred to Ref. [37].

The NuGrid multi-zone post-processing code MPPNP [42]

was used to implement our rate in nucleosynthesis network cal-

culations, and to model the [Na/Fe] abundance ratio on the

AGB star surface at the end of the evolution of stable iso-

topes for various masses and metallicities (compare Fig. 5). A

5 M⊙ model with metallicity z = 0.006 was utilized to study

the impact of our rate on HBB in TP-AGB stars, using the

STARLIB2013 rate as reference. We observe a close mapping of

[Na/Fe] as a function of [s/Fe] for the two rates, confirming the

robustness of the STARLIB2013 rate. This contradicts the fac-

4
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tor of ∼3 enhancement in 23Na production for 5 M⊙ AGB stars

stated by Slemer et. al. [43] based on the LUNA rate, which

includes the tentative Ec.m. = 68 keV and 100 keV resonances.

Even though Slemer et. al. use a code that couples mixing and

burning during HBB, and adopt a similar list of isotopes as Nu-

Grid, neutron captures are not included. Thus, the important
23Na destruction channel 23Na(n, γ)24Na stated in Ref. [44] re-

mains unconsidered. Further, the effect of the 22Ne(p, γ)23Na

rate on the sodium abundance was studied. When closing the

(p,γ) channel, the abundance drops to almost zero, confirming

the 22Ne(p, γ)23Na reaction as main sodium production channel

in massive AGB stars. Further, the effect on the 23Na-pocket in

low-mass AGB stars (2M⊙, z = 0.001 and z = 0.006) formed

with the DRAGON rate relative to the STARLIB2013 rate was

investigated by evaluating the abundance profile of 23Na when

the sodium pocket is fully formed (Fig. 5). Switching off the
22Ne(p, γ)23Na reaction results in a significant abundance re-

duction. However, in contrast to the 5 M⊙ model, the sodium

abundance stays relatively high due to the second production

channel 22Ne(n,γ)23Ne(β−)23Na, which is active during radia-

tive 13C burning as well as during convective 22Ne burning [44].

6. Summary

In summary, key resonances in the 22Ne(p, γ)23Na reaction

have been investigated in inverse kinematics for the first time

using the DRAGON recoil separator. The strength of the im-

portant reference resonance at 458 keV has been determined

more precisely via a direct measurement, and does not agree

within errors with the two most recent normal kinematics re-

sults. Our result affects resonance strengths that have been de-

termined relative to the strength of this resonance, as well as

neon-target stoichiometries determined based on its strength. A

new reaction rate was calculated based on the DRAGON mea-

surement, which confirms the accuracy of the current 23Na pro-

duction results in AGB stars in relation to the behavior of the
22Ne(p, γ)23Na reaction and underlines the importance of this

reaction for the sodium production in AGB stars. Further work

Figure 5: Predicted surface [Na/Fe] abundance ratio as a function of s process

element abundances [s/Fe] for a 5M⊙ (top) at z = 0.006 and a 2M⊙ (bottom)

AGB star model at different metallicities (z = 0.001 and z = 0.006) using the

rate from this work relative to the STARLIB rate.

is needed to reassess the sensitivity of Mg isotopic ratios in CO

novae to rate variations in the Ne-Al region to use said ratios as

a probe of the underlying WD peak temperatures.
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