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A B S T R A C T   

Materials from GeoMelt® In-Container Vitrification (ICV)™ of simulant UK nuclear wastes were characterised to 
understand the partitioning of elements, including inactive surrogates for radionuclide species of interest, within 
the heterogeneous products. Aqueous durability analysis was performed to assess the potential disposability of 
the resulting wasteforms. The vitrification trial aimed to immobilise a variety of simulant legacy waste streams 
representative of decommissioning operations in the UK, including plutonium contaminated material, Magnox 
sludges and ion-exchange materials, which were vitrified upon the addition of glass forming additives. Two trials 
with different wastes were characterised, with the resultant vitreous wasteforms comprising olivine and py-
roxene crystalline minerals within glassy matrices. Plutonium surrogate elements were immobilised within the 
glassy fraction rather than partitioning into crystalline phases. All vitrified products exhibited comparable or 
improved durability to existing UK high level waste vitrified nuclear wasteforms over a 28 day period.   

1. Introduction 

Radioactive wastes arising from current and legacy nuclear fuel cycle 
operations pose a significant decommissioning challenge to the UK due 
to the volume and complexity of the wastes. Although suitable man-
agement and disposal routes exist and are being implemented for certain 
wastes, many higher activity materials remain in storage with unclear or 
undecided solutions. 

Higher activity radioactive wastes in the UK include some irradiated 
nuclear fuels and highly active liquors from reprocessing. This category 
also includes larger volume, moderate activity intermediate level wastes 
(ILW) such as: sludges, flocs, activated metals, ion-exchange resins, and 
other miscellaneous materials (Nuclear Decomissioning Authority, 
2016, 2019a). These typically arise due to fuel handling operations, site 
decommissioning, contact handling of plutonium, and operational ac-
tivities. These are a highly diverse array of wastes with large volumes 
from legacy operations. Many of these ILW wastes are solidified via 
cementation, which has long been a default waste treatment option in 
the UK. Large scale cementation operations began with Magnox swarf 
wastes in 1990, expanding to several cementation plants and a more 
diverse range of wastes treated over succeeding years at Sellafield, 
Dounreay and the LLWR (Fenton and Holland, 2001; Fairhall and 

Palmer, 1992). Although cementation has become the baseline waste 
treatment strategy, cement encapsulation of ILW results in an increase of 
the packaged waste volume, and adverse reactions may arise with 
certain wastes such as reactive metals or ion-exchange resins (Sharp 
et al., 2003; Cronin and Collier, 2011; Utton and Godfrey, 2010). This 
has driven research, both in the UK and internationally, towards 
expanding vitrification or other thermal treatment technologies for ILW 
waste streams as an option within a toolkit of immobilisation technol-
ogies (Radioactive Waste Management (RWM), 2017; Bennett et al., 
2001). 

Thermal treatment has the potential for waste volume reduction, 
destruction of organic materials, passivation of reactive metals and 
removal of water from wastes (Radioactive Waste Management (RWM), 
2017), which are problematic characteristics of some UK ILW wastes. 
Large volumes of these wastes currently exist in the UK without a final 
treatment route decided, for which thermal treatment could form a 
credible solution, such as: Magnox fuel, sludges, plutonium contami-
nated material, Pile fuel cladding material and miscellaneous 
beta-gamma wastes (Nuclear Decomissioning Authority, 2015). 

Currently, thermal treatment is the baseline technology for the 
immobilisation of highly active liquors from reprocessing operations, 
with calcined liquor and glass frit melted to form a solid, vitreous 
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product, with full scale waste vitrification operations at Sellafield since 
1989 (Dunnett, 2007; Bradshaw et al., 2007). Worldwide, vitrification of 
radioactive wastes is a well-established principle which is a cornerstone 
of waste treatment in many countries. Several broad categories of 
technology are, or have been in operation, including: hot wall induction 
melting (France, UK), in-pot / batch induction melting (India, Slovakia), 
and joule heated melting (USA, Belgium, Germany, Russia, Japan, India) 
(Gin et al., 2013; Jantzen and Ojovan, 2019; Vienna, 2010). 

These facilities have usually been constructed and operated for high- 
level waste vitrification, typically from current or historical nuclear fuel 
reprocessing operations, utilising a borosilicate or alumino-phosphate 
glass formulation (Jantzen and Ojovan, 2019; Robbins and Ojovan, 
2016). Some lower activity waste vitrification facilities have, however, 
operated or are currently under construction. Such sites include the 
WVP at Hanford (USA) for processing of both higher and lower activity 
tank wastes (Kim, 2015; Hujova et al., 2020; Goel et al., 2019), LILW 
vitrification of dry active waste / ion exchange resins in the Republic of 
Korea (Kim et al., 2020), and some ILW vitrification in Russia (Jantzen 
and Ojovan, 2019; Ojovan and Lee, 2011; Laverov et al., 2013). 

Development of lower activity waste vitrification is less technologi-
cally mature, principally as much lower activity waste is routed to other 
treatment options such as cementation, bituminisation or compaction 
and containerisation, along with complicated and varied chemistries 
(Bingham et al., 2012). Multiple technologies are, however, in varying 
stages of development or operation for lower activity wastes (contami-
nated soil, ion-exchange resins, etc.), often with the aim of volume 
reduction via thermal treatment. These include, but are not limited to; 
hot isostatic pressing to form glass/glass ceramics, in-can melting, 
plasma arc melting, thermal gasification of ion exchange resins, in-situ 
subsurface melting and microwave vitrification (Zhang et al., 2017; 
Shu et al., 2020; Scourfield et al., 2020; Nieminen et al., 2019). 

Arguably the most mature technology is plasma torch melting at the 
Zwilag plasma facility in Switzerland, where low level radioactive waste 
is treated, to form a volume reduced slag material (Heep, 2011; Deckers, 
2011). The UK itself has been advancing the development and imple-
mentation of hot-isostatic pressing (HIP) technology, as a credible so-
lution for disposition of the UK plutonium stockpile and residues 
(Nuclear Decomissioning Authority, 2010; Thornber et al., 2018), with 
further research on immobilisation of ion exchange materials (Chen 
et al., 2018) and Magnox sludges (Heath et al., 2018). Another thermal 
treatment technology being trialled for use in the UK is in-container 
vitrification (ICV) based on joule heating within a refractory 
container. This enables the use of the vitrification vessel as a long-term 
storage container rather than requiring transfer to a disposal container, 
with the option to refractory line ISO freight containers as larger 
wasteforms (Radioactive Waste Management (RWM), 2017). Various 
trials have been undertaken using UK relevant wastes, and further 
inactive trials successfully produced melts for various problematic waste 
stream simulants (Witwer and Dysland, 2010; Campbell et al., 2016; 
Witwer et al., 2013). 

In-container vitrification technology has been trialled for problem-
atic wastes across the world. This includes in the USA for treatment of 
depleted uranium chips in soil (Finucane and Campbell, 2006), solidi-
fication of low activity wastes at Hanford (Witwer et al., 2008, 2006), 
and for the destruction of metallic sodium containing wastes (Garrett 
et al., 2020). In Japan, for treatment of chlorinated organics and 
contaminated soil (Thompson, 2002), along with destruction of asbestos 
(Finucane et al., 2008). Within the UK, this technology is continuing to 
gain interest for various active wastes, sludges and sea disposal con-
tainers (Campbell et al., 2017; Clarke et al., 2020). Considering the wide 
range of global applications, it is imperative that resultant products are 
well characterised to build confidence in this vitrification technology. 

This paper characterises the resulting product from two trial melts 
using the GeoMelt In-Container Vitrification (ICV) technology (Witwer 
and Dysland, 2010), and are being characterised here as part of a larger 
EC-funded study on thermal treatment of radioactive wastes 

(THERAMIN) (Nieminen et al., 2019). These melts were undertaken in 
2009 at the GeoMelt Horn Rapids Test Site in Richland, WA, USA, 
simulating wastes from the UK Sellafield site at scale of ~400−750 kg 
melts. 

Trial 1 was a simulated dual waste mix of plutonium contaminated 
material (PCM) and Magnox sludge, as detailed in Table 1. These are 
both larger volume problematic waste streams in the UK and are 
designated as Intermediate Level Waste (ILW) (Nuclear Decomissioning 
Authority, 2019a). PCM waste largely consists of PVC gloves, steel, 
rubber, filters, paper towels and other materials from Pu contact oper-
ations. There are several sources of these wastes, including from 
reprocessing operations (Nuclear Decomissioning Authority, 2019b), 
historical MOX fabrication (Nuclear Decomissioning Authority, 2019c), 
defence facilities (Nuclear Decomissioning Authority, 2019d, 2019e) 
and decommissioning Sellafield / Low Level Waste Repository (Nuclear 
Decomissioning Authority, 2019f), of which the latter alone is expected 

Table 1 
Trial 1 formulation (adapted from (Witwer and Dysland, 2010)).  

Simulant Component Mass of Feed (kg) % of Total 
Staged – PCM Simulant 
Carbon Steel Drum Fragments 78.9 10.40 
Stainless Steel 7.1 0.94 
Misch Metal (Pu surrogate) 0.5 0.07 
PVC as gloves 24.1 3.18 
Rubber 9.7 1.28 
Polyethylene 5.4 0.71 
Portland Cement 18.7 2.46 
Cellulose, Bottle glass, Concrete 27.0 3.56 
Local soil 163.0 21.48 
Subtotal 334 44.01  

FWM – SIXEP Magnox Sludge Simulant 
De-mineralized Water 64.0 8.43 
Misch Metal 2.9 0.38 
Brucite Mg(OH)2 82.3 10.84 
Local soil 276.3 36.40 
Subtotal 425 55.99  

Final Total 759 100  

Table 2 
Trial 2 formulation (adapted from (Witwer and Dysland, 2010)).  

Simulant Component Mass of Feed (kg) % of Total 
Pile Fuel Cladding Silo Simulant 
C – Graphite 13.5 3.31 
CaCO3 – Limestone 5.5 1.35 
Fe – Steel 14.8 3.63 
Mg – metal (rods) 16.0 3.93 
Mg(OH)2 – brucite 4.3 1.06 
Al2O3 – Alumina 4.3 1.06 
Cellulose 2.2 0.54 
Hydraulic Oil 0.3 0.07 
Subtotal 60.9 14.95  

SIXEP Sand/Clinoptilolite Simulant 
Demineralized Water 34.1 8.37 
Clinoptilolite 42.4 10.41 
Silica Sand 10.5 2.58 
Misch Metal 0.8 0.20 
Mg(OH)2 – Brucite 4.0 0.98 
Al2O3 – Alumina 0.1 0.02 
CaO – Quicklime 0.4 0.10 
Fe2O3 – Hematite 0.1 0.02 
Na2CO3 – Sodium Carbonate 0.2 0.05 
K2O – Potash 0.2 0.05 
Subtotal 92.8 22.78  

Soil/Hematite Glass Forming Additives 253.6 62.26 
Final Total 407.3 100  
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to result in 48,740 m3 waste over the next 100 years. The other waste, 
Magnox sludge, has largely resulted from historic degradation of Mag-
nox fuel cladding in legacy ponds / silos across the Sellafield site. This 
material is largely Mg(OH)2 with various U oxides, Al, cans / filters, 
tools, pipework, etc. dependant on sludge location (Nuclear Decom-
issioning Authority, 2019g, 2019h). The melt setup was an initial 
“bottom-up melt” plus “feed with melt” (FWM) to compensate for vol-
ume reduction (~30 %), with elemental tracers added to determine 
elemental partitioning between glass and metal fraction. The mass of 
feed and additives are shown in Table 1. 

Trial 2 was also a dual-waste melt, however this utilised a “top- 
down” melting system where all of the material was added to the 
container before melting (Table 2). Simulated wastes were Pile fuel 
cladding silo, and SIXEP simulants. These are also UK-specific wastes, 
with Pile fuel cladding silo wastes largely arising from the early UK 
reactors Windscale, Calder Hall and Chapelcross along with early 
reprocessing in 1951−1965. This waste constitutes magnesium, 
aluminium and uranium metals, sludges, graphite, gravel, scrap steel 
and miscellaneous organic materials, which have been stored in a silo 
for ~60 years, with an estimated volume of 3231 m3 (Nuclear Decom-
issioning Authority, 2019i). The second waste stream was Site Ion Ex-
change Plant (SIXEP) material, predominantly consisting of an inorganic 
aluminosilicate ion-exchange material (clinoptilolite) and sand used for 
treatment of liquid effluents on the Sellafield site. This is another high 
volume waste, with a current inventory of 1335 m3, with volumes ex-
pected to rise to 2975 m3 by 2060 (Nuclear Decomissioning Authority, 
2019j). In addition to the components noted in Tables 1 & 2, both trials 
incorporated a quantity of Ce, Cs, Sr, Co, Re and Eu as tracers to 
determine elemental partitioning into the glass or off-gas system. 

Successful incorporation of these wastes within a vitrified product 
could achieve notable cost savings compared to bulk cementation, or 
enable disposal of problematic wastestreams (Nieminen et al., 2019; 
Hyatt et al., 2014; Nuclear Decomissioning Authority, 2018). In the UK, 
cementation of ILW waste is estimated to result in an increased packaged 
volume (247,000 m3 unpackaged ILW waste, rising to 499,000 m3 once 
packaged (Nuclear Decomissioning Authority, 2019a)), as wastes are 
mixed within a cementitious binder increasing the overall volume. 
Waste volume is a key driver of cost of interim storage facilities, the cost 
of a geological disposal facility, and the cost of requisite radioactive 
waste transport. Interim storage is particularly relevant to the UK 
decommissioning programme, as construction of a geological disposal 
facility will not begin for at least a decade, entailing interim storage of 
treated and packaged wastes for several decades prior to disposal. The 
wastes chosen within this trial were particularly suitable for thermal 
treatment, since SIXEP sand / clinoptilolite are largely aluminosilicates, 
and act as useful glass forming materials. Magnox sludge contains a large 

volume of water and Mg(OH)2, thermal processing of this will drive off 
water, and convert Mg(OH)2 can to MgO, reducing the waste volume. 
Mg metal in these wastes can be passivated within a thermal system (Mg 
metal risks expansive corrosion within cement pore solution (Cronin and 
Collier, 2011; Setiadi et al., 2006)), incorporating as Mg within a glassy 
matrix. Oil and plastic materials will also be consumed during thermal 
treatment, affording a more homogeneous, stable product for disposal. 

The aim of this study is to characterise the physical and chemical 
properties of these vitrified simulant ILW materials, and further our 
understanding of their aqueous durability, to improve confidence in 
alternative vitrification technologies for challenging wastes. 

2. Experimental programme 

2.1. Materials 

Several solid samples were provided from both trials post- 
vitrification, undertaken in 2009 (Witwer and Dysland, 2010), with 
one representative piece of material selected from each melt, upon 
which further analysis was undertaken. Material from Trial 1 is from the 
bulk glass, while material from Trial 2 consists of a solidified foam atop 
the melt (representing a ‘worst case’ material for testing). 

2.2. Analytical methods 

X-ray diffraction patterns were collected using a Bruker D2 PHASER 
diffractometer (Cu Kα, 1.5418 Å), with a Ni filter, with data collected 
between 10◦

< 2θ < 60◦ using a 0.01◦ step size and a 1 s dwell time per 
step. Prior to data collection samples were crushed in an agate mortar 
and passed through a 63 μm sieve. 

SEM analysis and elemental mapping was undertaken using a Hitachi 
TM3030 Scanning Electron Microscope, coupled with a Bruker Quantax 
70 Energy Dispersive X-ray Spectrophotometer (EDX). Images were 
collected in backscattered electron mode using a 15 kV accelerating 
voltage. Samples were prepared by cutting a section of vitrified material 
using a diamond wafering blade, and embedding this in an epoxy resin 
stub. This was then ground using SiC grit paper using sequentially finer 
grit, then polished to a 1 μm finish using diamond suspension and finally 
carbon coated. 

Durability assessment was performed following the ASTM C1285 
methodology (the PCT-B protocol). Samples were crushed and sieved to 
75−150 μm size fraction, and repeatedly washed with isopropanol 
(Sigma-Aldrich, ACS reag. ≥ 99.8 % (GC)) to remove fines. Pre-cleaned 
PFA vessels were used, filled with ASTM Type 1 water and glass was 
added to achieve a surface area to volume ratio (SA/V) of 1200 m−1 (by 
geometric surface area, density via helium pycnometry (Micrometrics 
Accupyc II)). Vessels were stored at 90 ± 3 ◦C, with duplicate vessels and 
blanks (no glass added) removed for sampling at each time point (1, 3, 7, 
14, 21 and 28 days). The resulting leachate was filtered using 0.2 μm 
cellulose acetate syringe filters, pH measured at room temperature, then 
acidified using high purity nitric acid (VWR, Ultrapure NORMATOM, 
67–69 % HNO3). Acidified samples were analysed for elemental con-
centrations in solution using by ICP-OES (Thermo-Fisher 6000 iCAP 
Duo) for Si, Al, Na, Ca, Mg and Sr, or ICP-MS (Thermo Scientific iCAP 
RQ) for Ce, Cr and Nd, with resulting data normalised to geometric 
surface area and sample elemental composition determined by XRF 
analysis (PANalytical PW2404). 

XAS data, to ascertain the oxidation state of the Pu surrogate, Ce, 
were acquired on the beam line B18 at Diamond Light Source, Harwell, 
UK. Beamline B18 utilises a collimating mirror, a fixed-exit double 
crystal Si(111) monochromator and a double toroidal focussing mirror. 
Ce L3 -edge XAS data were acquired on B18 in fluorescence mode using 
finely ground specimens dispersed in polyethylene glycol and pressed as 
a pellet, oriented at 45◦ to the incident X-ray beam and detector. Inci-
dent and transmitted beam intensities were measured using ionization 
chambers, filled with mixtures of He and N2, operated in a stable region 

Fig. 1. Photograph of Trial 1 sample indicating sections of interest; A) dark 
region, B) light region, C) crystalline region. 
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of their I/V curve. Fluorescence emission was detected using a four 
channel Si-drift detector, with appropriate dead time correction. A 
chromium foil was used as an internal energy calibration where the first 
inflection point was defined to be 5959.2 eV. Data reduction and anal-
ysis was performed using the programmes Athena, Artemis and He-
phaestus (Ravel and Newville, 2005). 

3. Results and discussion 

3.1. Trial 1 - composition and characteristics 

The sample provided from Trial 1 (PCM-Magnox simulant) consti-
tuted several pieces of heterogeneous glassy material, of which the 
analysed sample is shown in Fig. 1. The material was visually glassy, but 
exhibited clear heterogeneities; as such, for further analysis, the mate-
rial was divided into three sections of interest: a) dark region, b) light 
region, c) crystalline region. Both the light and dark region XRD patterns 
are displayed in Fig. 2, revealing a largely glassy material with re-
flections identified as clinoenstatite (MgSiO3) and alpha iron. The in-
tensity of these reflections was more pronounced in the light region. Not 
enough pure material from region C – ‘crystalline region’ was able to be 
collected and prepared for XRD analysis, however more detailed SEM 
analysis was undertaken on this region to determine the elemental 

composition. 
The bulk elemental composition of this glassy material was deter-

mined by XRF analysis (Table 3). It comprised, on a molar basis, >86 % 
SiO2, Al2O3 and MgO, with 5–6 % CaO and Na2O, and minor contribu-
tions from K2O, TiO2 and other elements. Interestingly, Ce2O3 and La2O3 
were detectable, therefore the added misch metal (as U/Pu simulant) 
was incorporated into the glassy material rather than partitioning into 
the metallic portion of these melts (pooling at the bottom of the ICV 
melts, and not analysed here). 

SEM analysis of ground and polished samples (Figs. 3 and 4 & S1−2) 
reveal that both the light and dark regions exhibit a glassy morphology 
interspersed with iron/steel droplets. The dark region micrograph 
(Figs. 3 & S1) revealed a slightly inhomogeneous morphology, with 
small patches of darker contrast present. With EDX mapping, the glass 
had a fairly uniform composition, with the exception of droplets of Fe 
and a number of darker patches, which were somewhat enriched in MgO 
and lower in CaO than the remainder of the glass. 

The light region (B) of Trial 1, was notably less homogeneous than 
the darker region (A), as shown in the SEM micrographs and EDX maps 
(Figs. 4 & S2). In addition, much larger dark patches were evident, 
which were clearly enriched in MgO and deficient in CaO while 
remaining consistent in Al2O3 and SiO2. Droplets of Fe were also present, 
as in the dark region (A), with the dark regions appearing to nucleate 

Fig. 2. X-ray diffraction patterns for Trial 1.  

Table 3 
XRF composition of both trial bulk glassy materials (error ± 5% of stated value).  

Oxide 
Trial 1 Trial 2 
(wt. %) (mol. %) (wt. %) (mol. %) 

Al2O3 12.68 7.54 7.39 4.79 
CaO 5.47 5.91 2.70 3.18 
Ce2O3 0.26 0.05 0.15 0.03 
Cr2O3 0.06 0.02 0.04 0.02 
Fe2O3 0.65 0.25 17.52 7.25 
K2O 1.38 0.89 1.27 0.89 
La2O3 0.26 0.05 0.14 0.03 
MgO 12.03 18.10 11.68 19.13 
Mn3O4 0.24 0.06 0.16 0.05 
Na2O 5.98 5.85 1.25 1.33 
Nd2O3 n.d.* n.d.* n.d.* n.d.* 
SiO2 60.05 60.58 57.29 62.97 
SrO 0.05 0.03 0.03 0.02 
TiO2 0.90 0.69 0.39 0.32  
* Nd2O3 not detected, however may be present depending on added misch 

metal composition, and any overlapping X-ray fluorescence intensities compli-
cating peak assignment for XRF data. 

Fig. 3. Backscattered electron micrograph and elemental maps of the dark 
region (A) in Trial 1. 

Fig. 4. Backscattered electron micrograph and elemental maps of the light 
region (B) in Trial 1. 

S.A. Walling et al.                                                                                                                                                                                                                              



Journal of Hazardous Materials 401 (2021) 123764

5

around these droplets. These regions exhibit a crystallite morphology, 
and may represent some clinoenstatite formation. 

Neither the dark nor light regions revealed any hotspots for the rare 
earth elements added in Trial 1, such as Ce2O3 and La2O3 added into the 
melt via misch metal (maps not shown due to low counts) or any tracer 
elements. This suggests that these elements were homogeneously 
incorporated at low concentrations within the material. 

The smaller light brown region labelled as “crystalline” (region C) 
revealed a mass of similar crystallite features across the sample, inter-
spersed with droplets of iron/steel (Fig. 5& S3). The boundary between 

the crystalline region and the glassy light region was observed to be a 
sharp transition. 

A closer analysis of these crystals with elemental mapping (Fig. 6) 
revealed a composition that was richer in MgO and deficient in CaO and 
Al2O3, when compared to the surrounding glass. EDX spot analysis of the 
crystals and the glass, shown in Table 4, detail these compositional 
differences further, in addition to a slight enrichment of MnO in the 
crystals. As these crystals are interspersed within the glass, there is likely 
an overlap in EDX measurements and a direct identification of the 
crystal composition cannot be determined. 

Fig. 5. Backscattered electron micrograph of region (B) and (C) interface in 
Trial 1. 

Fig. 6. Backscattered electron micrograph and elemental maps of the crystal-
line region (C) in Trial 1. 

Table 4 
EDX spot analysis of crystalline region (C), (Trial 1) average of 10 spots each. 
Errors stated are one standard deviation of the 10 measurements.  

Oxide mol. % Crystals Glass 
SiO2 57.45 (± 1.55) 66.49 (± 2.34) 
MgO 22.11 (± 1.45) 3.98 (± 0.52) 
Fe2O3 0.04 (± 0.05) 0.09 (± 0.18) 
Al2O3 7.83 (± 0.29) 9.74 (± 0.44) 
CaO 4.59 (± 1.08) 10.57 (± 1.41) 
K2O 0.74 (± 0.26) 0.75 (± 0.55) 
Na2O 6.52 (± 0.29) 7.75 (± 0.56) 
MnO 0.30 (± 0.27) 0.12 (± 0.15) 
TiO2 0.41 (± 0.20) 0.51 (± 0.35)  

Fig. 7. Photograph of Trial 2 glass (A) top, with smooth edges defined as Re-
gion 1, (B) underside, exhibiting crystalline masses, defined as Region 2. 

Fig. 8. X-ray diffraction patterns of material from Trial 2, Regions 1 and 2.  
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3.2. Trial 2 – composition and characteristics 

The sample from Trial 2 was considerably more heterogeneous than 
that obtained from Trial 1, with open porosity clearly visible and a 
combination of both glassy and crystalline features evident (Fig. 7). This 
is perhaps unsurprising given the location of sampling (from the foam 
rather than the bulk melt). The Trial 2 melt was divided into two regions 
of interest, a light beige smooth-sided (Region 1) and a more crystalline 
side (Region 2). The material used in this study was obtained from the 
foam layer on top of the melt, and as such, may represent the least du-
rable fraction of the final wasteform, due to the visibly higher surface 
area. 

Analysis of the crystalline phases using XRD (Fig. 8) revealed a 
combination of forsterite (Mg2SiO4), enstatite and clinoenstatite (both 
MgSiO3) within Region 1, along with diffuse scattering indicating the 
presence of an amorphous component. Due to the iron content of this 
material (7.25 mol. % Fe2O3 by XRF oxide analysis, Table 3), these 
minerals are likely to be iron substituted, falling within the forsterite- 
fayalite and (clino)enstatite-(clino)ferrosilite solid solutions. 

In Region 2, the relative intensity of the forsterite reflections was 
significantly reduced compared with those obtained in Region 1, and the 
dominant phases were identified as enstatite and clinoenstatite (again 
likely to be Fe substituted) with minor reflections for α–Fe, again 
alongside some diffuse features corresponding to an amorphous 
component. 

SEM analysis of Region 1 (Figs. 9 & S4) identified one crystalline 
feature, enriched with MgO and Fe2O3. The identification of only one 
crystalline phase appears contrary to XRD data, however, this is 
considered to be a result of sample preparation; SEM samples for this 
region were prepared by polishing down the top surface, whilst bulk 
XRD measurements required powdered material, and it is likely that the 
sub-surface material has a composition closer to that of Region 2. The 
major difference in phase assemblage between the two regions is the 
presence of forsterite, therefore we conclude this surface feature is likely 
forsterite. Detailed SEM-EDX analysis of Region 1 (Fig. 9 & Table 5) 
reported quantifiably high MgO and Fe2O3 contents, with lower SiO2 
and much lower concentration for most remaining elements compared 
to the bulk glass. The (Mg + Fe) / Si ratio of these crystals was found to 
be 1.7, which is lower than that expected for forsterite (2.0), however 
due to the thin nature of the crystals, any overlap in EDX measurements 
with the glass would result in a reduced ratio. The MnO content of the 
crystals was also observed to be elevated; MnO can substitute into the 
forsterite structure (with tephroite (Mn2SiO4) a known end-member). 
The glass itself was found to be low in alkaline elements and con-
tained 8.25 mol. % Al2O3. In general, Al2O3 is known to improve the 
durability of glass (Hench and Clark, 1978; Chick et al., 1981), though 
with uncertainty regarding the long-term behaviour of glasses with high 
Al2O3 content (Jantzen et al., 2010). The incorporation of MgO within 
glass (especially in conjunction with Al2O3) has been linked to enhanced 
dissolution due to precipitation of magnesium aluminosilicates - an issue 
of concern for predicting long-term stability of UK HLW glasses con-
taining Mg (Curti et al., 2006; Harrison, 2014; Thien et al., 2012; Nar-
ayanasamy et al., 2019; Fisher et al., 2020; Backhouse et al., 2019). The 
EDX measurements here, however, demonstrate the majority of MgO is 
bound within crystalline magnesium silicates, with little (2–3 %) 
incorporated into the glass. 

In Region 1, no tracer elements or misch metal components (Ce, La, 
Nd, Sr, etc.) were identified via EDX analysis (Table 5) due to low con-
centrations. Strong overlap between the principal Sr elemental line (Lα1 
1.806 keV) and Si elemental line (Kα1 1.740 keV) rendered Sr detection 
impossible at these concentrations. Lanthanide quantification relies 
upon relatively weak Lα1 elemental lines (La 4.647 keV, Ce 4.839 keV 
and Nd 5.228 keV), which were not significantly above the background 
signal of the EDX spectra acquired. 

Region 2 of Trial 2 was observed to have a multi-phase structure 
(Fig. 10), comprised of at least two distinct crystalline features 
embedded within a glassy matrix. The larger crystals appeared to be 
highly enriched in MgO and slightly elevated in Fe2O3, with a deficiency 
of CaO, Al2O3 and slightly lower SiO2 intensity than the bulk glass. The 

Fig. 9. Backscattered electron micrograph and elemental maps of Region 1 in 
Trial 2. 

Table 5 
EDX spot measurements for Region 1 – average of 10 measurements for each 
feature across a high magnification micrograph. Stated error is one standard 
deviation of the average of 10 measurements.  

Oxide mol. % Crystals Glass 
SiO2 41.55 (± 1.73) 77.56 (± 2.83) 
MgO 42.75 (± 2.30) 2.18 (± 0.73) 
Fe2O3 13.72 (± 0.91) 2.18 (± 0.61) 
Al2O3 0.39 (± 0.21) 8.25 (± 0.57) 
CaO 0.72 (± 0.29) 5.38 (± 1.43) 
K2O 0.18 (± 0.13) 1.45 (± 0.50) 
Na2O 0.27 (± 0.21) 2.38 (± 0.35) 
MnO 0.32 (± 0.37) 0.16 (± 0.20) 
TiO2 0.11 (± 0.13) 0.46 (± 0.44)  
Element At. % Crystals Glass 
Mg / Si 1.03 (± 0.05) 0.03 (± 0.01) 
(Mg + Fe) / Si 1.69 (± 0.10) 0.08 (± 0.02) 
Mg / Fe 1.56 (± 0.09) 0.50 (± 0.35)  

Fig. 10. Backscattered electron micrograph and elemental maps of Region 2 in 
Trial 2. 
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(Mg + Fe) / Si ratio for Region 2 (Table 6) was close to 1.0, suggesting 
the formation of an Fe-substituted (clino-)enstatite (MgSiO3). The 
composition of the lighter, thinner crystals (≤10 μm) was not obtain-
able, since they were too thin to individually spot map without signifi-
cant overlap from the glass phase in which they were embedded, 
however it is clear that the mass of thin crystals slightly enriched in MgO 
and Fe2O3 (Fig. 10). As in Region 1, the glass composition for Region 2 
was found to be relatively low in soluble alkali elements, and contained 
roughly the same level of Al2O3 at 9.29 ± 0.50 mol. %. 

3.3. Ce L3 XANES analysis 

The crystalline phases identified via XRD for both these trials were 
magnesium-iron silicates within the olivine or pyroxene groups. The 
elements added as radionuclide simulants (such as Ce, La, Sr, Nd) have 
larger ionic radii than the structural elements of these crystals, which 
makes incorporation unlikely. Studies on crystallisation from melts in 
olivines and pyroxenes consistently show very low partitioning co-
efficients for these elements (Kennedy et al., 1993; Beattie, 1994), which 
also extends to U (Kennedy et al., 1993; Beattie, 1994; Blundy and 
Wood, 2003). This points towards these elements being incorporated 
within the glassy phase of these vitreous materials. 

Understanding the local environment conditions of the radionuclide 
simulant elements is important for understanding the durability of these 

vitreous materials, and for predicting the chemistry of U, Pu within these 
systems if these melts were to be produced using real active wastes. To 
assist with this, the speciation of Ce within both these trials was deter-
mined by investigation of Ce L3 edge XANES (Fig. 11). 

The Ce absorption edge and distinct XANES features allow compar-
ison with CePO4 (monazite, as Ce3+) and CeO2 (as Ce4+). The singular 
strong feature at 5725.9 eV for Ce3+ in the XANES of the CePO4 refer-
ence compound is identical to that observed for the vitrified materials. 
In contrast, the two features at slightly higher energies (5729.5 eV and 
5737.8 eV) observed for Ce4+ in the CeO2 reference compound, are not 
apparent within the data of the vitrified products. These data indicate 
the Ce present within the vitreous product is as Ce3+. Although this 
indicates that the misch metal was incorporated into the product, the 
presence of Ce3+ only suggests that the overall melt conditions were 
reducing, as Ce containing glasses often contain both Ce3+/Ce4+ unless 
reducing conditions are imposed (Darab et al., 1998; Larson et al., 1990; 
Curti et al., 2012). This is similar Ce speciation identified in previous 
PCM simulant vitrification (Hyatt et al., 2014), and indicates any Pu 
may also be retained within a Pu3+ environment. 

3.4. Durability assessment 

One aspect of the disposability of these vitreous materials, their bulk 
aqueous durability, was assessed using static leach testing protocol, 
utilising Type I water, according to ASTM C1285 (PCT-B) over a 28 
d period at 90 ◦C. The normalised mass loss for the major structural 
elements within the glasses, along with pH, are shown in Fig. 12. 

At 1 d of leaching, the pH of the solutions increased to 9.7 and 8.8 (±
0.1), respectively, for Trial 1 and Trial 2. After this time, the pH 
remained essentially consistent over the 28 d testing period, with final 
pH values of 9.9 and 9.1 (± 0.1) for Trial 1 and Trial 2, respectively. The 
slightly elevated pH of the glass in Trial 1 compared with Trial 2 was 
expected, given the variation in readily soluble alkali elements between 
the trials (Trial 1: Na2O + K2O = 6.74 mol. %, Trial 2: Na2O + K2O =
2.17 mol. %, along with a higher CaO content in Trial 1). 

Most high level waste glass materials contain B, which is often used 
as a ‘tracer’ for glass dissolution since it does not participate in the 
formation of passivating layers or secondary precipitates. There was no 
B added to the glass melts investigated here, therefore Na was used to 
trace the dissolution of the glass, since its release to solution is generally 
concurrent with the breakdown of the glass structure. It is known to 
form secondary phases, but typically only in high pH solutions (>pH 10) 
(Mann et al., 2019; Fournier et al., 2019). After 28 d of leaching, the 
NLNa was 0.26 ± 0.01 g/m2 for Trial 1 and 0.51 ± 0.02 g/m2 for Trial 2. 
This is contradictory to the pH measurements; Si solubility is greater at 
high pH, therefore it should be expected that the glass in Trial 1, which 
exhibited a higher pH, should dissolve more than that from Trial 2. The 
residual dissolution rates (Table 7) of Na were also higher for Trial 2 
than Trial 1 (7.84 × 10−3 g/m2/d compared with 4.06 × 10−3 g/m2/d, 
respectively). 

Glasses that contain significant proportions of Mg are known to 
dissolve at relatively rapid rates, due to the low ΔGhyd of Mg, favouring 
the rapid precipitation of Mg-bearing (alumino)silicate hydrate minerals 
such as phyllosilicate clays (Backhouse et al., 2019), which, in turn 
drives further Si dissolution from the glass, elevating dissolution rates. 
Fig. 12 shows that although the Mg normalised mass loss was low for 
both glasses, it significantly decreased with time. This decrease was 
more pronounced for the glass from Trial 1 than Trial 2, suggesting that 
Mg-(alumino)silicate hydrate secondary phase formation may have been 
greatest for this glass. Again, from this observation, one might expect the 
dissolution rate of the glass in Trial 1 to be faster than those in Trial 2, 
however the opposite trend was observed. 

The NLCa initially increased and then began to decrease for both 
glasses. Throughout the experiment, the NLCa was lower for the glass in 
Trial 1 than in Trial 2. Calcium is known to have a strong affinity for 
silica within the passivating layer formed at the surface of dissolving 

Table 6 
EDX spot analysis of large crystals present within Region 2 of Trial 2 – average of 
10 points for each feature across micrograph. Stated error is the standard de-
viation of the average of 10 points.  

Oxide mol. % Crystals Glass 
SiO2 52.19 (± 1.29) 71.98 (± 2.23) 
MgO 41.63 (± 1.58) 2.63 (± 0.55) 
Fe2O3 4.48 (± 0.44) 5.41 (± 0.81) 
Al2O3 0.55 (± 0.26) 9.29 (± 0.50) 
CaO 0.41 (± 0.15) 6.12 (± 1.55) 
K2O 0.11 (± 0.09) 1.44 (± 0.22) 
Na2O 0.28 (± 0.22) 2.67 (± 0.49) 
MnO 0.20 (± 0.19) 0.14 (± 0.17) 
TiO2 0.14 (± 0.14) 0.32 (± 0.33)  
Element At. % Crystals Glass 
Mg / Si 0.80 0.04 
(Mg + Fe) / Si 0.97 0.19 
Mg / Fe 4.60 0.24  

Fig. 11. Ce L3 edge XANES data for the two major Regions identified within 
each trial, compared with data acquired for CeO2 (Ce4+ reference compound) 
and CePO4 (Ce3+ reference compound). 
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glass; glasses which incorporate Ca into the silica gel demonstrate 
significantly lower dissolution rates than those without Ca (Corkhill 
et al., 2013; Aréna et al., 2019; Utton et al., 2012). This is the likely 
explanation for why the dissolution rate of the Glass in Trial 1 was lower 
than that of Trial 2, despite the higher pH and removal of Mg from so-
lution. Notwithstanding these observations, the dissolution rates of both 
glasses are within the same order of magnitude, despite the different 
compositions and processing conditions. 

The normalised mass loss of elements were compared with those for 
UK high level waste glass, which is destined for disposal within a 
geological disposal facility. Though not the same composition, and not 

Fig. 12. Normalised elemental mass losses (NLi) for Si, Al, Na, Ca and Mg along with pH measurements from PCT-B durability assessments for both Trial 1 and Trial 2 
glasses, over a 28 d period. 

Table 7 
Normalised release rates for Na and Si for each of the glass compositions.  

NR (g∙m−2⋅d-1)  Initial rate (0−7 d) Residual rate (7−28 d) 

Trial 1 Na 1.55 × 10−2 
± 4.46 × 10-3 4.06 × 10−3 

± 1.56 × 10-4 

Si 5.97 × 10−3 
± 2.18 × 10-3 8.74 × 10−4 

± 1.00 × 10−4 

Trial 2 Na 2.62 × 10−2 
± 3.53 × 10-3 7.84 × 10−3 

± 1.81 × 10−3 

Si 3.72 × 10−3 
± 1.72 × 10−3 5.92 × 10−4 

± 9.55 × 10-5  
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destined for use with the same wastes, these glasses provide some of the 
largest datasets of UK waste simulant glasses. The glasses investigated in 
the current study had NLNa and NLSi values that were an order of 
magnitude lower than those reported for 25 wt. % and 38 wt. % loaded 
MW glass (Harrison, 2014) tested at 90 ◦C, and comparable to the newly 
formulated Ca/Zn-MW high level waste glass with a 28 wt. % waste 
loading tested at 50 ◦C (Fisher et al., 2020) (which will result in a much 
lower release than with higher temperature leaching). 

The normalised mass loss of surrogate radionuclide elements incor-
porated within the glasses are shown in Fig. 13. The NLSr was similar to 
that of NLCa (Fig. 12), which is expected given the chemical similarity 
between the elements; the maximum normalised mass loss of Sr was <
0.1 g∙m−2. As with the NLCa, the NLSr was lower for the glass in Trial 1 
than Trial 2, suggesting that it may be incorporated with Ca into the 
silica gel layer. The release of lanthanide elements was extremely low 
over the 28 d period, with the normalised mass loss of Ce (as a surrogate 
for Pu) reaching a maximum of 0.0008 ± 0.0002 g∙m−2 and 0.0058 ±
0.0004 g∙m−2 for Trials 1 and 2 respectively. Very low concentrations of 
Nd were also detected in solution, however, normalised rates cannot be 
calculated due to lack of XRF data for this element (for normalisation). 
As such, only concentration values are shown in Fig. 13. 

4. Conclusions 

The materials characterised in this study were produced through in- 
container vitrification of UK simulant wastes, combined with glass 
forming additives. The resultant vitreous wasteforms were heteroge-
neous in nature, predominately forming olivine and pyroxene group 
magnesium-iron silicate minerals, dispersed throughout a glassy matrix. 

The bulk glasses were found to consist of moderately low alkali NaO- 
CaO-Al2O3-(Fe2O3)-SiO2 systems, with a degree of MgO incorporation. 
Spatially resolved compositional data and oxidation state analysis point 
towards Pu surrogate elements and other tracer elements partitioning 
into the glassy phase. Both materials (from Trial 1 and Trial 2) per-
formed adequately during the 28 d durability assessment, with major 
elemental release being one order of magnitude lower than for UK HLW 
waste glasses, and with very low release rates for the Pu surrogate Ce. 
The characteristics and durability of these materials is especially notable 
considering these were trial materials, with additives/wastes that were 
not optimised for improving wasteform performance. Overall, the 
characterisation and durability testing of these two materials indicate 
that the GeoMelt trials, and the in-container vitrification technology 
itself, could produce wasteforms which exceed the dissolution perfor-
mance of current UK HLW glass formulations, under similar conditions. 
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