
electronics

Article

DeepIDS: Deep Learning Approach for Intrusion
Detection in Software Defined Networking

Tuan Anh Tang 1,*, Lotfi Mhamdi 2, Des McLernon 2, Syed Ali Raza Zaidi 2, Mounir Ghogho 3

and Fadi El Moussa 4

1 Faculty of Electronics and Telecommunication Engineering, Danang University of Science and Technology,
Da Nang 550000, Vietnam

2 School of Electronic and Electrical Engineering, the University of Leeds, Leeds LS2 9JT, UK;
l.mhamdi@leeds.ac.uk (L.M.); d.c.mclernon@leeds.ac.uk (D.M.); s.a.zaidi@leeds.ac.uk (S.A.R.Z.)

3 College of Engineering & Architecture, International University of Rabat, Rabat 11103, Morocco;
m.ghogho@ieee.org

4 BT Security Futures Practice, Adastral Park, Ipswich IP5 3RE, UK; fadiali.el-moussa@bt.com
* Correspondence: tanganhtuan@dut.udn.vn

Received: 2 August 2020; Accepted: 10 September 2020; Published: 19 September 2020
����������
�������

Abstract: Software Defined Networking (SDN) is developing as a new solution for the development
and innovation of the Internet. SDN is expected to be the ideal future for the Internet, since it can
provide a controllable, dynamic, and cost-effective network. The emergence of SDN provides a
unique opportunity to achieve network security in a more efficient and flexible manner. However,
SDN also has original structural vulnerabilities, which are the centralized controller, the control-data
interface and the control-application interface. These vulnerabilities can be exploited by intruders
to conduct several types of attacks. In this paper, we propose a deep learning (DL) approach for a
network intrusion detection system (DeepIDS) in the SDN architecture. Our models are trained and
tested with the NSL-KDD dataset and achieved an accuracy of 80.7% and 90% for a Fully Connected
Deep Neural Network (DNN) and a Gated Recurrent Neural Network (GRU-RNN), respectively.
Through experiments, we confirm that the DL approach has the potential for flow-based anomaly
detection in the SDN environment. We also evaluate the performance of our system in terms of
throughput, latency, and resource utilization. Our test results show that DeepIDS does not affect the
performance of the OpenFlow controller and so is a feasible approach.

Keywords: deep learning; intrusion detection; network security; software defined networking; SDN

1. Introduction

Software Defined Networking (SDN) is an emerging architecture that is dynamic, manageable,
cost-effective, and adaptable, making it ideal for the high-bandwidth, dynamic nature of today’s
applications. This architecture decouples the network control and forwarding functions enabling the
network control to become directly programmable and the underlying infrastructure to be abstracted
for applications and network services [1]. The detail of the SDN architecture is described in Figure 1.
The OpenFlow protocol [2] is one of the most popular protocols and is a foundation element in building
SDN solutions.

SDNs are currently being deployed in many network environments, from home and enterprise
networks to datacenters (e.g., Google WAN B4 [3], Huawei carrier network, Amazon, Cisco, Facebook).
The capabilities of SDN (e.g., logical centralized controller, and global network overview) help us to
solve several security issues in a traditional network and bring us the ability to control network traffic
at a fine-grained level. However, the SDN architecture itself also introduces some new attack threats

Electronics 2020, 9, 1533; doi:10.3390/electronics9091533 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://dx.doi.org/10.3390/electronics9091533
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/9/1533?type=check_update&version=2


Electronics 2020, 9, 1533 2 of 18

and security issues. Kreutz et al. [4] introduced seven threat vectors in SDN. Three of them are specific
to SDN and related to the controller: the control-data interface and the control-application interface.
The controller itself is vulnerable, because it creates a single point of attack and failure. The encryption
of the communication channel, using Transport Layer Security protocol (TLS), is also ineffective and
optional. Several attacks can be conducted in the SDN architecture. For instance, Distributed Denial of
Service (DDoS) attacks can overwhelm the controller and the communication channel with artificial
service calls. A Man-in-the-Middle attack can break the link between the controller and the switches
and claim control of the network.

Figure 1. Software Defined Networking (SDN) Architecture [1].

An intrusion detection system (IDS) is one of the most crucial parts of network architecture.
Based on the difference that data are processed, IDS can be categorised into misuse detection and
anomaly detection. Misuse detection generally takes intrusion behaviour as patterns and establishes
a signature database based on these known patterns. This method then monitors and matches the
user’s behaviour with the database to detect intrusion. Known attacks can be detected really well this
way with low false alarm rate. However, this method cannot detect zero-day attacks which are new
and unknown. On the other hand, anomaly detection creates a normal behaviour baseline model and
then tries to detect any behaviour that deviates from this baseline model. Thus, this method can detect
zero-day attacks. Our work in this paper focuses on anomaly detection.

Because of the wide variety of types of SDN deployment, SDN security is a serious concern and
has recently been extensively researched—see [5,6] for more detail. Several machine learning (ML)
approaches have been proposed to secure the SDNs. Despite the high accuracy and performance
obtained in several fields, ML algorithms used in intrusion detection tend to have some limitations
as mentioned in [7]. These include the difficulty of determining the discriminator, the availability of
labelled datasets for classification and evaluation, the high cost of errors and the diversity of network
traffic. In recent years, ML has been used by many researchers for network intrusion detection systems
(NIDS) in the SDN environment. However, these techniques usually lead to a high rate of false
positives. We extended this research trend to a deep learning (DL) approach for the SDN context.



Electronics 2020, 9, 1533 3 of 18

Recently, DL has emerged and achieved significant success in the field of speech recognition and face
detection. DL is capable of automatically finding correlation in data and so it is a promising method
for the next generation of intrusion detection. DL can be used to efficiently detect zero-day attacks and
so we can acquire a high detection rate. In our previous work [8], we evaluated the potential of the DL
approach for flow-based intrusion detection and the results were promising. We achieved an accuracy
of 75.75% with just six basic features.

In this paper, which is a part of my PhD thesis [9], we present the structural design and
implementation of DeepIDS (a flow-based anomaly detection system using DL) in the SDN architecture.
In the previous work, we focused on the structure design of DeepIDS and features selection. The attack
detection mechanism is the main research contribution of this paper. A comparison with several
ML/DL algorithms proves the enhancements of our approach. Our main contributions are summarized
in the following points:

• We trained and evaluated our models with different sets of features of the NSL-KDD dataset [10].
Through experiments, our models yield a detection accuracy of 80.7% and 90% using just six basic
flow features among the forty one features of this dataset. The results show the ability of our
models in dealing with low level network features.

• This method is scalable and the structure of the DL algorithm can be changed according to the
characteristic of the data features, which makes our method applicable to detect other kinds
of attack.

• We have also evaluated the network performance of DeepIDS in the SDN environment.
We implemented our DeepIDS in a POX controller and stress tested DeepIDS through extensive
simulation. The test results demonstrate that our approach does not degrade the POX
controller’s performance.

Accordingly, this paper is structured, as follows: in Section 2, we discuss relevant work in the
field of intrusion detection in SDN environments, while Section 3 presents the implementation details
of the proposed DeepIDS, with respect to data gathering, anomaly detection, and mitigation. Section 4
presents detection performance of our DL approach. Section 5 describes our performance evaluation
experiments and results. Finally, Section 6 concludes the paper and discusses future work.

2. Related Work

ML has been used by several researchers for intrusion detection in the traditional network.
Ibrahim et al. [11] used a Self Organizing Map (SOM) in their intrusion detection research and achieved
an accuracy of 75.49%. In [12], Mukherjee et al. investigated the combination of Correlation-based
Feature Selection, Information Gain, and Gain Ratio for feature reduction. Subsequently, the reduced
dataset was classified by a Naive Bayes algorithm that yields an accuracy of 97.78%.

DL has also been applied for intrusion detection, but only in traditional networks. We will
briefly summarize these results to distinguish from our work with SDNs. Javaid et al. [13] used
a self-taught deep learning algorithm on the NSL-KDD dataset for intrusion detection. They used
soft-max regression as a classifier and achieved an accuracy of 92.98%. Yin et al. [14] proposed a deep
learning approach while using recurrent neural networks for intrusion detection. They got an accuracy
of 83.28% with their experiment on the NSL-KDD dataset. Shone et al. proposed a nonsymmetric deep
autoencoder for unsupervised feature learning in [15]. They achieved quite promising results on both
the KDD Cup 99 and NSL-KDD datasets. However, these approaches cannot be applied directly in the
context of SDN. The SDN architecture is not considered in these approaches and some features used in
these methods are not flow-based features.

Several intrusion detection algorithms and approaches have been proposed to secure
OpenFlow-based SDN networks. For anomaly-based detection approaches, SOM and Support Vector
Machine (SVM) are frequently used because of their high detection accuracy. A lightweight method
for DDoS attack detection based on traffic flow features is presented in [16] with an extraction of



Electronics 2020, 9, 1533 4 of 18

six-tuple features: Average of Packets per flow, Average of Bytes per flow, Average of Duration per
flow, Percentage of Pair-flows, Growth of Single-flows, and Growth of Different Ports. SOM—a neural
network-based technique—is used as the classification method. SVM was used in [17,18] to detect
DDoS attacks in SDNs quite efficiently. One-class SVM was trained with a malicious dataset for a low
false alarm rate in [19]. AlEroud et al. [20] combined k-Nearest Neighbor and graph theory to classify
DDoS attacks from benign flow in SDNs. Gabriel et al. [21] combined neural networks and danger
theory for DDoS attack resiliency. S. M. Mousavi proposed in [22] an early detection method for the
DDoS attacks against the SDN controller. This method is based on the entropy variation of the data
flows’ destination IP addresses. It assumes that the destination IP addresses are evenly distributed in
the normal flows, while the malicious flows are destined for a small amount of hosts. The entropy will
drop dramatically when any attack happens. Trung et al. [23] combined hard thresholds of detection
and a fuzzy inference system to detect the risk of DDoS attacks based on the real traffic characteristics
(Distribution of Inter-arrival Time, Distribution of packet quantity per flow and Flow quantity to a
server) under normal and attack states.

In order to improve the scalability of the native OpenFlow protocol, a combination of OpenFlow
and sFlow was proposed in [24] for an effective and scalable anomaly detection and mitigation
mechanism in an SDN environment. By using the programmability of the SDN architecture, the authors
of [25] show that a programmable home network router can provide the ideal platform and location
in the network for detecting security problems in a SOHO (Small Office/Home Office) network.
The authors implemented four prominent traffic anomaly detection algorithms (threshold random
walk with credit based rate limiting, rate limiting, maximum entropy detector, and NETAD) in an SDN
context. The experiments indicate that these algorithms are significantly more accurate in identifying
malicious activities in the SOHO network than the ISP (Internet Service Provider) and also the anomaly
detector can work at line rates without introducing any new performance overhead for the home
network traffic. SPHINX was introduced in [26] to detect both known and potentially unknown attacks
within an SDN by leveraging the novel abstraction of flow graphs, which closely approximate the
actual network operations. SPHINX dynamically learns new network behavior and raises alerts when
it detects suspicious changes to existing network control plane behavior. The authors evaluate the
accuracy, latency, and throughput of SPHINX to show that SPHINX is capable of detecting attacks in
real time with a low performance overhead. A summarize of some popular related work is presented
in Table 1. Most of the works use a full dataset of several features or just focus on one type of attacks,
like DDoS attacks.

Table 1. The related work summarization and comparison.

Article Algorithm Types of Attacks Accuracy (%)

Ibrahim et al. [11] SOM All 75.49
Mukherjee et al. [12] Feature Selection & Naive Bayes All 97.78

Javaid et al. [13] Self-taught Deep Learning All 92.98
Yin et al. [14] Recurrent Neural Network All 83.28

Braga et al. [16] SOM DDoS 98
Kokila et al. [18] SVM DDoS 95

Our Work Deep Learning All 90

Nowadays, current research trends focus on detecting DDoS attacks that are some of the most
dangerous attacks in SDNs. In our research, we focus not only on detecting DDoS attacks, but also on
detecting all types of network attacks and discovering zero-day attacks in SDNs. Our DL approach
only uses a small set of basic flow features as compared to others for SDN architecture.



Electronics 2020, 9, 1533 5 of 18

3. DeepIDS System Architecture

We propose an SDN-based NIDS architecture (DeepIDS), as depicted in Figure 2. Our DeepIDS
consists of three main modules: the Collector, the Anomaly Detector and the Counter Measure
Deployment. Our DeepIDS is designed to fulfil the following properties:

• Flexibility: the DeepIDS is developed as an application for ease of deployment, configuration
and interaction. It can be implemented on top of any SDN controller. Our DL models can be
modified and optimized based on network requirements. New threat models can also be easily
added/updated.

• Scalability: the DeepIDS is designed with a goal to facilitate not only small scale networks,
but also large scale networks. The overhead of our approach does not degrade the performance of
the whole network. The overhead on the SDN controller is evaluated with different network sizes.

Figure 2. The DeepIDS Architecture.

3.1. The Collector

We consider network traffic logs as a time series. For each time interval in a series, we extract
various per-flow information. Based on this information, flows that are transferred during each time
interval are classified. For this reason, the analysed time period is divided into equal overlapping
time bins of length T. The length of each time bin should be selected in such a manner that it contains
enough information to detect anomalies. Notice also that optimal selection of detection loop period is a
complex problem. If the selected period is too large, then the response time will be long, which makes
the controller and the switches handle an extremely large amount of attack packets and even destroys
the controller and the switches. If the period is too small, the attack detection will occur more frequently,
which incurs significant overhead for the controller in terms of resource efficiency. While several
researchers [27,28] focus on traffic monitoring and sampling, this is not the main focus of our work in
this paper.

Currently, most of the approaches use the periodic trigger to start the detection of the attack based
on inspection of flow entries, whereby, the collection of flow entries is performed at predetermined
time intervals by the controller. It is hard to choose the time interval, but the system also gives the



Electronics 2020, 9, 1533 6 of 18

network manager the right to change that time interval to suit the network. In our experiment, the time
interval is set at T = 1 second for stress testing the controller.

The Collector module is responsible for collecting flow information and periodically exporting
it to the Anomaly Detector module. The OpenFlow protocol provides us proactive way to collect
network information. An “ofp_flow_stats_request” message will be sent to all switches by the controller
after a fixed time-window to request the network statistics. The OpenFlow switches will reply with an
“ofp_flow_stats_reply” message. All the statistics in the “ofp_flow_stats_reply” message will be extracted
and recorded by the Collector module. The 6-tuple basic feature will be prepared as an input for the
DL model in the Anomaly Detector module.

3.2. The Anomaly Detector

Data produced by the Collector are subsequently fed to the Anomaly Detector. In this module,
we choose the DL algorithm as a core of the module. In general, the DNN is constructed with an input
layer, several hidden layers and an output layer, as described in Figure 3. The number of hidden layers
and the dimension of each hidden layer can be varied to find the best structure for attack detection.
We construct the DNN model to minimize the overhead to the controller.

x1

x2

x3

x4

x5

x6

h1

h2

h3

h4

h5

h1

h2

h3

h4

h1

h2

h3

LegitimateLegitimate

Anomaly

Input
layer

Hidden
layer

Hidden
layer

Hidden
layer

Output
layer

Figure 3. The DNN Model.

In this paper, we implemented a Fully Connected Deep Neural Network (DNN) and a Gated
Recurrent Unit Recurrent Neural Network (GRU-RNN). The details of a Gate Recurrent Unit can be
found in [29]. In our experiments, we use Keras [30] to implement our DL models. The details of our
models can be seen in Table 2. The DNN and GRU-RNN are implemented with a same structure.

This model can be trained offline and be deployed for online detection. In addition, we can
update our model anytime without interfering with the real-time detection. For every time-window,
the Anomaly Detector module inspects all the flow entries to identify any potential attack traffic.
As soon as an anomaly is detected in the network, our algorithm will record all of the network metrics
of the identified attack for further forensics and send all related information to the Counter Measure
Deployment module.



Electronics 2020, 9, 1533 7 of 18

Table 2. Deep Neural Network (DNN) Model Structure.

Variable Parameters

Input Layer 6
Hidden Layer 5, 4, 3
Output Layer 2

Activation Function Tanh
Loss Function Mean Squared Error
Learning Rate 0.001

Batch Size 10
Epoch 100

3.3. The Counter Measure Deployment

The Counter Measure Deployment module aims to neutralize identified attacks. All of the
information about detected attacks (e.g., source IP address, destination IP address, source port,
and destination port) is collected from the Anomaly Detector module. Subsequently, this information
will become an input for the Counter Measure Deployment module. This module will insert new
flow-entries into the flow table or modify current flow-entries of the OpenFlow switch in order to drop
all of the malicious traffic from attacking source IP addresses. A new flow rule can be sent from the
controller to the switches with an attack IP address in a matching field and an “of.OFPP_DROP” action
in an action field to drop all attack packets. The attack packet can be redirected to a honey pot with a
specific destination IP address in the same way. A warning message will also be sent to the network
administrators for further actions. Algorithm 1 summarizes the complete process for counter measure
deployment.

Algorithm 1 The Counter Measure Deployment

1: for all Anomaly Packets do
2:
3: msg = of.ofp_packet_out() . Create packet_out message
4:
5: msg.buffer_id = event.ofp.buffer_id
6:
7: msg.in_port = packet_in.in_port
8:
9: msg.match = of.ofp_match.from_packet(packet)

10:
11: action = of.ofp_action_output(port = of.OFPP_DROP) . Add an action to drop the packet
12:
13: msg.actions.append(action)
14:
15: self.connection.send(msg) . Send message to switches
16:
17: end for

4. Detection Evaluation

4.1. Dataset Description

Anomaly detection techniques require large numbers of existing benign and suspicious activities
to build detection models. Currently, there are only a few public datasets available for intrusion
detection evaluation (i.e., the KDD Cup 99 dataset [31], the NSL-KDD dataset, DAPRA [32], and the
ISCX 2012 Intrusion Detection [33]). Among these datasets, the KDD Cup 99 dataset and NSL-KDD
dataset have been commonly used in the literature to assess the performance of NIDSes. The KDD Cup
99 dataset is one of the most popular datasets and it is widely applied to evaluate the performance of
intrusion detection systems. However, this dataset suffers from the redundancy of records that makes
the classifier fail to deliver better accuracy. The NSL-KDD dataset is introduced by Tavallaee et al. [10]
to resolve this redundancy issue. SDNs are a new environment, and so the dataset for it is still very
rare and unpublished. The NSL-KDD dataset is still considered as a state-of-the-art dataset by many
researchers to evaluate their approaches, and so we also choose it for our experiment. Each traffic
sample in this dataset has 41 features that are categorized into three types of features: basic features,



Electronics 2020, 9, 1533 8 of 18

content-based features, and traffic-based features. Attacks in the dataset are divided into four categories
according to their characteristics. The details of each category are described in Table 3. Some specific
attack types (written in bold) in the testing set do not appear in the training set, and that makes the
detection task more realistic. This dataset contains 125,973 records for training and 22,544 records
for testing.

Table 3. Attacks in The NSL-KDD Dataset.

Category Training Set Testing Set

DoS back, land, neptune, pod, smurf,
teardrop

back, land, neptune, pod, smurf, teardrop, mailbomb,
processtable, udpstorm, apache2, worm

R2L fpt-write, guess-passwd, imap,
multihop, phf, spy, warezclient,
warezmaster

fpt-write, guess-passwd, imap, multihop, phf, spy,
warezmaster, xlock, xsnoop, snmpguess,
snmpgetattack, httptunnel, sendmail, named

U2R buffer-overflow, loadmodule, perl,
rootkit

buffer-overflow, loadmodule, perl, rootkit, sqlattack,
xterm, ps

Probe ipsweep, nmap, portsweep, satan ipsweep, nmap, portsweep, satan, mscan, saint

Under the SDN context, we just focus on the basic features and traffic-based features.
For traditional networks, an anomaly-based NIDS is trained with a huge amount of features, including
packet content-based features. This consumes a lot of computer resources and time. Many researchers
have developed feature selection algorithms to reduce the feature dimension and gain higher detection
accuracy. However, the packet content is not directly accessible in the current OpenFlow protocol,
and so we do not employ any content-based features of this dataset. In our experiment, we created three
distinct sub datasets that contain traffic samples with six features extracted from the NSL-KDD dataset:

• Basic Feature Set: contains basic features of individual TCP connections
• Traffic Feature Set: contains features of network traffic
• Mixed Feature Set: contains both basic features and traffic-based features

The main purpose of these subsets is to evaluate the role of each type of features to the detection
performance. Table 4 outlines details of each feature set.

Table 4. Feature Set Description.

Feature Set Description

Basic Feature Set duration, protocol_type, src_bytes, dst_bytes, land,
wrong_fragment

Traffic Feature Set count, srv_count, same_srv_rate, dst_host_count,
dst_host_same_srv_rate, dst_host_same_src_port_rate

Mixed Feature Set duration, protocol_type, src_bytes, dst_bytes, srv_count,
dst_host_same_src_port_rate

The DNN requires each record in the input data to be represented as a vector of real numbers.
Thus, every symbolic feature in a dataset is first converted into a numerical value. The NSL-KDD
dataset contains both the numerical and symbolic features. These symbolic features include the type of
protocol (TCP, UDP, and ICMP), the service type, and the TCP status flag. After converting all symbolic
attributes into numerical values, every feature within each record is normalized by the respective
maximum value and, therefore, falls into the same range of [0–1] by Min-Max scaling. Its mathematical
equation is given as:

x
′
=

x−min(x)
max(x)−min(x)

, (1)

where x
′

is the normalized value and x is the original value.



Electronics 2020, 9, 1533 9 of 18

4.2. Evaluation Metrics

The performance and effectiveness of the NIDS are evaluated by several experiments. For the
evaluation purpose, Accuracy (ACC), Precision (P), Recall (R), and F1-measure (F1) metrics are applied.
These metrics are calculated by using four different measures—True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN), defined, as follows:

• TP: the number of anomaly records correctly classified.
• TN: the number of normal records correctly classified.
• FP: the number of normal records incorrectly classified.
• FN: the number of anomaly record incorrectly classified.

These metrics are evaluated as formulas (2)–(5) below:

• Accuracy (ACC): shows the percentage of true detection over total traffic trace,

AC =
TP + TN

TP + TN + FP + FN
× 100%. (2)

• Precision (P): shows how many intrusions predicted by a NIDS are actual intrusions. The higher
P then the lower false alarm is,

P =
TP

TP + FP
× 100%. (3)

• Recall (R): shows the percentage of predicted intrusions versus all intrusions presented. We want
a high R value,

R =
TP

TP + FN
× 100%. (4)

• F1-measure (F1): gives a better measure of the accuracy of a NIDS by considering both the
precision (P) and the recall (R). We also aim for a high F value,

F1 =
2

1
P + 1

R
× 100%. (5)

4.3. Experimental Results

Our DNN model is implemented for binary classification (normal and anomaly class).
The performance of the model for each feature set is shown in Table 5. As we can see, the Mixed
Feature Set gives us the highest ACC with 80.7%. The ACC of the Traffic Feature Set is quite low
when compared to others. The Basic Feature Set’s ACC is just slightly lower than that of the Mixed
Feature Set.

Table 5. Accuracy Evaluation.

Feature Set Accuracy (%)

Basic Feature Set 80
Traffic Feature Set 71
Mixed Feature Set 80.7

Table 6 gives you a more detailed view about the performance of DNN on each feature set. As seen
in Table 6, the R and P values of the Mixed Feature Set are higher than the other sets.

Table 6. Accuracy Metric Evaluation of the Three Feature Sets.

Feature Set Precision (%) Recall (%) F1-Measure (%)

Basic Feature Set 84 80 80
Traffic Feature Set 77 73 72
Mixed Feature Set 85 81 81



Electronics 2020, 9, 1533 10 of 18

In the following, Receiver Operating Characteristic (ROC) curves are presented in Figure 4,
and False Positive Rate (FPR) is plotted against True Positive Rate (TPR) for each feature set. The area
under the ROC curve (AUC) is a standard measure for classifier comparison. The higher the AUC,
then the better is the system. Figure 4 shows that the Mixed Feature Set gives the best result with the
highest AUC. The Basic and Traffic Feature Sets have quite high FPRs. As we can see, the combination
of basic features and traffic features helps to reduce the FPR, which is an important factor of NIDS.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
 P
o
si
ti
v
e
 R
a
te

Receiver Operating Characteristic

Mixed Feature_AUC = 0.87

Basic Feature_AUC = 0.82

Traffic Feature_AUC = 0.78

Figure 4. Receiver Operating Characteristic (ROC) Curve Comparison for Different Feature Sets.

In the next experiment, we evaluate the sensitivity of each feature set with some existing
algorithms: Naive Bayes (NB), Decision Tree (DT), and SVM. The NB and DT are quite simple
and cost-effective. The SVM was proposed by Phan et al. [17] for DDoS detection. They used their
own dataset, and so we have to regenerate the results on the considered NSL-KDD dataset. The ROCs
of each test case are shown in Figure 5. Each feature set has a different effect on the performance of
each algorithm. Our DNN works quite well with the Basic and Mixed Feature Set, with quite low FPR
and high AUC. SVM also achieves quite high AUC, but it also has some drawbacks like high FPR
and low computational efficiency. We will discuss the efficiency of these algorithms in due course.
NB performs very poorly with the Basic and Mixed Feature Set, but it achieves quite high AUC in the
case of the Traffic Features Set. Despite the high AUC of the NB, its FPR is quite high and not feasible
for the NIDS. The Mixed Feature Set gives us the best combination of AUC and the FPR.



Electronics 2020, 9, 1533 11 of 18

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
 P
o
si
ti
v
e
 R
a
te

Receiver Operating Characteristic

DNN_AUC = 0.82

DT_AUC = 0.82

SVM_AUC = 0.89

NB_AUC = 0.83

(a) Basic Feature Set

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
 P
o
si
ti
v
e
 R
a
te

Receiver Operating Characteristic

DNN_AUC = 0.78

DT_AUC = 0.76

SVM_AUC = 0.76

NB_AUC = 0.85

(b) Traffic Feature Set

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
 P
o
si
ti
v
e
 R
a
te

Receiver Operating Characteristic

DNN_AUC = 0.87

DT_AUC = 0.81

SVM_AUC = 0.87

NB_AUC = 0.73

(c) Mixed Feature Set

Figure 5. ROC Curve Comparison for Different Algorithms.



Electronics 2020, 9, 1533 12 of 18

From the above evaluation, we can see the potential of DNN for intrusion detection. The Mixed
Feature Set will be chosen for further evaluation. In the next experiment, we evaluate performance of
the DNN and GRU-RNN algorithms. We compare the P, R, and F1 (see (3)–(5)) of these algorithms
for more understanding. As we can see in Table 7, the DNN model can detect almost all the attacks
mentioned above with a high R value, and our results are promising, with a high P of 85%. Table 7
also shows that the more complex GRU-RNN can improve the P, R, and F1 significantly. These results
show that our proposed approach is a strong candidate for anomaly detection.

Table 7. Accuracy Metric Evaluation.

Algorithm Precision (%) Recall (%) F1-measure (%)

DNN 85 81 81
GRU-RNN 89 89 89

Table 8 gives us an overview of the ACC and our proposed DNN and GRU-RNN give the best
results among all the algorithms. The GRU-RNN yields the highest ACC of 89%.

Table 8. Accuracy Comparison for Different Algorithms.

Algorithm Accuracy (%)

NB 45
DT 74

SVM 70.9
DNN 80.7

GRU-RNN 89

From all of the above, we have demonstrated that our proposed DL approach can generalize and
abstract the characteristics of the normal and anomaly traffic with a small number of features and
gives us a promising ACC in the SDN environment.

4.4. Efficiency Evaluation

We also evaluate the efficiency of our model compared to other algorithms by comparing the
training time and the testing time of these algorithms. Table 9 provides relevant parameters for these
algorithms. The NB and DT algorithms have really low training and testing times in ms as compared to
the SVM and our DNN. However, they also yield low detection accuracy. The SVM is one of the most
popular algorithms in the field of intrusion detection, but it is not fast enough for real-time detection,
especially under SDN architecture. The total processing time takes about 2.5 h. Our DNN works much
faster than the SVM and it also gives a better detection accuracy. The GRU-RNN has higher training
and testing times when compared to the DNN. However, the GRU-RNN still works much faster than
the other ML algorithms and also outperforms them in terms of ACC.

Table 9. Running Time Evaluation.

Algorithm Training Time Testing Time

NB 19.8 ms 4 ms
SVM 2 h 30 min
DT 256.9 ms 2.74 ms

DNN 500 s 811.6 ms
GRU-RNN 2500 s 4 s

As mentioned in [16], the SOM algorithm was used for flow-based intrusion detection in the SDN
context. The system was trained and tested by a six-tuple feature dataset that consists of 8608 samples
and 62,888 samples in the training set and testing set respectively. The system takes about 7.16 h for



Electronics 2020, 9, 1533 13 of 18

training and 352 ms for testing. Despite the difference of the experimented systems, our DeepIDS
computation cost is really low (with the same number of features and a larger number of samples)
when compared to [16].

5. Network Performance Evaluation

In this section, we provide detailed network performance analysis of our DeepIDS in a POX [34]
controller. We also compare the network performance of our DeepIDS with the SVM algorithm.
First, we describe the evaluation testbed and then present the throughput and latency results. We also
evaluate the resource utilization and briefly discuss our observations in this section.

5.1. Experimental Setup

The DeepIDS and SVM are implemented in the POX controller as an application written in
Python language. Currently, POX supports OpenFlow 1.0 protocol and includes special support for
the Open vSwitch/Nicira extensions. In order to test the performance of DeepIDS in POX, we used a
Virtual Machine having Intel Core i5-4460 3.2 GHz processor with three cores available and 8 GB of
RAM memory.

We ran Cbench [35] which is the standard tool used for evaluating SDN OpenFlow controller.
We measured the performance of the controller in terms of throughput and latency. Cbench tests can
run in either throughput or in latency mode.

• In throughput mode, Cbench sends a stream of packet-in messages to the controller for a specified
period of time and then records the number of responses for the request that it has sent to the
controller. Throughput data reflects the average number of flows the controller could treat per
second in each switch.

• In latency mode, Cbench sends a packet-in message to the controller and waits for the response
before sending another packet. The latency results represent the average number of milliseconds
that a flow consumes to be installed in each switch.

We tested the controller’s throughput and latency with a different number of virtual OpenFlow
switches emulated by Cbench. We vary the size of network from 8, 16, 32, 64, 128, and 256 switches,
with each switch having 1000 unique source MACs. Each Cbench run consists of 10 test loops with a
duration of 10 s. We ran the controller with a typical layer 2 learning switch application. The obtained
results are the average values from the 10 tests. We evaluate the performance of the controller in the
following scenarios.

• The POX controller runs without DeepIDS. This scenario serves as the baseline.
• The POX controller runs with DeepIDS or the SVM being enabled.

5.2. Analysis of Results

5.2.1. Throughput Evaluation

For throughput mode tests, we evaluate how many packets a controller can process per second.
This metric indicates the performance of the controller under heavy traffic conditions. Figure 6 depicts
the average response rate of the network in three testing scenarios. As we can see, the performance of
the POX controller itself is quite poor with a maximum throughput around 4900 responses/s. This is
one of the limitations of the POX controller when compared to other SDN controllers. However,
the running stand-alone POX controller still performs best and it is taken as a baseline for performance
evaluation in our experiment. For overall evaluation, the bigger the size of the network the higher the
performance overhead. The throughput slightly decreases with the increasing network size according
to the results in Figure 6. The network performance drops when the number of forwarding devices
increases to 64, showing that the controller throughput degrades by roughly 3% from 32 to 64 switches.
The base line results for the smallest network scale and the largest network scale are 4852 responses/s



Electronics 2020, 9, 1533 14 of 18

and 4607 responses/s, respectively. The DNN, GRU-RNN, and SVM overheads are about 3%, 3.4%,
and 4%, respectively, in the case of eight switches. We can see that in the case of high “packet-in” message
rate with 256 switches, overall throughputs decreases significantly. The reason for this behavior is that
the NIDS sends “ofp_flow_stats_request” messages and processes “ofp_flow_stats_reply” messages during
processing “packet-in” messages. The NIDS has to process a large amount of “ofp_flow_stats_reply”
messages when the network size increases, resulting in the overhead. Figure 6 shows that the SVM
algorithm has affected the controller and resulted in low network throughput in all test cases. The SVM
algorithm’s throughput decreases by about 6.4%. The GRU-RNN has lower throughput than the DNN,
but the difference is not significant. As we can see, DeepIDS performs better than the SVM algorithm
in terms of throughput. The DeepIDS’s throughput degradation (which is around 4% on average) is
quite low and it has almost no effect on the POX controller’s performance.

Figure 6. Throughput Evaluation (log scale on x-axis).

5.2.2. Latency Evaluation

For latency mode tests, the controller is evaluated for the length of time that it takes to process
a single packet. This metric reflects the performance of the controller in light traffic conditions.
The testing scenarios are the same as the throughput test. As depicted in Figure 7, the latency increases
with the increasing network size. This is an expected behavior: increasing the number of devices will
increase the load on the controller, causing a latency increase. In general, we can see in Figure 7 that
the SVM always has higher latency than the DeepIDS. The NIDS takes time to process the “packet-in”
message, the “ofp_flow_stats_reply” message and detect anomaly flows, and so the performance
overhead is unavoidable. The SVM algorithm takes a longer time to process the information, and so it
results in a higher latency under high traffic rates. The DNN, GRU-DNN, and SVM overheads are
about 2.6%, 4%, and 5.8%, respectively, in the case of 256 switches. The DeepIDS’s latency degradation
is quite low and it can be improved in the future.



Electronics 2020, 9, 1533 15 of 18

Figure 7. Latency Evaluation (log scale on x-axis).

5.2.3. Resource Utilization

We also evaluate the resource utilization of the DeepIDS in terms of CPU and memory usage.
These information is monitored by System Monitor application of Linux. The POX controller itself
resource utilization is a benchmark for our comparison. DeepIDS does not use a lot of computer
resources, as we can see in Table 10. The GRU-RNN uses more computer resources than the DNN as
expected. DL normally requires a significant computational cost. However, our model is quite simple
and the input is small, and so it uses computational resources optimally.

Table 10. Resource Utilization Evaluation.

Algorithm CPU Usage (%) Memory Usage (%)

POX 15 7.5
DNN 17 8.2

GRU-RNN 20 10.5

In summary, we can see that the DeepIDS has the good network performance and low overhead
on the system. In this scenario, we just considered a network with one SDN controller and thousands
of connected devices that is suitable for SO/HO networks. For a larger scale network, a single SDN
controller can be a bottleneck with a huge number of OpenFlow packet message. Therefore, a scenario
with multiple SDN controllers updated consistently should also considered in the future work.

6. Conclusions and Future Work

In this paper, we have implemented a DL algorithm for detecting network intrusion and evaluated
our DeepIDS. Our results show that our approach has significant potential and advantages for further
development. By comparing the results with those of other classifiers, we have shown the potential
of using DL for the flow-based anomaly detection system. In the context of the SDN environment,
the DL-based IDS approach is promising. Regarding the above-mentioned evaluations, we can see
that our approach does not significantly affect the network performance. Therefore, our approach
is quite promising and it can be improved in many ways. With the flexibility of the SDN structure,
we can extract features focused on one specific type of attack, like DDoS, to increase accuracy of the



Electronics 2020, 9, 1533 16 of 18

NIDS. As shown above, our DeepIDS gives quite low ACC when compared to other approaches that
use a full 41-feature NSL-KDD dataset. In the future, we will optimize our model to improve the
detection rate and decrease the false alarm rate. Our DeepIDS also needs to be implemented in other
OpenFlow controllers and a real testbed for further evaluation. Semi-supervised and unsupervised
learning algorithms are also promising directions for our future research.

Author Contributions: Investigation, T.A.T.; Supervision, L.M., D.M., S.A.R.Z., M.G. and F.E.M.; Writing—
original draft, T.A.T.; Writing—review & editing, L.M., D.M. and S.A.R.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. ONF. Software-Defined Networking (SDN) Definition. Available online: https://www.opennetworking.org
/sdn-definition/ (accessed on 18 July 2020).

2. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.
OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008,
38, 69–74. [CrossRef]

3. Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Venkata, S.; Wanderer, J.; Zhou, J.;
Zhu, M.; et al. B4: Experience with a globally-deployed software defined WAN. ACM SIGCOMM Comput.
Commun. Rev. 2013, 43, 3–14. [CrossRef]

4. Kreutz, D.; Ramos, F.; Verissimo, P. Towards secure and dependable software-defined networks.
In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
Hong Kong, 16 August 2013; ACM: New York, NY, USA, 2013; pp. 55–60.

5. Kreutz, D.; Ramos, F.M.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined
networking: A comprehensive survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]

6. Scott-Hayward, S.; Natarajan, S.; Sezer, S. A survey of security in software defined networks. IEEE Commun.
Surv. Tutor. 2016, 18, 623–654. [CrossRef]

7. Sommer, R.; Paxson, V. Outside the closed world: On using machine learning for network intrusion
detection. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, Berkeley/Oakland, CA,
USA, 16–19 May 2010; pp. 305–316.

8. Tang, T.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep Learning Approach for Network
Intrusion Detection in Software Defined Networking. In Proceedings of the 2016 International Conference
on Wireless Networks and Mobile Communications (WINCOM) (WINCOM’16), Fez, Morocco, 26–29
October 2016.

9. Tang, T. Software Defined Networking: Network Intrusion Detection System. Ph.D. Thesis, The University
of Leeds, Leeds, UK, 2019.

10. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set.
In Proceedings of the Second IEEE Symposium on Computational Intelligence for Security and Defence
Applications, Ottawa, ON, Canada, 8–10 July 2009.

11. Ibrahim, L.M.; Basheer, D.T.; Mahmod, M.S. A comparison study for intrusion database (Kdd99, Nsl-Kdd)
based on self organization map (SOM) artificial neural network. J. Eng. Sci. Technol. 2013, 8, 107–119.

12. Mukherjee, S.; Sharma, N. Intrusion detection using naive Bayes classifier with feature reduction.
Procedia Technol. 2012, 4, 119–128. [CrossRef]

13. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection system.
In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications
Technologies (formerly BIONETICS). ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), Pittsburgh, PA, USA, 13–14 March 2016; pp. 21–26.

14. Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural
Networks. IEEE Access 2017, 5, 21954–21961. [CrossRef]

15. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection.
IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 41–50. [CrossRef]

https://www.opennetworking.org/sdn-definition/
https://www.opennetworking.org/sdn-definition/
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/2534169.2486019
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/COMST.2015.2453114
http://dx.doi.org/10.1016/j.protcy.2012.05.017
http://dx.doi.org/10.1109/ACCESS.2017.2762418
http://dx.doi.org/10.1109/TETCI.2017.2772792


Electronics 2020, 9, 1533 17 of 18

16. Braga, R.; Mota, E.; Passito, A. Lightweight DDoS flooding attack detection using NOX/OpenFlow.
In Proceedings of the 2010 IEEE 35th Local Computer Networks (LCN) Conference, Denver, CO, USA,
10–14 October 2010; pp. 408–415.

17. Phan, T.V.; Van Toan, T.; Van Tuyen, D.; Huong, T.T.; Thanh, N.H. OpenFlowSIA: An optimized protection
scheme for software-defined networks from flooding attacks. In Proceedings of the 2016 IEEE Sixth
International Conference on Communications and Electronics (ICCE), Ha Long, Vietnam, 27–29 July 2016;
pp. 13–18.

18. Kokila, R.; Selvi, S.T.; Govindarajan, K. DDoS detection and analysis in SDN-based environment using
support vector machine classifier. In Proceedings of the 2014 IEEE Sixth International Conference on
Advanced Computing (ICoAC), Chennai, India, 17–19 December 2014; pp. 205–210.

19. Winter, P.; Hermann, E.; Zeilinger, M. Inductive intrusion detection in flow-based network data using
one-class support vector machines. In Proceedings of the 2011 IEEE 4th IFIP International Conference on
New Technologies, Mobility and Security (NTMS), Paris, France, 7–10 February 2011; pp. 1–5.

20. AlEroud, A.; Alsmadi, I. Identifying cyber-attacks on software defined networks: An inference-based
intrusion detection approach. J. Netw. Comput. Appl. 2017, 80, 152–164. [CrossRef]

21. Mihai-Gabriel, I.; Victor-Valeriu, P. Achieving DDoS resiliency in a software defined network by intelligent
risk assessment based on neural networks and danger theory. In Proceedings of the 2014 IEEE 15th
International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary,
19–21 November 2014; pp. 319–324.

22. Mousavi, S.M.; St-Hilaire, M. Early detection of DDoS attacks against SDN controllers. In Proceedings
of the 2015 IEEE International Conference on Computing, Networking and Communications (ICNC),
Garden Grove, CA, USA, 16–19 February 2015; pp. 77–81.

23. Van Trung, P.; Huong, T.T.; Van Tuyen, D.; Duc, D.M.; Thanh, N.H.; Marshall, A. A multi-criteria-based
DDoS-attack prevention solution using software defined networking. In Proceedings of the 2015 IEEE
International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam,
14–16 October 2015; pp. 308–313.

24. Giotis, K.; Argyropoulos, C.; Androulidakis, G.; Kalogeras, D.; Maglaris, V. Combining OpenFlow and
sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments.
Comput. Netw. 2014, 62, 122–136. [CrossRef]

25. Mehdi, S.A.; Khalid, J.; Khayam, S.A. Revisiting traffic anomaly detection using software defined networking.
In International Workshop on Recent Advances in Intrusion Detection; Springer: Berlin/Heidelberg, Germany,
2011; pp. 161–180.

26. Dhawan, M.; Poddar, R.; Mahajan, K.; Mann, V. SPHINX: Detecting Security Attacks in Software-Defined
Networks. In Proceedings of the Network and Distributed System Security (NDSS)’15, San Diego, CA, USA,
8–11 February 2015; Internet Society: Reston, VA, USA, 2015.

27. Raumer, D.; Schwaighofer, L.; Carle, G. Monsamp: A distributed sdn application for qos monitoring.
In Proceedings of the 2014 IEEE Federated Conference on Computer Science and Information Systems
(FedCSIS), Warsaw, Poland, 7–10 September 2014; pp. 961–968.

28. Ha, T.; Kim, S.; An, N.; Narantuya, J.; Jeong, C.; Kim, J.; Lim, H. Suspicious traffic sampling for intrusion
detection in software-defined networks. Comput. Netw. 2016, 109, 172–182. [CrossRef]

29. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning
phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014,
arXiv:1406.1078.

30. Keras 2015. Available online: https://keras.io (accessed on 18 July 2020).
31. KDDCup99. 1999. Available online: http://kdd.ics.uci.edu/databases/kddcup99/ (accessed on 18 July 2020).
32. Lippmann, R.P.; Fried, D.J.; Graf, I.; Haines, J.W.; Kendall, K.R.; McClung, D.; Weber, D.; Webster, S.E.;

Wyschogrod, D.; Cunningham, R.K.; et al. Evaluating intrusion detection systems: The 1998 DARPA
off-line intrusion detection evaluation. In Proceedings of the IEEE 2000 DISCEX’00 DARPA Information
Survivability Conference and Exposition, Hilton Head, SC, USA, 25–27 January 2000; Volume 2, pp. 12–26.

33. Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate
benchmark datasets for intrusion detection. Comput. Secur. 2012, 31, 357–374. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2016.12.024
http://dx.doi.org/10.1016/j.bjp.2013.10.014
http://dx.doi.org/10.1016/j.comnet.2016.05.019
https://keras.io
http://kdd.ics.uci.edu/databases/kddcup99/
http://dx.doi.org/10.1016/j.cose.2011.12.012


Electronics 2020, 9, 1533 18 of 18

34. POX. 2009. Available online: https://github.com/noxrepo/pox (accessed on 18 July 2020).
35. Cbench. Available online: https://github.com/mininet/oflops/tree/master/cbench (accessed on 18 July 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/noxrepo/pox
https://github.com/mininet/oflops/tree/master/cbench
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	DeepIDS System Architecture
	The Collector
	The Anomaly Detector
	The Counter Measure Deployment

	Detection Evaluation
	Dataset Description
	Evaluation Metrics
	Experimental Results
	Efficiency Evaluation

	Network Performance Evaluation
	Experimental Setup
	Analysis of Results
	Throughput Evaluation
	Latency Evaluation
	Resource Utilization


	Conclusions and Future Work
	References

