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An R-convolution Graph Kernel based on Fast

Discrete-Time Quantum Walk
Yi Zhang, Lulu Wang, Richard C.Wilson, Senior Member, IEEE, and Kai Liu

Abstract—In this paper, a novel R-convolution kernel,
named the fast quantum walk kernel (FQWK), is proposed
for unattributed graphs. In FQWK, the similarity of the
neighborhood-pair substructure between two nodes is measured
via the superposition amplitude of quantum walks between
those nodes. The quantum interference in this kind of local
substructures provides more information on the substructures so
that FQWK can capture finer-grained local structural features
of graphs. In addition, to efficiently compute the transition
amplitudes of multi-step discrete-time quantum walks, a fast
recursive method is designed. Thus compared with all the
existing kernels based on the quantum walk, FQWK has the
highest computation speed. Extensive experiments demonstrate
that FQWK outperforms state-of-the-art graph kernels in terms
of classification accuracy for unattributed graphs. Meanwhile,
it can be applied to distinguish a larger family of graphs
including cospectral graphs, regular graphs, and even strong
regular graphs which are not distinguishable by classical walk-
based methods.

Index Terms—graph kernel, discrete-time quantum walk, R-
convolution kernel, graph classification.

I. INTRODUCTION

A. Motivation

G
RAPHS are important structures for information repre-

sentation, in which nodes and edges respectively repre-

sent the entities and the relationships in the real world. Graph

processing has been widely used in many scientific fields

such as image processing [1], biochemical research [2], social

network [3] and natural language processing [4]. Within these

fields, graph comparison plays a core role in data mining and

target recognition. For instance, two molecules with the same

chemical properties usually have similar structures [5]. Thus

people can successfully perform a prediction for an unknown

molecule via graph comparison with known ones.

As a general and effective similarity measurement for graph-

s, graph kernels have been extensively investigated over the

past decades. Most existing methods belong to the group of R-

convolution kernels, which are the earliest and most successful

graph kernels in the whole literature [6]. Different with other

graph comparison methods such as graph edit distance [7] or
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Bregman divergences [8], graph similarity is measured in the

method of an R-convolution kernel via decomposing the graph

into certain substructures and computing the frequency of the

same substructures of the input graphs. These substructures

are, e.g. walks for the random walk kernel [9], subtrees for

the Weisfeiler-Lehman kernel [10], and so on.

Although many sophisticated R-convolution kernels have

been designed, there are still several problems: 1) The neglect

of the relative locations of substructures deteriorates the clas-

sification accuracy because reliable structural correspondences

between substructures cannot be established [11]. 2) These

kernels are generally not expressive enough to measure the

similarity without the assistance of graph attributes which may

not be available or may be expensive to capture. 3) Some

similar but non-isomorphic graphs cannot be distinguished by

these kernels due to the existence of cospectral graphs and

regular ones [12], which leads to failures when trying to

distinguish different graphs.

Since when it was first proposed in [13], the discrete-

time quantum walk has drawn much interest from both ma-

chine learning and quantum computation communities. The

reasons why the discrete-time quantum walk is suitable to

connect quantum mechanics and R-convolution kernels are

twofold. 1) Owing to quantum interference, the discrete-time

quantum walk can achieve better discrimination for graphic

data, compared with traditional methods. 2) In contrast to the

continuous-time quantum walk, the local structural features of

graph can be located in the step-by-step simulation of discrete-

time quantum walk, which is crucial to design R-convolution

kernels. However, the simulation complexity of the discrete-

time quantum walk is quadratic to that of random walk because

of the approximately quadratic state space, which becomes the

fatal bottleneck for graph processing.

In this paper, a fast quantum walk kernel (FQWK) is

proposed based on the discrete-time quantum walk. Via

computing the quantum superposition amplitudes of discrete-

time quantum walks on two graphs, the neighborhood-pair

substructure matching can be achieved. Because the quan-

tum amplitude of one substructure will be affected by its

adjacent ones via quantum interference, the relative location

information of substructures is naturally exploited in the

matching computation. Meanwhile, a fast recursive method for

simulating discrete-time quantum walk is proved to reduce the

runtime consumption of the new kernel. Experimental results

show the effectiveness of FQWK in terms of classification

accuracy, runtime speed and distinguishing ability.

Richard
Text Box
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B. Related Works

1) R-convolution Kernels: The concept of R-convolution

kernel was firstly proposed in [14]. A graph is firstly

decomposed into some certain substructures, e.g. walks or

subtrees, then graph similarity is measured by computing the

frequency of the isomorphic substructure pairs. Here we refer

to the definition of the cross-product graph kernel in [15],

which is a common instance of the generic R-convolution

kernel. For two graphs GA and GB , {GA;1, · · · ,GA;NA
}

and {GB;1, · · · ,GB;NB
} are the substructure sets of GA and

GB , respectively. Gi;j is the jth substructure of Graph Gi,

i = A,B, in which NA and NB are the total numbers

of different substructures, respectively. A kernel function for

graph GA and GB is shown as follows.

K (GA, GB) =

NA
∑

jA=1

NB
∑

jB=1

∆(GA;jA ,GB;jB ) , (1)

where ∆ denotes a Dirac kernel shown as follows,

∆(GA;jA ,GB;jB ) =

{

1, if GA;jA
∼= GB;jB

0, otherwise
(2)

Here GA;jA
∼= GB;jB indicates that the substructure GA;jA

is isomorphic (or approximately isomorphic) to GB;jB .

Many R-convolution kernels have been proposed and they

can be categorized into three classes, namely, walk-based

kernels, subtree-based kernels and subgraph-based kernels.

Walk-based Kernels: The random walk graph kernel (R-

WK) was proposed in [9] based on the calculation of the

same walks between two graphs. The main drawback of RWK

is that the totter problem is not considered, i.e., a walker from

one node to another will possibly track back to the starting

node in the next step. This will cause the fact that much

redundant information of nodes and edges is contained in a

random walk, which deteriorates the computation performance

of this kernel. To overcome this problem, the shortest path

kernel (SPK) was proposed [16], which is computed via

comparing the shortest paths of the graphs. Because there is no

traceback in the shortest path, the aforementioned totter issue

is settled. However, SPK only considers one path between any

pair of nodes. The GraphHopper kernel (GHK) [17] fixes this

problem and performs a convolution computation via counting

all the sub-path similarities. Meanwhile, backtrackless walk

kernel (BWK) was proposed in [12] using the zeta function

which has also no traceback in the corresponding loop. No

repeated nodes and edges are contained in the loop except the

start and end nodes. Therefore, the totter problem is utterly

solved. The return probability-based graph kernel (RetGK)

[18] utilizes the return probability features of random walk

to improve the RWK, so that various node attributes can be

effectively exploited.

Subtree-based Kernels: One common defect of the walk-

based graph kernel is the limitation on structural information

because the substructures used are comparatively simple. A

feasible method to overcome this problem is to construct

graph kernels based on subtrees. The widely-used Weisfeiler-

Lehman subtree graph kernel (WLK) [10] is defined by com-

paring isomorphism subtree structures. Owing to the effective

Weisfeiler-Lehman algorithm, WLK not only can represent

more powerful information than walk-based graph kernels, but

also has a computation complexity of O (hV E), where h, V
and E denote the depth of the Weisfeiler-Lehman algorithm,

the number of nodes and the number of edges, respectively.

The multiscale Laplacian graph kernel proposed in [19] and

the aligned subtree kernels proposed in [11] and [20] are

the improvements of WLK. Meanwhile the invariant kernel

is explored for graphs with high dimensional and continuous

node attributes [21]. However, the repeated-structure problem

still exists for subtree-based graph kernels. Nevertheless, the

classification accuracy of subtree-based kernels is quite high,

especially in the datasets with typical tree structures, such as

molecular structures.

Subgraph-based Kernels: From the definition in (1), the R-

convolution kernel is actually a subgraph-based kernel. Walks

and subtrees are only two special cases of subgraphs. Thus

walk-based and subtree-based kernel can only capture limited

structural features of graphs.

One of the classic subgraph-based kernel is the all graphlet

kernel (AGK) [22]. A graphlet is a subgraph with only 3 to

5 nodes. AGK is constructed by comparing the distribution

of different graphlets in two graphs. The deep graphlet kernel

[23] is explored to learn the optimal representative features.

In addition, the attributes of nodes and edges are considered

in [24] for subgraph matching, which is another instance

of subgraph-based kernels for attributed graphs. However,

the subgraph decomposition is a complex procedure with

high time consumption, e.g. the time complexity of AGK is

exponential to the graphlet size. Therefore, the approximate

methods in [25] appear for large graph applications.

In addition, some novel frameworks for R-convolution k-

ernels are proposed in [26] and [27], which show that the

performance of R-convolution kernels can be improved via

preprocessing graphs with valid optimal node assignment and

exploiting substructures at multiple different scales, respec-

tively.

2) Graph kernels based on quantum walk: Recent graph

kernel research based on quantum walk [28] can be classified

into two parts.

The Jensen-Shannon kernels (QJSK) were proposed in

[29]–[32] based on the quantum Von Neumann entropy. Graph

similarity is measured by the mutual information entropy

between the density matrices of quantum walks on the two

graphs. L. Bai et al [33] improved the classification accuracy

by modifying the kernels using Jensen-Tsallis divergence

information entropy. All of these kernels are called information

theoretic kernels [15]. However, they suffer from the problems

of high computation complexity of calculating the quantum

entropy and the neglect of the local structural features of

graphs.

Distinct from the aforementioned methods, some other

works appeared for graph classification which use the quantum

walk as a tool for graph feature extraction or subgraph match-

ing. In [34], it is found that the amplitude of the quantum

interference approximates zero between similar nodes of two

graphs. This property can be used to design a probability

model to quantitatively evaluate the graph similarity. However,
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the application of this method is limited by its time complexity

of O
(

N6
)

. Based on the density matrices of quantum walks,

the edge-based matching and subtree-based matching are used

to construct the convolution kernels in [35] and [11] respec-

tively. The essence of these methods is using quantum walk as

an attribute enhancement of the edges or nodes. The problems

for the traditional R-convolution kernels are still unsettled.

C. Main Contributions

The characteristics of the proposed kernel and the main

contributions of this paper are listed as follows.

• A novel R-convolution graph kernel FQWK is proposed

based on the fast discrete-time quantum walk. The FQWK

characterizes the neighborhood-pair substructure between

two nodes via the superposition amplitude of all quan-

tum walks of a particular length which join the two

nodes. This allows the interference between different

paths which has been shown in previous works to allow

better characterization of graph substructure and a more

powerful representative ability. Experimental results show

that FQWK outperforms the state-of-the-art methods on

classification accuracy for most of the datasets.

• To achieve the neighborhood-pair substructure matching

effectively, a fast simulation method is proposed for

discrete-time quantum walk. Although the superposed

transition amplitudes of the original quantum walks need

to be used for matching tasks, there is no need to

calculate the transition matrix of the multi-step discrete-

time quantum walk. Instead, a fast recursive method

is designed and proved, which can greatly reduce the

computation time of the proposed kernel. Experimental

results show that FQWK is the fastest one among all the

quantum walk based kernels.

• The high dimensional structural information of graphs

can be explored via quantum mechanism so that the

slight structural differences between some similar but

non-isomorphic graphs can be located and even ampli-

fied via quantum constructive interference. Therefore,

the proposed graph kernel can be applied to distinguish

cospectral graphs, regular graphs and even strong regular

graphs.

D. Outline of The Paper

The remainder of the paper is structured as follows. Firstly,

the background of graph concept and discrete-time quantum

walk is introduced in Section II. And then, in Section III, the

R-convolution kernel based on fast discrete-time quantum walk

is proposed. The detailed method and the formal computation

procedure of the novel kernel are discussed. In Section IV,

numerical experiments are given to show the effectiveness

of the proposed kernel for unattributed graph classification.

Finally, the concluding remarks are made in Section V.

II. BACKGROUND

A. Basic Concepts

Graphs are widely used to represent structural and relational

information in a way that is abstracted from the actual data.

b

d

c

a

(a)

b

d

c

a
ed(a,b)

ed(b,a)

ed(c,a)

ed(a,c)
ed(c,d)

ed(d,c)

ed(c,b)ed(b,c)

ed(b,d)

ed(d,b)

(b)

ed(a,b)

ed(b,a)

ed(a,c)

ed(c,a)

ed(c,d)

ed(d,c)

ed(b,c)

ed(c,b)

ed(d,b)

ed(b,d)

Quantum amplitude =0

Quantum amplitude >0

Quantum amplitude <0

(c)

Fig. 1. (a) A demo graph with 4 nodes; (b) The demo graph in (a) whose
edges are all replaced by the directed edge set Ed; (c) The directed line graph
GL (VL, EL). Note that discrete-time quantum walk based on the Grover
diffusion matrix can be regarded as a walk on GL. The red dashed arcs,
black solid arcs, and blue dash-dot arcs represent that the quantum transition
amplitudes are 0, positive and negative, respectively.

Definition 1. Graph. A graph is a tuple G (V,E), where V
represents all the nodes in the graph with a set of the adjacent

relation E ⊆ V × V .

In this paper, we will mainly focus on connected and

unattributed graphs, in which all the nodes have no attributes

and all the edges have no weights and directions. Only the

structural information can be used to perform the graph

analysis.

Definition 2. Walk. A walk w = (v0, v1, · · · , vk) in a graph

G (V,E) is a node sequence with vi ∈ V , and (vi, vi+1) ∈
E. The length ℓ(w) = k of a walk is the number of edges

traversed in the sequence.

Definition 3. Walk set. The order-k walk set of a graph is the

set of all walks of length k which exist in a graph: W (k) =
{w|ℓ(w) = k}.

Definition 4. Subgraph(or substructure). A graph G′ (V ′, E′)
is a subgraph of graph G (V,E), if and only if V ′ ⊆ V and

E′ ⊆ E.

Definition 5. Graph isomorphic(or graph matching). A graph

G (V,E) is isomorphic to G′ (V ′, E′), if there exists at least

one bijective mapping f : V → V ′ so that ∀v1, v2 ∈
V, (v1, v2) ∈ E ⇔ (fv1 , fv2) ∈ E′.

B. Discrete-time quantum walk

The discrete-time quantum walk (DTQW) is the quantum

counterpart of the discrete-time classical random walk [36]. In

discrete-time quantum walk, the states need to specify both the

current and the previous location of the walk, because of the

reversibility of quantum processes. Therefore, the state space

for discrete-time quantum walk is the directed edge set.

Definition 6. Directed edge set Ed. In an unattributed graph

G(V,E), every edge e(u, v) ∈ E is replaced with a pair of

directed edges ed(u, v) and ed(v, u). These directed edges

construct the directed edge set Ed, which can be shown as

follows.

Ed = {ed (u, v) , ed (v, u) |e (u, v) ∈ E } (3)
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For a demo graph shown in Fig. 1(a), the corresponding

graph with directed edges is given in Fig.1(b). On the directed

edge set, the directed line graph can be constructed.

Definition 7. Directed line graph GL (VL,EL). For a graph

G(V,E), its directed edge set is Ed. The directed line graph

GL (VL, EL) is a dual representation of the original graph.

And the node set and edge set are defined as follows,

VL =Ed,

EL = {(ed (i,m) , ed (m, j)) ∈ Ed × Ed} . (4)

Fig.1(c) shows the directed line graph of the demo graph

in Fig.1(a). In the directed line graph GL (VL, EL), each

node corresponds to a unique directed edge residing on the

corresponding edge in the original graph G (V,E).
In discrete-time quantum walk, if there is a directed edge

from a node vL ∈ VL to a node uL ∈ VL, the transition

of the quantum walk on G (V,E) is allowed from the edge

corresponding to vL to the edge corresponding to uL, and vice

versa. Therefore, different with the classical random walk, the

discrete-time quantum walk on a graph G can be regarded as

a walk performed on its directed line graph GL. The state

space of the walk is the node set VL, and the transitions are

constrained by the directed edge EL in the directed line graph.

We denote the state corresponding to the quantum walker

being on the directed edge ed(u, v) as |uv〉. It can be inter-

preted as that a quantum particle is currently at node v and has

a previous step at node u. The general state of discrete-time

quantum walk is:

|φ〉 =
∑

ed(u,v)∈Ed

αuv |uv〉 , (5)

where the quantum amplitude αuv is complex, i.e., αuv ∈ C.

The probability that the quantum walker is at the state |uv〉
is given by Pr (|uv〉) = αuvα

∗
uv , where α∗

uv is the complex

conjugate of αuv .

At each step, the evolution of the discrete-time quantum

walk is governed by a transition matrix U . The entries of

U determine the transition probabilities between states, i.e.,

|φt+1〉 = U |φt〉. Since the evolution of the walk is linear

and conserves probability, the matrix U must be unitary, i.e.,

U−1 = U†, where U† denotes the Hermitian transpose of U .

It is common to adopt the Grover diffusion matrix as the

transition matrix. This matrix does not distinguish any forward

nodes (i.e. those other than the current and previous nodes)

and, among such diffusion matrices, it is the furthest from the

identity one. The entries of the transition matrix U are shown

as follows:

Uim;nj =

{

AimAnj(
2
dm
− δij), if m = n

0, otherwise
(6)

Here Uim;nj shows the quantum amplitude for the transition

ed (i,m)→ ed (n, j), dm denotes the node degree for node m
and δij is the Kronecker delta, i.e., δij = 1 if i = j, otherwise

δij = 0. A is the adjacency matrix of the original graph.

Different from the random walk where the probability prop-

agates, what propagates during the discrete-time quantum walk

is quantum amplitude. Given a state |im〉, the Grover matrix

assigns the same amplitude to all transitions |im〉 → |mj〉, and

a different amplitude to the transition |im〉 → |mi〉, where i
and j are the adjacent nodes of m. Therefore, in the directed

line graph as shown in Fig.1(c), when the particle tracks back

and dm > 2, the transition amplitude is negative for this step

(the blue dash-dot arc); when the particle tracks back and

dm = 2, the transition amplitude of this step is equal to 0

(the red dashed arc); otherwise, it is positive (the black solid

arc). Obviously, the totter problem of random walk will be

settled via the amplitude penalties for back tracks.

Furthermore, it is observed in [37] and [38] that the

directed line graph possesses some special properties that are

not available in the original graph. For instance, compared

to the original graph, the directed line graph spans a higher

dimensional feature space and thus exposes richer graph

characteristics. This is because the cardinality of the node set

for the directed line graph is greater than, or at least equal

to, that of the original graph. This property suggests that the

discrete-time quantum walk may reflect richer graph character-

istics than the classical random walk and the continuous-time

quantum walk, which are both the walks on the original graph.

III. R-CONVOLUTION KERNEL BASED ON FAST

DISCRETE-TIME QUANTUM WALK

In this section, a novel substructure matching method is

designed based on the discrete-time quantum walk via intro-

ducing the neighborhood-pair substructure. One of the issues

with using the DTQW for probing graph structure is that the

transition matrix U is of size 2|E| × 2|E| and so potentially

quadratically bigger that the random walk equivalent. In turn

this means a computation time of O(N6) in the worst case

of dense edges, which is quite impractical even for moderate-

sized graphs. In order to solve this problem, a fast recursive

method to calculate an alternative transition matrix is pro-

posed. All these preparations lead to the newly proposed kernel

FQWK.

A. Neighborhood-pair substructure matching based on

discrete-time quantum walk

In this paper, the structural features based on the

neighborhood-pair substructure are analyzed, which is a kind

of auxiliary substructure. The formal definition is as follows.

Definition 8. k-level neighborhood-pair substructure S
(k)
ab

. In

a graph, for each node pair a and b, the k-level neighborhood-

pair substructure S
(k)
ab is constructed which contains all the

k-length walks between a and b.

S
(k)
ab =

{

w ∈W (k) |v0 = a, vk = b
}

(7)

Fig.2(a) illustrates that in the demo graph in Fig.1(a), there

are totally 5 3-length walks from node a to node b, which make

up the auxiliary substructure S
(3)
ab . All the walk-based kernels

can be regarded as counting over the auxiliary substructure

S
(k)
ab . For example, there are 5 walks contributing to the RWK.

The SPK and GHK compare only one walk which is the non-

repeating path (acdb). Similarly, the BWK counts the single
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Fig. 2. (a) The 5 3-length walks from node a to node b; (b) The corresponding
5 2-step quantum walks on the directed line graph GL.
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Fig. 3. Quantum transition amplitudes of the 5 3-length walks and the

neighborhood-pair substructure S
(3)
ab

.

non-backtracking walk (acdb). However, the BWK, GHK and

SPK do not account for the edges (ab) and (bc) and the

RWK treats all 5 paths identically. Therefore, the topology

characteristics of this substructure cannot be well represented

by the aforementioned simple features.

Our goal is to consider all these walks in S
(k)
ab via a

superposition of the quantum amplitudes. As shown in Fig.

2(b), the 5 3-length walks correspond to the 5 2-step discrete-

time quantum walks on the directed line graph given in Fig.

1(c). According to (6), the transition amplitudes of each walk

can be calculated. And we use different line types to denote

that the walk is positive, negative or 0. In Fig.3, we show

explicitly that among all of the 5 3-length walks, there are 2

walks with quantum amplitudes 0, 2 with negative amplitudes

and 1 with positive amplitude.

As we noted earlier, it is too expensive to compute the

amplitude for each individual walk. Instead, we would like to

compute the superposition of all the walks in S
(k)
ab , for example

with S
(2)
ab this includes all walks of length 2 and therefore

every walk which begins at a and ends at b via any single

intermediate node. This can be calculated by the summation

of amplitudes over all possible intermediate nodes:

Mab =

N
∑

m=1

N
∑

n=1

Uam;nb (8)

In a similar way, U t provides the amplitudes for all t+ 1-

length walks, and again we can compute the transition am-

plitude between a and b by summing the t-step quantum

0 0 1 2 1 2

0 0 1 0

1 3 1 3 0 1 3

1 2 0 1 2 0

 
 
 
 
 
 

0 0 0 -1 3 2 3 2 3 0 0

0 0 0 0 0 0 0 1

0 0 0 2 3 -1 3 2 3 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 0 2 3 2 3 -1 3 0 0

 
 
 
 
 
 
 
 
 
 
  
 

Transition matrix of 

discrete-time quantum walk

Transition matrix of 

random walk

-1 3 2 3 1 2 3

2 3 -1 3 0 2 3

1 0 1 1

2 3 2 3 1 -1 3

 
 
 
 
 
 

Superposition amplitude matrix of 

discrete-time quantum walk

Fig. 4. A demo graph and the comparisons of its three transition matrices.

amplitudes over all possible first and last steps:

M
(t)
ab =

N
∑

m=1

N
∑

n=1

U t
am;nb (9)

This superposes all t-step quantum walks which start at a and

end at b, i.e. all the walks in S
(t+1)
ab . This defines the transition

matrix M (t).

Note that the superscript t means the tth power of a matrix,

while the superscript (t) is the level index. In Fig.3, the

summation of the amplitudes of these 5 walks achieves 1/9,

which is just the superposition amplitude of the auxiliary

substructure S
(3)
ab .

It is interesting that quantum interference exists in the

quantum walk on a graph and is therefore present in our

transition matrix M (t). Destructive interference will happen on

the intersection of two isomorphic substructures with opposite

amplitudes [34], which is always exploited to locate the

local symmetric subgraphs. On the other hand, constructive

interference may occur on the crossings of different quantum

walks, thereby the slight structural difference can be amplified.

We choose this particular transition matrix for our graph

kernel based on three factors. Firstly, it is more compact than

the DTQW, since it is only of size |V |×|V |. Secondly it retains

information about constructive and destructive interference

since it is a superposition of individual walks. Finally, as we

demonstrate in the next section, it can be computed efficiently

in only O(t|V |3) steps in contrast to the O(t|V |6) steps of the

DTQW.

B. Fast simulation method

According to the definition, after a t-step discrete-time

quantum walk, the superposition amplitude matrix M (t) is

computed as,

M
(t)
ij =

N
∑

m=1

N
∑

n=1

U t
im;nj 6=

[

M t
]

ij
. (10)

Obviously, though the size of the transition matrix M is

only |V | × |V |, as shown in Fig.4, M (t) cannot be computed

via the exponential operation of M . However, the computation

complexity of the exponential operation of U is still about

O
(

|V |6
)

, which is potentially quadratic to the transition



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

i a n j

length = t-2

length = t-1

Fig. 5. A t-step quantum walk from node i to node j. Node n is the previous
step of node j. Node a is the previous step of node n.

matrix of random walk. Therefore, it is not time-acceptable

to perform graph processing directly.

In Fig.4, the demo graph contains 4 nodes and 8 directed

edges. The size of the transition matrix of the random walk

is 4 × 4 because the state space of random walk is the node

set. However, the size of the quantum walk transition matrix

is 8× 8 as the state space is the directed edge set.

Therefore, we need to find a fast method to simulate the

discrete-time quantum walk and compute the matrix M (t). In

Fig.5, an arbitrary t-step discrete-time quantum walk from

node i to node j is shown as an example. This walk is

consisted of a (t − 1)-step quantum walk from i to n and

a 1-step walk from n to j. We find a recursive method for fast

computing the superposition transition matrices of t− 2, t− 1
and t-step discrete-time quantum walk.

Theorem 1. Assume a graph has N nodes. A is the

adjacency matrix and dn is the degree of node n. Let a

diagonal matrix D = diag
(

2
d1

, 2
d2

, · · · , 2
dN

)

and let another

matrix Q = DA. The series of the superposition amplitude

matrices
{

M (t)
}

can be computed as,

M (t) =











AQ− 2D−1, t = 1

MQ−A, t = 2

M (t−1)Q−M (t−2), t ≥ 3

(11)

Proof. (1) When t = 1, for every item in matrix M ,

Mij =
∑

m,n

Uim;nj =
∑

m

Uim;mj

(Uim;nj 6= 0⇒ m = n)

=
∑

m

2AimAmj

dm
−
∑

m

δijAimAmj

=
[

AQ− 2D−1
]

ij
(12)

(2) When t = 2,

M
(2)
ij =

∑

m,n

U2
im;nj =

∑

m,n,a

Uim;anUan;nj

=
∑

n,m,a

Uim;anUan;nj

=
∑

n,m,a

2Uim;anAanAnj

dn
−
∑

n,m,a

Uim;anδajAanAnj

=
∑

n,m,a

2Uim;anAnj

dn
−
∑

n,m

Uim;jnAjnAnj

(for an unattributed graph Ajn = Anj)

=
∑

n,m,a

2Uim;anAnj

dn
−
∑

n,m

Uim;jn

=
∑

n

2MinAnj

dn
−
∑

n

Uij;jn

=
∑

n

2MinAnj

dn
−

(

∑

n

2AijAjn

dj
−AijAji

)

= [MQ]ij −Aij . (13)

(3) When t ≥ 3,

M
(t)
ij =

∑

m,n

U t
im;nj =

∑

m,n,a

U t−1
im;anUan;nj

=
∑

n,m,a

U t−1
im;anUan;nj

=
∑

n,m,a

2U t−1
im;anAanAnj

dn
−
∑

n,m

U t−1
im;jnAjnAnj

(

U t−1
im;an 6= 0⇒ Aan = 1

)

=
∑

n,m,a

2U t−1
im;anAnj

dn
−
∑

n,m

U t−1
im;jn

=
∑

n

2M
(t−1)
in Anj

dn
−
∑

n,m

U t−1
im;jn

=
[

M (t−1)Q
]

ij
−
∑

n,m

U t−1
im;jn. (14)

Then we focus on how to compute the later part on the

right-hand side of the above equation.
∑

n,m

U t−1
im;jn =

∑

n,m,a

U t−2
im;ajUaj;jn

=
∑

n,m,a

2U t−2
im;ajAjn

dj
−
∑

n,m

U t−2
im;nj

=
∑

n

2M
(t−2)
ij Ajn

dj
−M

(t−2)
ij

= M
(t−2)
ij . (15)

So we get M (t) = M (t−1)Q −M (t−2). This is exactly

the formula stated in Theorem 1 when t ≥ 3.

From Theorem 1, all the operations in this recursion are no

more than O(N3) for a graph with N nodes. It means that
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the series matrices M (t) can be computed in cubic time of the

graph size.

C. Kernel design

1) Kernel definition for two graphs: Here we will propose

a novel graph kernel based on the fast discrete-time quantum

walk, named FQWK.

As a novel R-convolution kernel, the FQWK for two graphs

GA and GB is defined as follows.

KFQWK (GA, GB) =
∑

t

Kt (GA, GB) . (16)

After the tth step, a sub-kernel Kt (GA, GB) will be per-

formed to count all the tth-level isomorphic neighborhood-pair

substructures. The formal definition of the sub-kernel is

Kt (GA, GB) =
∑

m,n∈GA

∑

u,v∈GB

∆
(

S(t)
mn, S

(t)
uv

)

, (17)

where ∆ is a Dirac function as follows:

∆
(

St
mn, S

t
uv

)

=

{

1, if M
(t)
mn = M

(t)
uv ,

0, otherwise.
(18)

Here M
(t)
mn and M

(t)
uv are the quantum superposition ampli-

tude of the t-level neighborhood-pair substructure S
(t)
mn and

S
(t)
uv , in the graph GA and GB respectively.

2) Kernel computation for a graph dataset: In the above

definition, the computation of the simulation of the DTQW

is the most time-consuming procedure. Therefore for a graph

dataset with many graphs, this procedure needs to be per-

formed only once on each graph actually, before the pairwise

kernel computation.

Suppose that a graph dataset includes K graphs and each

one has N unattributed nodes.

Firstly, a T -step discrete-time quantum walk will be pro-

cessed step-by-step on every graph. By using the fast simula-

tion method, the superposition matrices M (t) can be computed

according to Theorem 1. In order to reduce the amplitude

comparisons, for the ith matrices M (i) of every graph G,

the histogram of all the N2 items is constructed as the ith

feature F
(i)
G of graph G. Therefore, for each graph, a T -

dimension feature vector can be extracted. The pseudo code

for the implementation of graph feature extraction algorithm

is shown in Algorithm 1.

And then, for each graph pair GA and GB in the dataset,

every feature pair F
(t)
GA

and F
(t)
GB

will be compared to ob-

tain the number of the neighborhood-pair substructures with

the same quantum superposition amplitude. For convenience

of calculations, for every feature pair F
(t)
GA

and F
(t)
GB

, an

aligned and padding operation will be performed to obtain

f
(t)
GA

and f
(t)
GB

, so that the the inner product
〈

f
(t)
GA

, f
(t)
GB

〉

is

just the frequency of the isomorphic substructure pairs. The

implementation of the proposed kernel FQWK is shown in

Algorithm 2. For the input graph dataset, the algorithm of

FQWK can output a kernel matrix KFQWK ∈ R
K×K , where

the entry KFQWK (Gi, Gj) denotes the number of isomorphic

neighborhood-pair substructures of Gi and Gj .

Algorithm 1 Graph Feature Extraction Algorithm

Require: Graph G, with N nodes; di, i = 1, · · · , N are the

node degrees; T is the fixed step of discrete-time quantum

walk, T ≥ 3.

Ensure: F
(t)
G : the t-step feature of G, t = 1, · · · , T .

1: function GraphFeature(G, T )

2: Get the adjacency matrix A

3: D = diag
(

2
d1

, 2
d2

, · · · , 2
dN

)

4: M ← ADA− 2D−1

5: F
(1)
G ← histogram (M)

6: M (2) ←MDA−A
7: F

(2)
G ← histogram

(

M (2)
)

8: for t = 3→ T do

9: M (t) ←M (t−1)DA−M (t−2)

10: F
(t)
G ← histogram

(

M (t)
)

11: end for

12: end function

Algorithm 2 FQWK Algorithm

Require: Graph dataset {G1, G2, · · · , GK}, where K de-

notes the number of graphs in the dataset; T is the fixed

step of node-to-node discrete-time quantum walk, T ≥ 3.

Ensure: Graph kernel KFQWK ∈ R
K×K

1: for i = 1→ K do

2: F
(t)
Gi
← GraphFeature (Gi, T ), t = 1, · · · , T

3: end for

4: for each graph pair Gi and Gj do

5: for t = 1→ T do

6: f
(t)
Gi

, f
(t)
Gj

= alignment
(

F
(t)
Gi

, F
(t)
Gj

)

7: Kt (Gi, Gj)←
〈

f
(t)
Gi

, f
(t)
Gj

〉

8: end for

9: KFQWK (Gi, Gj) =
∑T

t=1Kt (Gi, Gj)
10: end for

Finally, we will evaluate the time complexity of calculat-

ing the kernel matrix. For each graph G of the dataset, a

T -step discrete-time quantum walk needs to be performed

firstly to extract the T -dimension feature vector FG. It will

cost no more than O
(

KTN3 +KTN2logN
)

for line 1-

3 in Algorithm 2. And in line 4-9, to compute the kernel

matrix, for all the graph pairs, the neighborhood-pair matching

procedures are performed which cost about O
(

K2TN2
)

.

Overall, the total time complexity of N2QWK is about

O
(

KT
(

N3 +N2logN
)

+K2TN2
)

.

D. Discussion

1) Kernel validation: According to the Mercer’ theorem

[39], a valid graph kernel must be symmetric and positive

semi-definite (p.s.d.). Here we will give a brief proof of the

validation of FQWK.

Theorem 2. The proposed graph kernel FQWK is valid.

Proof. The FQWK is symmetric and p.s.d, and thus, it is valid.

• Symmetric.

Based on the definition of FQWK in (16), it is obvious

that KFQWK (GA, GB) = KFQWK (GB , GA).
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Fig. 6. (a) An example graph with node 8; (b) The 3-level neighborhood of

node v2 and the substructures S
(1)
23 , S

(2)
23 and S

(3)
23 ; (c) The neighborhood of

v8 and the substructures S
(1)
83 , S

(2)
83 and S

(3)
83 .

• p.s.d.

In the definition of FQWK, after the tth step of quan-

tum walk, a matching sub-kernel Kt (GA, GB) will

be performed to count all the tth-level isomorphic

neighborhood-pair substructures. It is known that the

summation kernel of some p.s.d. ones is still p.s.d. Be-

cause Dirac function is p.s.d, the sub-kernel Kt (GA, GB)
is p.s.d. Therefore, FQWK is p.s.d.

2) Theoretical analysis of FQWK: From the above defini-

tion, FQWK seems an instance of walk-based graph kernels. It

is close to RWK and BWK because we only use discrete-time

quantum walk to replace classical random walk and backtrack-

less walk. Therefore, the computation procedure of FQWK

is comparatively simple compared with other R-convolution

kernels.

Besides, compared with RWK and BWK, the proposed

FQWK can represent more powerful structural characteristics.

The reason is analyzed using the following example. Fig.6(a)

shows an example graph with 8 nodes. Focus on two node

pairs: node v2 to node v3 and node v8 to node v3. The

neighborhood of node v2 and node v8 as well as the 1 to 3

level neighborhood-pair substructures are shown in Fig.6(b)

and Fig.6(c), respectively. Obviously, both S
(1)
23 and S

(1)
83

have only 1 walk (path). S
(2)
23 and S

(2)
83 are both empty.

Meanwhile there are 6 3-length walks included in S
(3)
23 and

 

  

 

 

 

 

 

(a)

 

   

  

 

 

(b)

Fig. 7. Two example graphs with node 8.

S
(3)
83 , and only 1 path (or backtrackless walk) exists in each

of them, namely v2v5v6v3 and v8v7v6v3, respectively. Based

on the counting of walks or paths, the neighborhood-pair

substructures are isomorphic when using the RWK and other

walk-based kernels. Therefore, node v2 and node v8 can be

matched. However, it is obvious that the node v2 and node v8
should not be matched as the adjacent node v1 and v4 cannot

be matched. Therefore, classification error will be caused by

using the RWK and BWK if such kind of structures exist. If

the proposed FQWK is used, the superposition amplitude of

the substructure S
(3)
v2v3

is −1/9, which is different with the

substructure S
(3)
v8v3

with amplitude 1, so the two substructures

don’t match. Therefore, the proposed FQWK outperforms

the existing walk-based kernels as more powerful features

can be represented by the auxiliary substructure S
(k)
ab . The

false-positive substructure matching will be reduced and the

classification performance can be improved by the FQWK.

Actually, FQWK is a member of the subgraph-based kernel

family as the core procedure is the neighborhood-pair sub-

structure matching based on the comparison of the quantum

superposition amplitudes over the sets S
(k)
ab , rather than the

counting of individual walks. Compared with the existing

subgraph-based kernels, the FQWK is better because the

relative position between the substructures is considered. For

the graph in Fig.6(a) and two graphs in Fig.7, 1 triangle and

2 squares are included in all the three example graphs, but

the relative position among these 3 graphlets are different.

Therefore, the three graphs should not be matched. In the

computation of the traditional subgraph-based kernels, the

relative position between the adjacent substructures are usually

ignored in the traditional kernel computation, which will lead

to the error matching of the three graphs. In FQWK, the

auxiliary substructure S
(k)
ab can be regarded as the intersection

between the k-level neighborhood of node a and node b, and

quantum superposition amplitude of every neighborhood-pair

substructure S
(k)
ab will be affected by two kinds of quantum

interference:

• The inter interference among all the quantum walks

which are included in the neighborhood-pair substruc-

ture. In Fig.6(b) and Fig.6(c), the red solid lines denote

these included quantum walks. The quantum interference

among them will affect the superposition amplitude of

the substructure S
(k)
ab .

• The intra interference from the adjacent neighborhood-

pair substructures. In Fig.6(b) and Fig.6(c), the black

dashed lines denote the quantum walks excluded in S
(k)
ab .

However, via quantum interference, the superposition
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amplitude of one substructure will also be affected by

its adjacent ones.

Therefore, compared with other subgraph-based methods,

FQWK can extract more powerful substructure features by

catching more extra information of the location relationships

of local substructures.

Previous work on quantum walks [28], [32], [34] has shown

that quantum walks are sensitive to structures which random

walks are not. We demonstrate empirically in Section IV that

our transition matrix retains these properties and produces

excellent performance on standard datasets.

IV. EXPERIMENTS

In this section, the newly proposed kernel FQWK is evaluat-

ed on classification problems for unattributed graphs. Here we

perform a fast discrete-time quantum walk in the computation

of FQWK. In the test, we choose the user-defined fixed step

T as 10. The discussion of the choice of parameter T is given

in Section IV-B3. And we also compare FQWK with several

other popular graph classification methods as follows.

• Random walk kernel (RWK). The version of [40] is used

to test.

• Weisfeiler-Lehman kernel (WLK) [10]. For the sake of

fairness, the highest dimension of the Weisfeiler-Lehman

isomorphism is set to be 10.

• GraphHopper kernel (GHK) [17]. The Dirac kernel is

used to be the base node kernel.

• All graphlet kernel (AGK) [22]. The graphlet size is

chosen to be 4.

• Aligned subtree kernel (ASK) [11]. The density matrix

of continuous-time quantum walk is used to enhance the

node attributes. And the entropic representation layer is

also set to be 10. For WLK, GHK and ASK, we use

node degree as the original node attribute for unattributed

graphs.

• Quantum Jensen-Shannon kernel (QJSK) [32]. The den-

sity matrix of 10-step discrete-time quantum walk is used

for the computation of Von Neumann entropy .

• Edge-based matching kernel based on discrete-time quan-

tum walk (DQMK) [35]. A 10-step discrete-time quantum

walk is used to perform edge matching and the highest

layer of the depth-based representation is set to be 10.

• PATCHY-SAN convolutional neural net-

work(PSCN) [41]. Similar with the behavior of

CNNs on images, PSCN first extracts fixed-sized local

patches from nodes and neighborhoods as the receptive

fields for convolution filters and then use the graph

canonization tool NAUTY to apply CNNs on these

patches. Here we set the receptive field size as 10.

• Deep graph convolutional neural network (DGCNN)

[42]. DGCNN inherits the PSCN idea of imposing an

order for graph nodes, but integrates this step into the

network structure, namely the SortPooling layer. We set

the sortpooling parameter as 0.6 and learning rate as

0.0001. Both PSCN and DGCNN are trained with epochs

150 and batch size 25.

TABLE I
THE DETAILED INFORMATION OF THE REAL-WORLD DATASETS

Dataset #Set #Class Avg.#Node Avg.#Edge

AIDS 2000 2 15.69 16.20
COX2 467 2 41.22 43.45
DHFR 756 2 42.43 44.54
ENZYMES 600 6 32.63 62.14
MUTAG 188 2 17.93 19.79
NCI1 4110 2 29.87 32.30
PTC MM 336 2 13.97 14.32

TABLE II
THREE NON-ISOMORPHIC GRAPH DATASETS. IN COSGRAPH, EVERY

COSPECTRAL GRAPH PAIR IS USED AS A TEST. IN REGGRAPH AND

SRGRAPH, PAIR-WISE COMPARISONS OF THE GRAPHS IN EACH CLASS

ARE EVALUATED

Dataset #Set #Class Avg.#Node #Test Pair

CosGraph 10096 5048 10 5048
RegGraph 6490 31 16.34 885128
SRGraph 7303 11 37.63 5099490

All the experiments were tested in Matlab R2016b on an

Intel Xeon Core E5-1620 CPU with 8 GB memory. All the

runtime consumption tests were executed with a single thread.

A. Datasets

Both real-world and synthetic datasets are used to evaluate

the graph kernels.

The real-world datasets. To evaluate the classification

accuracy, 7 chemical datasets with ground truth labels are

collected [43]. All the chemical molecules are converted into

unattributed graphs by representing atoms as nodes and the

covalent bonds as edges.

AIDS consists of graphs representing molecular com-

pounds from the AIDS Antiviral Screen Database of Ac-

tive Compounds. There are 2,000 elements totally (1,600

inactive elements and 400 active elements), which represen-

t molecules with activity against HIV or not. COX2 has

467 cyclooxygenase-2 inhibitors has been assembled in this

dataset. DHFR is consisted of 756 inhibitors of dihydrofolate

reductase for the inhibition of the enzymatic reduction that

converts dihydrofolate to tetrahydrofolate. ENZYME collects

600 graphs representing tertiary protein structures, each la-

beled with one of the 6 EC top-level classes. MUTAG includes

188 graphs representing mutagenetic compounds, labeled ac-

cording to their mutagenic effects. NCI1 is a set of 4110

graphs representing a subset of chemical compounds screened

for activity against non-small cell lung cancer cell lines.

The Predictive Toxicology Challenge (PTC) dataset records

the carcinogenicity of several hundred chemical compounds.

These graphs are very small and sparse, with 20-30 nodes, and

25-40 edges. We select the graphs of male mice (PTC MM)

for evaluation. There are 336 test graphs in the MM class.

Table I shows the statistical information of these chemical

datasets.

The synthetic datasets. In order to further evaluate the

distinguishing ability of the kernels, some special datasets

are chosen [44] as shown in Table II. CosGraph includes
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TABLE III
THE AVERAGE ACCURACY (IN % ± STANDARD ERROR) ON GRAPH CLASSIFICATION BENCHMARK DATASETS

Methods
Datasets

AIDS COX2 DHFR ENZYMES MUTAG NCI1 PTC MM

RWK 80.00±.28 78.20±.61 60.96±.56 14.20±.42 80.56±.72 53.16±.30 61.59±.86
WLK 98.89±.07 79.38±.57 82.43±.45 37.69±.62 83.22±.89 81.87±.20 61.72±.81
GHK 99.33±.58 78.65±.89 79.77±.75 37.34±.58 85.40±.85 68.02±.36 61.45±.59
AGK 99.07±.07 78.20±.61 60.96±.56 28.88±.61 82.01±.90 62.54±.25 63.65±.82
PSCN 99.53±.03 77.66±.14 60.00±.27 15.50±.09 83.16±1.1 56.91±.09 59.41±.34
DGCNN 98.50±.03 78.26±.46 66.67±.26 40.12±.11 77.78±.51 69.34±.44 54.55±.76
ASK 96.74±.12 78.17±.61 74.15±.48 30.26±.60 84.96±.84 64.52±.24 61.15±.81
QJSK 79.57±.28 78.73±.61 78.41±.47 34.61±.62 83.62±.68 67.20±.22 60.58±.85
DQMK 79.99±.67 78.15±.64 76.77±.96 28.91±.71 76.42±.88 65.18±.33 61.09±.73
FQWK 99.53±.06 80.87±.57 82.92±.41 41.55±.61 84.27±.83 80.39±.19 63.77±.78

TABLE IV
COMPUTATION TIME OF THE GRAPH CLASSIFICATION METHODS (FOR GRAPH KERNELS, WE FOCUS ON THE COMPUTATION TIME OF KERNEL MATRIX.

FOR GRAPH NEURAL NETWORKS, THE TRAIN TIME OF THE NETWORK MODEL IS LISTED. THE LAST FOUR KERNELS ARE DESIGNED BASED ON THE

QUANTUM WALK)

Methods
Datasets

AIDS COX2 DHFR ENZYMES MUTAG NCI1 PTC MM

RWK 37′7′′ 6′4′′ 8′16′′ 4′20′′ 15′′ 197′13′′ 50′′

WLK 26′′ 7′′ 23′′ 15′′ 2′′ 1′57′′ 2′′

GHK 24′41′′ 2′42′′ 6′23′′ 4′49′′ 14′′ 164′11′′ 35′′

AGK 26′′ 15′′ 23′′ 32′′ 3′′ 1′34′′ 4′′

PSCN 1′48′′ 47′′ 1′21′′ 1′7′′ 14′′ 5′57′′ 20′′

DGCNN 4′5′′ 1′30′′ 2′32′′ 1′54′′ 23′′ 11′43′′ 44′′

ASK 92′25′′ 28′50′′ 61′16′′ 25′5′′ 1′25′′ 773′58′′ 2′51′′

QJSK 141′58′′ 21′18′′ 58′2′′ 23′50′′ 1′3′′ 611′10′′ 2′32′′

DQMK 97′44′′ 28′51′′ 76′37′′ 88′56′′ 1′26′′ 1203′9′′ 2′53′′

FQWK 38′52′′ 8′47′′ 13′57′′ 5′15′′ 27′′ 269′50′′ 58′′

5048 pairs of 10-node graphs. Each pair of graphs has the

same graph spectrum, which is called a cospectral graph pair.

RegGraph and SRGraph consist of 31 classes of regular graphs

and 11 classes of strong regular graphs respectively. Within

each class, every graph is regular or strong regular but not

isomorphic with others.

B. Results

1) Test result for graph classification: Graph classification

is an important application which is quite related to the

measurement of the graph similarity. Here we investigate the

performance of the novel graph kernel for the datasets in Table

I.

For each dataset, 10-fold cross-validation tests are per-

formed using all the mentioned methods. For graph kernels,

the classification accuracy is accomplished via using the C-

Support Vector Machine (C-SVM) with the optimal parameters

[45]. The average accuracy (± standard error) and runtime

results are reported in Table III and Table IV.

Table III reports the average classification accuracy and the

relative standard error of each method and dataset. For the

datasets AIDS, COX2, DHFR, ENZYMES and PTC MM, the

new kernel FQWK achieves the highest accuracy, which yields

a remarkable improvement compared with the other state-of-

the-art kernels and graph neural networks. Only for MUTAG

and NCI1, GHK and WLK show a slight better performance

than FQWK respectively. Although the classification for u-

nattributed graphs is quite difficult, FQWK turns out to be

the best competitor in terms of accuracy on most of these

benchmark datasets.

The reasons for the effectiveness are threefold.

• a) Owing to the powerful discrimination of quantum in-

terference, FQWK can establish the substructure location

relationship which is deficient in the traditional methods

RWK, WLK, GHK, AGK, PSCN and DGCNN.

• b) Compared with the information theoretic kernel QJSK

which computes the graph similarity via the global

structural information, FQWK can reflect richer local

convolutional characteristics of graphs via performing

step-by-step evolution of discrete-time quantum walk.

• c) The quantum walk kernels ASK and DQMK perform

the edge matching and subtree matching to compute

graph similarity. While FQWK can capture finer-grained

features of graphs via matching the neighborhood-pair

substructures.

Table IV shows the runtime comparison of these classifi-

cation methods for each dataset. FQWK achieves a moder-

ate performance. However, compared with ASK, QJSK and

DQMK, FQWK is the fastest one among all the kernels based

on quantum walk. Via the fast recursive method, the runtime

of FQWK is close to that of RWK.

2) Test result for distinguishing ability: Some similar and

non-isomorphic graphs are usually difficult to distinguish

via inexact graph comparison methods. Therefore, a graph

kernel cannot be applied to some kinds of graphs. Here the

distinguishing ability for similar graphs is used to compare the

applicability of these graph kernels. We utilize the failure rate
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TABLE V
THE FAILURE RATES (%) FOR DISTINGUISHING THE NON-ISOMORPHIC

GRAPHS (- DENOTES THE TEST CANNOT BE FINISHED BY THE KERNEL IN

10 DAYS). HERE ONLY GRAPH KERNELS ARE CONSIDERED TO BE TESTED.

Kernel Name CosGraph RegGraph SRGraph

RWK 100 100 100
WLK 1.66 100 100
GHK 18.82 0.12 100
AGK 5.96 4.87 3.82
ASK 33.16 1.14 95.96
QJSK 33.16 1.14 13.60
DQMK 0 0.11 -
FQWK 0 0.02 0.0016

as the applicability measurement for the graph kernels. Table V

shows the failure rates of these graph kernels for distinguishing

the similar graph pairs collected in Table II, including the

cospectral graphs, regular graphs and strong regular graphs.

RWK is the worst kernel, which cannot be used to dis-

tinguish these similar graphs. WLK can only locate the dif-

ference of the cospectral graphs, but fails for regular graphs.

Generally, compared with the traditional kernels, the quantum

walk kernels achieve better distinguishing ability because the

slight topological difference will be amplified by quantum

interference. In particular, FQWK has the lowest failure rates

for all the three kinds of non-isomorphic graphs, and thus out-

performs the other kernels. The powerful ability of FQWK for

distinguishing non-isomorphic graphs, even including strong

regular graphs, comes from the fact that both the inter and intra

quantum interference of the neighborhood-pair substructures is

included.

3) Test result about the parameter T : In the proposed

algorithm, the maximum walk step T should be user-defined.

This parameter is also used in QJSK, ASK and some other

kernels to restrict the walk steps. In essence, due to the fact

that the amplitude propagation occurs in the neighborhood of

nodes, the maximum walk step T actually limits the order

of the neighborhood-pair substructures that is explored in the

algorithm. In the former tests, we set T = 10.

In this part, the influence of T is under consideration. Our

proposed kernel FQWK and WLK, are tested for example

using different T for the datasets COX2 and PTC MM. We

change T from 5 to 25. The accuracy and computation time

results are shown in Fig. 8 and Fig. 9, respectively. We find

out that the accuracy keeps almost unchanged. However, the

computation time has a nearly linear growth with the increase

of T . The reason is that much of the structural information has

already been contained in the low order neighborhood of the

node, which is quite discriminative for the graph classification

based on the local structure matching. With the increasing

of T , there are barely isomorphic and large substructures

between two graphs so that the classification accuracy nearly

maintains. Therefore, it is reasonable that we choose the same

parameter T for all graph kernels which extract features via

node neighborhoods.

V. CONCLUSION

In this paper, a novel R-convolution graph kernel FQWK is

proposed based on the fast discrete-time quantum walk. Via the
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Fig. 8. (a) The classification accuracy (%) and standard error of using FQWK
and WLK for the dataset COX2 with different T ; (b) The classification
accuracy (%) and standard error of using FQWK and WLK for the dataset
PTC MM with different T .
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Fig. 9. (a) The computation time (s) of using FQWK and WLK for the
dataset COX2 with different T ; (b) The computation time(s) of using FQWK
and WLK for the dataset PTC MM with different T .

powerful quantum interference of the discrete-time quantum

walk, more reliable location correspondences between the

neighborhood-pair substructures are located so that FQWK can

extract finer-grained structural features, which the traditional

R-convolution kernels are deficient to. Extensive experiments

demonstrate the classification accuracy of FQWK outperforms

that of the state-of-the-art graph kernels and the distinguishing

ability for non-isomorphic graphs is significantly improved.

In addition, a novel and fast simulation method is pro-

posed for computing the transition matrices of the discrete-

time quantum walk, so that FQWK can achieve the highest

computation speed among all the existing kernels based on

the quantum walk.
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