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A Unified Approach to The Orbital Tracking Problem

John T. Kent1 Shambo Bhattacharjee2 Weston R. Faber3 Islam I. Hussein4

Abstract— Consider an object in orbit about the earth for
which a sequence of angles-only measurements is made. This
paper looks in detail at a one-step update for the filtering
problem. Although the problem appears very nonlinear at
first sight, it can be almost reduced to the standard linear
Kalman filter by a careful formulation. The key features of this
formulation are (1) the use of a local or adapted basis rather
than a fixed basis for three-dimensional Euclidean space and the
use of structural rather than ambient coordinates to represent
the state, (2) the development of a novel “normal:conditional-
normal” distribution to described the propagated position of
the state, and (3) the development of a novel “Observation-
Centered” Kalman filter to update the state distribution.

A major advantage of this unified approach is that it gives a
closed form filter which is highly accurate under a wide range of
conditions, including high initial uncertainty, high eccentricity
and long propagation times.

I. INTRODUCTION

Orbital uncertainty propagation and orbital object tracking

are a key themes in Space Situational Awareness (SSA) and a

number of papers have been published in recent years to deal

with the nonlinearity of the system equation when expressed

in Cartesian coordinates. There are two basic strategies to

deal with nonlinearity: (i) transform the coordinate system

to remove the nonlinearity, or (ii) develop sophisticated

methods or use a higher order polynomial to accommodate

it. The current paper uses the first approach.

On the other hand, many other papers have taken the

second approach. For example, Park and Scheeres [2] used

a mixture (hybrid approach) of a simplified dynamic system

(SDS) model and the state transition tensor (STT) model to

propagate and model the uncertainty with higher order Taylor

series terms [2], [3], [4]. Vittaldev, Russell and Linares [5]

proposed a mixture of polynomial chaos expansion (PCE)

and Gaussian Mixture Models (GMMs) based on Hermite

polynomials. Several other papers [6], [7] also used the

polynomial chaos model (PCM) and PCE for representing

orbital uncertainty. Horwood and Poore [8] proposed a Gauss

von Mises (GVM) filter using second order trigonometric

terms.
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This paper gives a unified treatment for a one-step update

in the orbital tracking or filtering problem. That is, an

“initial” distribution is specified at an initial time t = t0 = 0

for the state of an orbiting object, a noisy observation is

made at a later time t = t1, and an updated state distribution

is required. It is unified because it combines several ideas that

have appeared separately in earlier papers (e.g. [14], [15]).

The motivation for this paper is the large amounts of debris

orbiting the earth. Many pieces of debris can be detected

using ground-based angles-only measurements. However, the

smaller debris may be observed only intermittently, leading

to long (e.g. weeks, rather than hours or days) propagation

times in successive observations. Hence there is a pressing

need for quick, accurate and automatic filtering algorithms.

To emphasize the key ideas in our approach, some sim-

plifying assumptions are made. If a filtering method breaks

down under these idealized conditions, there is little hope of

it doing well under more realistic conditions.

(a) Keplerian dynamics for the evolution of the state of the

object. Thus an orbiting object follows an exactly ellip-

tical orbit and its initial state determines its future state

for all time. Perturbation effects such as atmospheric

drag and gravitational distortions are not considered

here.

(b) Notional observer located at the center of the earth. Thus

we ignore issues of perspective when the observer is on

the surface of the earth (or indeed in space).

(c) No issues of identifiability. It is assumed known that the

object at time t0 is the same as at time t1.

If the initial uncertainty is small and the propagation

time and the orbital eccentricity are is not too large, then

the problem can be solved by the unscented [11], [13] or

extended Kalman filter [12], [16] (UKF or EKF) in Cartesian

coordinates. However, for longer propagation times, the

propagated state distribution exhibits a pronounced banana

shape in position [15]. The location of the object becomes

spread out along an appreciable angular arc of its elliptical

orbital path, and a point cloud for position becomes roughly

banana-shaped.

One way to deal with longer propagation times and high

initial uncertainties is to use equinoctial coordinates [10].

Using a UKF or EKF in these coordinates can be very

successful in a wide range of circumstances. But there are

still scenarios where severe problems arise, e.g. (a) retrograde

orbits, (b) high eccentricity, and (c) specialized situations

such as break-up events [10], [15].

There are three key contributions in this paper that fit

together to give a “complete” and “universal” solution to

the filtering problem.



(1) Choice of coordinate system for the orbital state.

Throughout the paper an earth centered inertial (ECI)

representation of space is used. The standard ECI basis

consists of three orthonormal vectors pointing towards

specified directions relative to the stars. The basis is

fixed for all orbital objects. However, there are advan-

tages in using a local basis adapted to the orbital object

being studied. We propose the latter approach and give

the name CRTN (central radial-tangential-normal) to the

adapted basis (Section II).

Also, it is useful to make a distinction between ambient

coordinates (describing what you see) and structural

coordinates (describing more abstract features). For

example, Cartesian coordinates are the prime example of

ambient coordinates. Keplerian and equinoctial elements

are examples of structural coordinates. We propose

using AST (adapted structural) coordinates, a variant

of equinoctial coordinates defined with respect to the

CRTN basis. An attractive property of AST coordinates

is that the system equation is exactly linear (Section III).

(2) Closed form representation for the distribution of the

propagated position of the orbital state. A key com-

ponent of the filter is the distribution of the prop-

agated position of the orbiting object. This distribu-

tion can be described in closed form in terms of

a new normal:conditional-normal (NCN) distribution.

This representation is fundamental to the filtering prob-

lem, especially for break-up events, because it enables

the uncertainty for the propagated position to be re-

formulated using the Gaussian (i.e. normal) distribution

(Section IV).

(3) Updating calculation for the filter. The essence of any

filter involves combining the propagated distribution

of the state with the observation distribution to get

an updated distribution for the state. It turns out that

the commonly used UKF or EKF can be very mis-

leading in this orbital setting under high eccentricity.

Two modifications are proposed here: (a) a new closed

form observation-centered Kalman filter (OCKF) for the

position of the object along its orbital path, and (b) a

conditioning argument using the NCN distribution for

the remaining state variables (Section V).

The underlying principle behind our approach is to re-

cast the problem so that as far as possible the underlying

uncertainties are Gaussian and the system and observation

equations are linear; hence something close to a standard

Kalman filter can be applied and hence is optimal.

Here is an summary of how this methodology can be used

in practice for a one-step update in the filtering problem.

Except for step (1), the phrase “Gaussian distribution” is

shorthand for “a distribution closely approximated by a

Gaussian distribution.”

(1) Start with uncertainty in the initial state at time t0 spec-

ified in terms of a 6-dimensional Gaussian distribution

in Cartesian-ECI coordinates.

(2) After transformation to AST coordinates at time t0, the

uncertainty can still be described by a 6-dimensional

Gaussian distribution.

(3) Propagate the uncertainty in (2) by the linear system

equation to a 6-dimensional Gaussian distribution in

AST coordinates at the later time t1.

(4) From the 6-dimensional distribution in (3), extract the

two-dimensional propagated angles-only position distri-

bution in terms of the NCN distribution.

(5) Combine the uncertainty in (4) with a noisy angles-

only observation at time t1 using the new OCKF and

the conditioning argument to give the updated state

distribution as a 6-dimensional Gaussian distribution in

AST coordinates.

(6) Finally, if desired, the updated uncertainty can be

mapped back as a a 6-dimensional Gaussian distribution

in Cartesian-ECI coordinates.

The next sections give more details about each of the four

main contributions. However, before that we briefly describe

true, mean and eccentric anomalies.

A small object orbiting the earth follows an exact elliptical

orbit under Keplerian dynamics, with the center of the earth

at one of the focal points of the ellipse. There are three

angles of mathematical interest in this setting to describe the

angular position of the object along its orbit: the eccentric

anomaly (E), the mean anomaly (M) and the true anomaly

(T ), where all three angles are measured from perigee. The

true anomaly describes the actual angular position of the

object, as measured from the center of the earth. The mean

anomaly simplifies the mathematical development because it

changes at a constant rate in time, and the eccentric anomaly

is an intermediate angle of no direct interest. The relation

between the angles is given as follows [9], where e is the

ellipticity, 0 ≤ e < 1:

tan
1

2
T =

√

1+ e

1− e
tan

1

2
E, M = E − esinE.

These mappings are bijective, so any one angle determines

the other two. The calculations are all straightforward, except

that a numerical iteration is needed to solve for E from

M. The notation T = FM-to-E(M,e) is used to describe the

transformation between M and T and similar notation for the

transformations between other pairs of angles.

II. CHOICE OF BASIS

The earth centered inertial (ECI) point of view provides a

way to represent points in space. The center of the earth lies

at the origin and three orthonormal directions specify the

ECI basis. The second direction points towards the vernal

direction and the third points to celestial north. The first is

at right angles to both these. This basis is fixed in two senses:

it does not change in time and it is the same for all orbiting

objects being studied.

Next consider the state of an object orbiting the earth. The

state at time t can be described in Cartesian-ECI coordinates

(Cartesian coordinates with respect to the ECI basis) by

three-dimensional position and three-dimensional velocity

vectors xxxECI(t), ẋxxECI(t). Under Keplerian dynamics the state



at the initial time t = 0 determines the state at all other times

and the object follows an elliptical orbit. The initial state

can also be used to define a radial-tangential-normal (RTN)

orthonormal basis,

uuu = uuuRTN
∝ xxxECI(0), (II.1)

vvv = vvvRTN
∝ ẋxxECI(0)−{ẋxxECI(0)T uuu}uuu, (II.2)

www = wwwRTN = uuu× vvv ∝ xxxECI(0)× ẋxxECI(0), (II.3)

This RTN basis depends on the object being studied at time

t = 0. As defined here, it remains fixed for all later times.

To study uncertainty in a state at time t = 0, it is convenient

to think of a point cloud of states. Choose one particular

state near the middle of point cloud and call it the central

state. The central state is not regarded as random; it serves

as a reference state. The exact choice of central state does

not matter; changing it has a negligible effect on the later

analysis. Then random states in the point cloud (called

deviated states) can be described in terms of their differences

from the central state. Uncertainty can be represented by

specifying a distribution (typically a Gaussian distribution)

for the deviated states.

Let uuuCRTN,vvvCRTN,wwwCRTN denote the RTN basis for the

central state. The CRTN basis forms the reference basis for

the construction of AST coordinates in the next section.

III. THE AST COORDINATE SYSTEM

The simplest way to represent the state of an orbiting

object is in Cartesian coordinates, either with respect to the

ECI basis as in (II.2) or with respect to the CRTN basis.

These representations can be called ambient coordinates

because they describe directly where the object is.

Given an orthonormal basis uuu,vvv,www, call uuu the reference

direction, the uuu − vvv plane the reference plane and www the

reference normal direction.

A second way to represent the state is using structural

coordinates which represent deeper features in the state. For

example, the six Keplerian elements are the RAAN angle Ω

(the angle in the reference plane from the reference direction

to the RAAN direction), the argument of perigee ω (more

specifically, the angle in the orbital plane from the RAAN

direction to perigee), the true anomaly T = T (t) (the angle

in the orbital plane from the angle of perigee to the orbiting

object), the inclination angle i (between the reference plane

and the orbital plane), the eccentricity e, and the mean

motion n (sometimes the semi-major axis is used for the final

element). Note that the angles Ω,ω, i depend on the choice

of reference basis. Conventionally, Keplerian elements are

defined with respect to the ECI basis, so a more complete

name is Keplerian-ECI elements. As the object evolves in

time only the true anomaly T (t) changes; the other elements

remain fixed.

Keplerian-ECI elements can be transformed into

equinoctial-ECI coordinates, which are generally much more

suitable for Gaussian modelling. However, equinoctial-ECI

coordinates are not completely adequate. In particular, one

of the key coordinates is the break angle Ω+ω +T , which

combines angles in two different planes. This construction

causes complications when the ECI reference basis is

used because the planes can be oriented in very different

directions (a large value of i), e.g. for polar (i near 90o)

or retrograde (i near 180o) orbits. Another complication is

that the representation of the normal direction to the orbital

plane becomes singular for an exactly retrograde orbit.

The use of the CRTN reference basis does not have these

problems. For the central state, the inclination angle i(c) is

exactly 0o and for any deviated state the inclination angle

i(d) will be small; hence the orbital and reference planes are

always close together.

The proposal in this paper is to use “Adapted STructural

(AST)” coordinates to describe the state of the orbiting

object. These are essentially equinoctial-CRTN coordinates,

with one important modification. Let θ(t) denote the break

angle. For the central state, it vanishes at the initial time,

θ (c)(0) = 0o. For the deviated states θ (d)(0) will be close to

0. Then θ (d)(t) describes the angular position of the deviated

object on the true anomaly scale. Similarly, let φ (d)(t) denote

the angular position of the object on the mean anomaly

scale. AST coordinates use φ (d)(t) instead of the break angle

θ (d)(t) to describe the angular position. A major advantage

of this choice is that the system equation becomes exactly

linear,

θ(t) = θp +FM-to-T(φ(t)−φp,e), (III.4)

φ(t) = φp +FT-to-M(θ(0)−θp,e)+nt

= φ(0)+nt. (III.5)

That is the derivative of the mean anomaly with respect to

time is constant. On the other hand the derivative of the true

anomaly is larger at perigee than at apogee.

It has been shown in earlier work ([15]) that the mapping

between Cartesian coordinates and AST coordinates at time

t = 0 is approximately linear to a high level of approximation.

Hence a Gaussian distribution in Cartesian coordinates corre-

sponds closely to a Gaussian distribution in AST coordinates.

Since the system equation is exactly linear, this means the

propagated AST coordinates will also be close to a Gaussian

distribution.

Here is a complete list of AST coordinates for a deviated

state (dropping the (d) for simplicity),

A1 = 2tan(i/2)cosΩ, A2 = 2tan(i/2)sinΩ, A3(t) = φ(t),

A4 = ecosθp, A5 = esinθp, A6 = n,

where the Keplerian elements for the deviated state are

defined with respect to the CRTN basis and θp denotes the

direction of perigee on the true anomaly scale. Only A3(t),
the break angle on the mean anomaly scale, varies with t.

When the initial uncertainties are small, A1,A2 and A3(0)
will be small.

Let

R(c) = [uuuCRTNvvvCRTNwwwCRTN] (III.6)

denote the 3×3 rotation matrix constructed from the central

RTN basis using (II.1-II.3). Then standardize all the deviated



and the central states by defining

xxx(t) = R(c)T xxxECI(c)(((t), xxx(c)(t) = R(c)T xxxECI(c)(t), (III.7)

ẋxx(t) = R(c)T ẋxxECI(t), ẋxx(c)(t) = R(c)T ẋxxECI(c)(t). (III.8)

After standardization, a deviated state can then be written in

the form

xxx(0) =





A+ ε1

ε2

ε3



 , ẋxx(0) =





B+δ1

C+δ2

δ3



 , (III.9)

where A > 0, B ∈ R and C > 0 are positive constants for

the central state, and εεε = [ε1,ε2,ε3]
T and δδδ = [δ1,δ2,δ3]

T

represent small deviations from the central state which are

modelled by the initial Gaussian distribution.

The difference in AST coordinates between the deviated

and the central state can be approximated by linear ex-

pressions of εεε and δδδ (using the first order Taylor series

expansion),

AAA−AAA(c) = J
[

ε1 ε2 ε3 δ1 δ2 δ3

]T
= J[EEE −EEE(c)]T ,

(III.10)

where, J is the 6×6 Jacobian matrix from Cartesian-CRTN

(EEE) to AST coordinates (AAA) at t = 0. An explicit formula for

J can be constructed [15].

IV. THE NCN DISTRIBUTION

As time increases, it is helpful to represent the state in

spherical-CRTN coordinates as

xxx(t) =





r(t)cosη(t)cosψ(t)
r(t)sinη(t)cosψ(t)

r(t)sinψ(t)],



 (IV.11)

where η(t) is the “longitude”, and ψ(t) is the “latitude” with

respect to the CRTN basis.

The longitude in (IV.11) and the break angle on the true

anomaly scale are very similar, η(t) ≈ θ(t), up to a first-

order approximation. Hence either can be replaced by the

other when convenient.

After a bit of computation the latitude can be written as

ψ(t)≈ A1 sinη(t)−A2 cosη(t). (IV.12)

Hence, conditional on η(t) (or equivalently on θ(t) or on

A3(t) = φ(t)), ψ(t) is a linear combination of A1 and A2;

hence it follows a conditional normal distribution and its

conditional mean and variance can be computed explicitly.

A similar, but more complicated, expansion can be make

for the radial component. Again it follows a conditional

Gaussian distribution. It turns out that 1/r(t) is more Gaus-

sian than r(t) when the errors are not sufficiently small.

The joint distribution (φ(t),ψ(t),1/r(t)) can be called

a normal:conditional-normal (NCN) distribution, since the

marginal distribution of φ(t) is normal and the conditional

distribution of (ψ(t),r(t)) given φ(t) is normal. Define

standardized versions of the latitude and radial component

by subtracting their conditional means dividing by their

conditional standard deviations. Then the joint distribution

of φ(t) and the standardized versions of ψ(t) and 1/r(t) is

trivariate normal.

Example 1. Consider a central orbit with eccentricity

e(c) = 0.7 and an orbital period of 12 hours. These parameters

correspond to a highly eccentric orbit (HEO) with A =

9078 km, B = 2.6 km/sec and C = 8.1 km/sec. Set the

initial error standard deviations to be 0 km for the position

(corresponding to a break-up event) and 0.05 km/sec for the

velocity coordinates. A point cloud of N = 4000 data points

has been propagated for 1 central orbital period. The results

are displayed in Fig. 1 as a pairs plot. The first three variables

are φ(t) (“phi”), ψ(t) (“psi”) and 1/r(t) (“ri”). The final two

variables are the standardized versions of ψ(t) (“psi1”) and

1/r(t) (“ri1”). Several conclusions can be noted.

(a) The distribution of φ(t) (panel (1,1)) is approximately

normal.

(b) The distribution of ψ(t) is clearly not normal (too

much mass near 0; see panel (2,2)). Further, the joint

distribution of the latitude and the longitude (panel

(1,2)) shows a severe “pinching” pattern.

(c) The distribution of 1/r(t) is severely skewed and hence

not normal. The joint distribution of φ(t) and 1/r(t)
shows a very strong, but nonlinear, dependence (panel

(1,3)).

(d) On the other hand, the standardized versions of the lat-

itude and inverse radial component look normal (panels

(4,4) and (5,5)) and the trivariate distribution for these

variables and φ(t) looks trivariate normal (panels (1,4),

(1,5) and (4,5)).

Fig. 1. Example 1, propagated point cloud in spherical-CRTN

coordinates, illustrating the NCN distribution. The first, second and third
elements are the longitude (on the mean anomaly scale), the latitude and
the inverse radial component, respectively. The fourth and fifth elements are
the standardized latitude and standardized radial component, respectively.



V. THE FILTERING PROBLEM

Each step of a filter has four main ingredients: (i) a

state vector with an associated “initial distribution”, (ii) a

system equation leading to a “propagated distribution”, (iii)

an observation with an associated “observation distribution”,

and (iv) an observation equation linking the propagated state

to the observation. Then an application of Bayes’ Theorem

leads to an updated “posterior” distribution for the state.

Using AST coordinates, the system equation is linear and

it is usually reasonable to assume the initial state distribution

is Gaussian; hence the propagated state distribution is also

Gaussian. An angles-only observation is usually assumed

to have a Fisher distribution on the sphere with a high

concentration, or equivalently, a two-dimensional isotropic

Gaussian distribution in a tangent plane to the sphere with a

small variance.

The observation can be split into a longitude and a latitude

with respect the CRTN basis. However, the observation lon-

gitude is on the true anomaly scale whereas the propagated

angular position A3(t) is on the mean anomaly scale. When

the eccentricity is high, the map between these two scales

can be highly nonlinear.

Further the measurement error is always small, whereas

the the propagated variance of A3(t) can be large when the

propagation time is large. In this setting the commonly used

unscented and extended Kalman filters (UKF and EKF) can

lead to very inaccurate updates when the eccentricity is large.

A new nonlinear observation-centered Kalman filter, with

unscented and extended versions (OCUKF and OCEKF),

has been developed to deal with the problem [14]. The

two versions behave very similarly to one another so the

distinction between them is not emphasized here, and the

acronym OCKF is used to refer to both of them. In addition

the OCKFs are very similar in performance to the well-

established iterated unscented and iterated extended Kalman

filters. However the OCKFs have the advantage of having a

closed form and not needing iteration.

The OCKF in the current context is essentially a one-

dimensional filter for which the state variable A3(t) is the

angular position or longitude on the mean anomaly scale,

and the observation is the observed longitude on the true

anomaly scale. To deal with all the state variables a two-

stage procedure is proposed for the update step. The first

stage updates the distribution of A3(t) using the OCKF. For

the second stage, A3(t) is treated as known and equal to

its posterior mean. As noted in Section IV on the NCN

distribution, the conditional distribution the latitude ψ(t)
given A3(t) is Gaussian. Hence a linear Kalman filter can

be used for the remaining state variables.

The complications of the update step are needed to deal

with two different issues, either separately or together. The

OCKF stage is needed to deal with highly elliptical orbits

for which the mapping between true and mean anomaly is

very non-Gaussian. The conditioning stage is designed to

deal with break-up events and similar situations, for which

the propagated NCN distribution of (A3(t),ψ(t)) is highly

non-Gaussian.

Here are further details about the two stages of the update

step.

A. Stage 1: OCKF

Replace the observed longitude θobs(t) on the true

anomaly scale by its value φobs(t) on the mean anomaly

scale,

φobs = φ
(c)
p (t)+FT-to-M(θobs −θ

(c)
p ,e(c)),

θ
(c)
p = FM-to-T(φ

(c)
p ,e(c)), (V.13)

where the prior central values are used for the unknown

structural parameters.

In addition, the measurement variance for φobs(t) can be

obtained from the the measurement variance for the θobs(t)
by a first order Taylor series expansion,

Var(φobs)≈







(

1− e(c)
2
)3/2

(

1+ e(c) cosT (c)
)2







2

Var(θobs). (V.14)

Then using the “pseudo-observation”, φobs(t), a linear

Kalman update can be carried out for A3(t).

B. Stage 2: conditioning on A3(t)

From Equation (IV.12), the observed latitude can be writ-

ten as a linear function of A1 and A2,

ψobs(t)≈ A1 sinθtrue(t)−A2 cosθtrue(t), (V.15)

assuming θtrue(t) is known. After Stage 1, to a good level of

approximation, θtrue(t) can be replaced by

θpost(t) = φ
(c)
p (t)+FM-to-T(φpost(t)−θ

(c)
p ,e(c)),

where φpost(t) is the posterior mean for A3(t) after Stage 1,

and θpost(t) is its transformation to the true anomaly scale.

Hence a linear Kalman update can be carried out for

the conditional distribution of the remaining state variables,

given A3(t).
Example 2 Assume the same object considered in Exam-

ples 1 with central eccentricity e(c) = 0.7. This time consider

initial standard deviations 30 km for the position and 0.05

km/sec for the velocity coordinates. For simplicity assume

the central angle of perigee vanishes, θ
(c)
p = 0o. Recall from

(III.5) that the propagated variance of A3(t) increases linearly

with t. Choose the propagation time t1 large enough that the

standard deviation of A3(t1) equals σ∗ = 25o. Also suppose

that the propagated mean of A3(t1) is µ∗ = 260o.

Next, consider an angles-only observation with longitude

θobs = 225.5o and latitude ψobs = 0o in the CRTN frame

of reference, with measurement standard deviation 5.5e-04o

(2 arc-seconds) for both. After transformation to the mean

anomaly scale, the observed longitude takes the value

φobs = FT-to-M(225.5o,0.7) = 310o, (V.16)

which is located at the 2.5% upper tail of the propagated

distribution for A3(t1) since φobs = µ∗ + 2σ∗ = 260o + 2×



25o = 310o. Such cases are mildly unusual but not unlikely.

The results in Table I show that the UKF and EKF yield

posteriors that are far from the exact posterior distributions.

The iterated filters (IUKF and IEKF) and the observation-

centered filters (OCUKF and OCEKF) are virtually the same

as one another and the exact result. The exact result was

computed using a particle filter.

TABLE I

Table 1. Posterior means and standard deviations for A3(t1) in Example 2,

computed using various filters.

Moment UKF EKF “Exact”

mean (A3) 327.1o 329.8o 310o

s.d (A3) 4.1e-04o 5e-04o 3.2e-02o

Moment IUKF IEKF OCUKF OCEKF

mean (A3) 310o 310o 310o 310o

s.d (A3) 3.2e-02o 3.1e-02o 3.2e-02o 3.3e-02o

VI. CONCLUSION

To summarize, this paper has investigated various issues

related to the orbital uncertainty analysis and tracking. The

AST coordinate system has been developed to overcome the

limitations of the equinoctial coordinate system.

This paper has also highlighted various issues related

to the propagated uncertainty associated with the angular

position and the radial component. In particular, standard-

ization is sometimes needed to ensure the Gaussianity of the

distributions of the latitude and the inverse radial distance.

These results have been combined into a procedure to

compute a one-step update for the tracking problem using

the OCKF. After suitable transformations and conditioning,

the computations are nearly the same as those for the classic

linear Kalman filter. The evidence from Example 2 and other

investigations shows that the OCKF performs very well under

a wide range of circumstances.
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