
This is a repository copy of ASDYS: Dynamic Scheduling Using Active Strategies for Multi-
Functional Mixed-Criticality Cyber-Physical Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/166011/

Version: Accepted Version

Article:

Bai, Yang, Huang, Yizhi, Xie, Guoqi et al. (2 more authors) (Accepted: 2020) ASDYS:
Dynamic Scheduling Using Active Strategies for Multi-Functional Mixed-Criticality Cyber-
Physical Systems. Industrial Informatics, IEEE Transactions on. ISSN 1551-3203 (In
Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

ASDYS: Dynamic Scheduling Using Active

Strategies for Multi-Functional Mixed-Criticality

Cyber-Physical Systems
Yang Bai, Yizhi Huang, Guoqi Xie, Renfa Li, Wanli Chang

Abstract—Emerging cyber-physical systems (CPS), such as in
the domains of automotive, robotics, and industrial automation,
often run complex functions with different criticality levels on a
heterogeneous and distributed architecture. The ever stronger
interactions between the cyber components and the physical
environment lead to dynamic and irregular release of these
functions. This paper investigates dynamic scheduling of such
mixed-criticality functions, where each function is modelled by a
Directed Acyclic Graph (DAG) with no assumption on its period
or minimum inter-arrival time. Unlike the existing methods that
passively address the mixed criticality with a remedy when
deadline misses are observed — this results in high deadline
miss ratio (DMR) and it is particularly undesirable for the high-
criticality functions — we propose a novel dynamic scheduling
approach using active strategies (ASDYS in short), where the
mixed criticality is actively treated throughout the scheduling
process. Automotive CPS are used as an example for illustration.
Experimental results show that our approach is significantly
better than the existing methods in both the DMR of high-
criticality functions and the overall system DMR.

Index Terms—Cyber-physical systems, dynamic scheduling,
mixed-criticality, multi-DAG, heterogeneous distributed architec-
tures

I. INTRODUCTION

Increasingly complex and diverse functions are running on

distributed cyber-physical systems (CPS), with a demand of

heterogeneous computing architectures. Many of the functions

closely interact with the physical environment and often have

different criticality levels. Taking the automotive domain as an

example, in a modern vehicle, there can be tens of millions

of lines of code and hundreds of functions executing on

more than one hundred heterogeneous electronic control units

(ECUs). These ECUs communicate with various sensors and

actuators via shared bus. For these functions, ISO 26262

defines four Automotive Safety Integrity Levels (ASILs) to

reflect their different criticality [1], [2].

There is a trend that functions on CPS may get added or

removed online depending on varying scenarios. This makes

static scheduling difficult and motivates dynamic scheduling.

For instance, the automotive domain is moving from the

AUTOSAR (AUTomotive Open System ARchitecture) Classic

Yang Bai, Yizhi Huang, Guoqi Xie, and Renfa Li are with the Key Labora-
tory for Embedded and Cyber-Physical Systems, College of Computer Science
and Electronic Engineering, Hunan University, Changsha 410082, China.
(e-mail: baiyang@hnu.edu.cn; huangyizhi@hnu.edu.cn; xgqman@hnu.edu.cn;
lirenfa@hnu.edu.cn).

Wanli Chang is with the Department of Computer Science, University of
York, York YO10 5GH, UK. (e-mail: wanli.chang@york.ac.uk).

The corresponding authors are Guoqi Xie, Renfa Li, and Wanli Chang.

standard to the AUTOSAR Adaptive standard [3], driven by

the demands from autonomous and highly automated driving.

In AUTOSAR Classic, which has dominated the automotive

industry for two decades, the functions to run are fixed,

and static scheduling is suitable. All software modules are

completely specified during the design process, and the whole

stack is compiled and linked in one piece. In AUTOSAR

Adaptive, which is service-oriented, dynamic scheduling is

supported. Functions dynamically arrive and leave without

being known beforehand. They can be created or destroyed

with memory allocated accordingly. The emphasis is on adap-

tive resource sharing. A simple example scenario would be

that, depending on the driving condition (such as urban area

or highway, speed, distance from neighbour vehicles, risk

of illegal road usage, accuracy of mapping, and weather),

different sensing and planning functions may be used. Their

release time is largely dynamic and unpredictable.

This paper studies CPS running complex and dynamically

released functions with different criticality levels on a hetero-

geneous and distributed architecture. Dynamic scheduling of

such functions is investigated, where each end-to-end function

runs on multiple processing units (such as ECUs) and can be

modelled as a Directed Acyclic Graph (DAG) with no assump-

tion on its period or minimum inter-arrival time. For example,

in a vehicle, functions (such as adaptive cruise control) are

often composed of sensor operations (such as LIDAR data

processing), decision making and planning, control algorithms,

and actuation operations. Therefore, many such functions need

to be modelled by DAG and executed on multiple distributed

heterogeneous ECUs.

Existing methods developed for dynamic scheduling of mul-

tiple DAGs may be applied in this context [4], [5]. However,

they either do not consider mixed criticality, or passively

address it — i.e., the criticality features are only considered

and utilised when impending deadline misses are observed,

trying to save the high-criticality functions as a remedy —

leading to high deadline miss ratio (DMR).

Main contributions: We propose a novel dynamic schedul-

ing approach using active strategies (ASDYS in short) for

multi-functional mixed-criticality CPS on a heterogeneous

distributed architecture, aiming to minimise DMR1. This ap-

proach models the functions under the realistic assumption that

a task may be supported by only a limited set of processing

1In modern CPS, deadline misses can often be tolerated to a certain extent
on the application level. There have been extensive works in this direction,
such as on weakly-hard systems [6].

2

units. We actively account for the criticality features and

prioritise high-criticality functions throughout the scheduling

process, by incorporating traffic shaping in the scheduling

framework and adaptively handling newly arrived functions.

A new dynamic scheduling algorithm for multiple DAGs

is reported. Experimental results show that our ASDYS is

significantly better than the existing methods [4], [5] in both

the DMR of high-criticality functions and the overall system

DMR. In addition, the time complexity is polynomial and there

is a large reduction of the execution time.

II. RELATED WORK

Dynamic scheduling based on simple task models has

been studied in systems with mixed criticality [7], [8].

Vestal [9] first formalises the mixed-criticality scheduling

problem, which is then extended to the dynamic setting in [7],

[8]. A dynamic strategy is proposed in [7] to switch the

criticality mode of systems in runtime. Adaptive dynamic

scheduling methods proposed in [8] regulate the incoming

workload of low-criticality tasks at runtime according to the

demand of high-criticality tasks. The main difference of these

works above from our paper is that they do not consider

the inter-dependencies between tasks, which are modelled by

DAG.

Static scheduling based on DAG models has been investi-

gated in several recent works [10]–[15]. The federated schedul-

ing approach for mixed-criticality systems with sporadic DAG

tasks running on identical processors is proposed in [10],

[11], where high-utilisation tasks are assigned to dedicated

processors and tasks are scheduled in a work-conserving

manner. Different from the above works [10], [11] that address

single-DAG scheduling, periodic multi-DAG scheduling on

time-triggered systems is discussed in [12]. A meta-heuristic

for scheduling multi-periodic mixed-criticality DAG tasks on

multiprocessor systems is reported in [13]. Low DMR of the

high-criticality applications and short makespan are targeted

in [14], which proposes a static scheduling algorithm for

multiple DAGs that are simultaneously released. It has no

strategy to deal with newly arrived functions.

The most relevant research to our work lies in dynamic

scheduling of multiple DAGs on heterogeneous distributed

architectures [4], [5]. Such scheduling processes have two

main components: (i) allocating and scheduling tasks of the

existing DAGs; (ii) dynamically handling newly arrived DAGs.

Dynamic workflow scheduling is studied in [4], which uses a

wait queue for each processor and places the selected task

in the wait queue if the selected processor is not idle. It

does not consider mixed criticality in the entire process. The

work [5] aims to address multiple criticality levels, which are

unfortunately not accounted for properly. The higher-criticality

functions have priorities over the lower-criticality ones in

neither of the above two components, i.e., task allocation and

scheduling, as well as handling of new DAGs. Only when

impending deadline misses are observed, the criticality fea-

tures get considered and measures are taken to save the high-

criticality functions, in the sacrifice of low-criticality functions.

This is a passive strategy with very limited effectiveness, as

Gateway

ECU1

S
en
so
r

S
en
so
r

CAN1

ECU3

A
ct
u
a
o
r

A
ct
u
a
o
r

CAN2

ECU4

S
en
so
r

S
en
so
r

CAN3

ECU5

A
ct
u
a
o
r

A
ct
u
a
o
r

{P1}
m1,5

{P5}

Fig. 1. Architecture of a CAN cluster with buses connected by a central
gateway.

reflected by the high DMR of the high-criticality functions and

the high overall system DMR.

III. MODELS

This section explains the models used in this work, for

the platform architecture, functions, criticality, and problem

formulation. We would like to make a note that unlike the

usual assumption that a task can be supported by all processing

units [4], [5], our models take a more realistic assumption

that some tasks may only be supported by a limited set of

processing units. Many CPS, such as the automotive E/E

(Electrical/Electronic) architecture, are heterogeneous. That is,

the ECUs are not identical and they support different sets of

tasks. This poses a larger challenge in finding an appropriate

schedule, as the feasible choices are limited.

A. Platform Architecture

We consider multiple heterogeneous distributed processing

units that are connected by a network. This is commonly

found, e.g., in the automotive domain, where multiple hetero-

geneous distributed ECUs are connected with CAN (controller

area network) buses and a central gateway, as illustrated by

Figure 1. Functions may be triggered by sensors receiving

signals from the physical components of the automobile (in-

cluding driver actions) or the environment (including infras-

tructure and other vehicles). We denote a set of heterogeneous

distributed processing units as P = {p1, p2, . . . , p|P |}, whose

size is |P |. There is a trend in the automotive domain to

employ some powerful central ECUs, which can be used to

run the scheduling algorithm, and instructs the distributed less

powerful ECUs via the central gateway and buses. This trend

is aligned with the moving from AUTOSAR Classic to AU-

TOSAR Adaptive, driven by the demands from autonomous

and highly automated driving. In this work, we consider non-

preemptive scheduling.

B. Function Model

A single function, which is to be executed by heterogeneous

distributed processing units in P , can be modelled as a

DAG [5], [16], where the nodes stand for tasks and the edges

indicate the dependencies with communication cost between

the nodes. An example will be illustrated at the end of this

section. We denote the mth function in the system function

set MS as Fm=(N , W , M , C):

3

• N = {Fm.n1, . . . , Fm.nN} represents the task set con-

taining all N task nodes in Fm.

• W is an |N | × |P | matrix, where wi,k is the worst-case

execution time (WCET) of the task Fm.ni running on

pk. Due to the heterogeneity, the wi,k values on different

processing units are different. In addition, wi,k takes the

value ∞ if pk does not support Fm.ni.

• M is a set of edges, and mi,j ∈ M represents the task

dependency and communication from Fm.ni to Fm.nj .

• C denotes the set of end-to-end worst-case response time

(WCRT) for communication, where ci,j ∈ C is for mi,j .

If Fm.ni and Fm.nj are on the same processing unit, ci,j
is taken to be 0. Otherwise, the communication response

time can be derived from the task allocation. In this paper,

we assume a simple and conservative computation that

ci,j takes the maximum of all possible task allocations.

Note that ci,j sometimes may not be straightforward to

compute, especially when contention cannot be resolved

with pessimistic resource sharing approaches. This is

however not the focus of this work.

• Other attributes: Fm.arrivaltime is the release time

instant, Fm.criticality denotes the criticality level,

Fm.lowerbound indicates the minimum makespan of a

function when all the processing units are monopolised

by the function, Fm.deadline is the relative deadline,

and Fm.deadline ≥ Fm.lowerbound. There is no de-

pendency between different functions.

C. Criticality Model

The concrete specifications and identifications of criticality

vary in different industries, often involving more than two

levels. For example, as mentioned earlier in Section I, in the

automotive domain, the criticality is formalised by the ASIL in

ISO 26262 with four levels A, B, C, and D, where the specific

level of a function can be evaluated from three orthogonal

dimensions, i.e., severity, exposure, and controllability. Taking

the perspective of severity (severity of the damage to relevant

people caused by a hazard) for instance, low DMR is desired

by all functions and particularly important for the high-

criticality (severity) ones.

In the rest of this paper, we will continue to use this

example for illustration, where the set of criticality levels is

S = {S0, S1, S2, S3} and Fm.criticality ∈ S. The highest

level is S3. Besides, we assume that all tasks of the same

function inherit its criticality level, i.e., Fm.ni.criticality =
Fm.criticality. Functions do not move between criticality

levels.

In a mixed-criticality CPS, there can be multiple dynam-

ically released functions to be executed on distributed pro-

cessing units (such as ECUs), belonging to P . The set of

these functions to be allocated and scheduled is denoted as

MS = {F1, F2,. . . ,F|MS|}, where |MS| is the size. A system

has its criticality level as MS.criticality∈ S, which can be

changed during runtime. Its default value is the lowest level

S0. Essentially, the functions with lower criticality levels than

MS.criticality will not be handled. MS.criticality gets

elevated when impending deadline misses of functions with

n2

n1

0 10 20 t

11

8

6

F1.arrivaltime=0

F1.criticality =S3

F1.lowerbound=27

F1.deadline=34

n2

n1

F2.arrivaltime=0

F2.criticality =S0

F2.lowerbound=39

F2.deadline=46

F3.arrivaltime=10

F3.criticality =S1

F3.lowerbound=31

F3.deadline=46

n2

n1

3

7

n3
n4 n3

F1 F2 F3

2

14

19

5

8
6

n3

n2

n1

F4.arrivaltime=20

F4.criticality =S2

F4.lowerbound=27

F4.deadline=34

2
11

2

n3

F4

Fig. 2. The motivating example with four functions.

higher criticality levels than it are observed. Details will be

explained in Section IV-D.

D. Problem Formulation

Given a set of dynamically released functions MS to be

executed on a set of heterogeneous processing units P and

a set of criticality levels S, we aim to propose a dynamic

scheduling approach to reduce the DMR of these functions:

DMR(Sx) =
|MSmiss(Sx)|

|MS(Sx)|
, (1)

where |MSmiss(Sx)| represents the number of functions with

the criticality level of x missing their deadlines, and |MS(Sx)|
represents the number of all functions with the criticality level

Sx. In this work, the high-criticality functions are assigned

with the criticality level of S3, and DMR(S3) is the most

important metric, followed by the DMR of functions at other

criticality levels S2, S1 and S0.

E. Motivating Example

An example of four dynamically arriving functions with

different criticality levels is illustrated in Figure 2, and it

will again be used when explaining the proposed scheduling

approach. Table I shows the WCET matrices W , where ∞
indicates that a task is not allowed to run on this processing

unit. The task’s upward rank value ranku will be explained and

used later in Section IV-D and IV-E. For each DAG in Figure 2,

a directed edge from the task Fm.ni to Fm.nj represents the

dependency and communication between them. The value of

WCRT ci,j is the number beside this edge. The parameters

lowerbound and deadline of a function will be discussed in

the next section with Table II.

IV. ASDYS: THE DYNAMIC SCHEDULING APPROACH

A dynamic scheduling approach for multiple DAGs mainly

consists of two parts: (i) how to allocate and schedule the

existing tasks on the processing units; (ii) how to handle newly

arriving functions. Our proposed approach ASDYS, designed

for multi-functional CPS on heterogeneous distributed archi-

tectures, uses active strategies to treat the mixed criticality in

both parts of the scheduling process and reduce the DMR.

After the schedule is computed, certain deadline misses may

be saved with a remedy.

4

TABLE I
WCET MATRICES OF THE MOTIVATING EXAMPLE

(a) WCET matrix of F1

Task F1.n1 F1.n2 F1.n3

p1 ∞ 17 13

p2 6 12 9

p3 11 6 10

ranku 47.8 28.3 10.7

(b) WCET matrix of F2

Task F2.n1 F2.n2 F2.n3 F2.n4

p1 14 16 7 6

p2 15 7 7 11

p3 8 15 5 13

ranku 79.3 60 21 10

(c) WCET matrix of F3

Task F3.n1 F3.n2 F3.n3

p1 12 13 ∞
p2 18 10 18

p3 9 ∞ 7

ranku 42 26 12.5

(d) WCET matrix of F4

Task F4.n1 F4.n2 F4.n3

p1 8 20 20

p2 13 7 15

p3 18 11 8

ranku 44 29 14

A. Preliminaries

Lower bound: A function’s lower bound refers to its mini-

mum makespan when all processing units are monopolised by

it. In this work, we use the Heterogeneous Earliest-Finish-

Time (HEFT) algorithm [16], which allocates the tasks of

a DAG to multiple heterogeneous processing units with the

objective of minimising the makespan. The lower bound of

a function Fm is equal to the exit task’s actual finish time

computed by HEFT. As defined in [5], each task Fm.ni has

an individual lower bound lowerbound(Fm.ni) equal to its

actual finish time in the HEFT computation. The obtained

lowerbounds of functions and tasks in the motivating example

are reported in Figure 2 and Table II.

Deadline and deadline-slack: For each function, a known

relative deadline Fm.deadline as introduced earlier, is pro-

vided according to the physical requirements. It limits the

length of time between the function arrival and its execution

completion. The absolute deadline of a function Fm is calcu-

lated as:

Fm.abs deadline = Fm.deadline+ Fm.arrivaltime. (2)

The time slack between a function’s relative deadline and

lower bound is denoted as Fm.deadlineslack (defined in [5]):

Fm.deadlineslack = Fm.deadline− Fm.lowerbound. (3)

Similarly, the absolute deadline of a task Fm.ni can be

calculated as:

abs deadline(Fm.ni) = Fm.arrivaltime

+lowerbound(Fm.ni) + Fm.deadlineslack.
(4)

The values for the motivating example are shown in Table II.

B. Scheduling Framework

The scheduling framework is shown in Figure 3. The basic

structure is similar to [4], [5], and we propose a shaper (in

grey) to prioritise the high-criticality functions. The underlying

algorithm (Algorithm 1 in Section IV-D) is also new, aiming

to actively address the mixed criticality and reduce DMR.

Before explaining the shaper, we will first define a related

term.

Definition 1: Criticality-slack. A function’s criticality-

slack refers to the difference between its criticality and the

system’s current criticality. For Fm, given Fm.criticality =

TABLE II
LOWER BOUNDS AND DEADLINES OF THE MOTIVATING EXAMPLE

(a) Deadlines of functions

Function F1 F2 F3 F4

Fm.abs deadline 34 46 56 54
Fm.deadlineslack 7 7 15 7

(b) Lowerbounds and deadlines of tasks in F1 and F2

Task F1.n1 F1.n2 F1.n3 F2.n1 F2.n2 F2.n3 F2.n4

lowerbound 6 18 27 8 23 28 39
abs deadline 13 25 34 15 30 35 46

(c) Lowerbounds and deadlines of tasks in F3 and F4

Task F3.n1 F3.n2 F3.n3 F4.n1 F4.n2 F4.n3

lowerbound 9 22 31 8 17 27
abs dealine 34 43 56 35 44 54

. . .

. . .

. . .

. . .

Task priority queues

Common ready queues

Task allocation queues

P1 P2 P|p|

Platform architecture with
heterogeneous processing units

.

Cancelled task set
. . .

. . .

Shaper

. . .

F1 F2 F3 F4 Fnew

Multi-function pool

Fig. 3. The scheduling framework.

Sx1
and MS.criticality = Sx2

, where x1, x2 are integers in

[0, 3], its criticality-slack denoted by Fm.criticalityslack is

computed as

Fm.criticalityslack = x1 − x2. (5)

Shaper: The shaper is a component to limit the maximum

number of tasks in a given function Fm that can join the

current scheduling round. This maximum number Nmax(Fm)
is computed as

Nmax(Fm) = Fm.criticalityslack + 1. (6)

Essentially, a higher-criticality function will have more tasks

being handled. A function with lower criticality than the

system has no task joining this scheduling round. More details

will be explained later in this paper.

We now describe the scheduling framework, emphasising

on the shaper:

• The multi-function pool holds the arriving functions.

• Each function Fm in the multi-function pool has a corre-

sponding task priority queue Fm.task priority queue.

• Our proposed algorithm, which will be explained in

Section IV-D, schedules tasks round by round. In

5

each round, the algorithm checks every task priority

queue in the order from F1.task priority queue
to F|MS|.task priority queue, and selects certain

tasks from each task priority queue. The selected

tasks are put into the common ready queue

MS.common ready queue and then they wait

for being allocated and scheduled. The unselected tasks

remain in their task priority queues and they wait to be

selected in the next round.

• As is known, traffic shapers are used in computer net-

works to control and regulate the speeds, at which data

packets of different traffic types are injected to the

network so as to achieve a certain quality of service

(QoS). Inspired by the above, we use the shaper in

this work to adaptively control and regulate the speeds,

at which the tasks of functions with different critical-

ity levels are sent to MS.common ready queue, in

order to reduce the DMR of high-criticality functions.

In other words, for a function Fm, the shaper decides

how many tasks in Fm.task priority queue can be

sent to MS.common ready queue in a certain round

of scheduling.

• A task allocation queue pk.task allocation queue is

maintained for each processing unit pk. If a task in

MS.common ready queue has been selected, and the

processing unit for it to be allocated to (decided by the

algorithm that will be explained later) is pk, it will be

inserted to pk.task allocation queue.

• The cancelled task set temporarily stores tasks that have

been cancelled according to rules in our algorithm.

C. Triggering Events

In order to respond to changes in the dynamic system,

it is sometimes necessary to cancel the computed schedules

(and allocations) of certain tasks and come up with new ones.

We propose the concept triggering events to be used in our

algorithm.

Definition 2: Triggering events. Triggering events refer to

the events that may trigger rescheduling and reallocation of

tasks. We consider two types of triggering events: new arrival

triggering events and deadline alert triggering events.

Definition 3: New arrival triggering events. With the

arrival of one or more functions, assuming HI to be the

highest criticality level of the new functions, if there is at least

one unexecuted task, whose criticality level is lower than HI ,

then this new arrival event is called a new arrival triggering

event.

Definition 4: Deadline alert triggering events. An alloca-

tion for Fm.ni is called a deadline alert triggering event if

both the conditions in (7) are satisfied, where AFT (Fm.ni)
is the actual finish time of Fm.ni computed by the scheduling

algorithm,
{

Fm.criticality > MS.criticality;
AFT (Fm.ni) > abs deadline(Fm.ni).

(7)

Intuitively it means that, if the deadline of a function is

going to get missed (referring to the lower condition) and

the function is of high criticality (compared to the system

criticality level, referring to the upper condition), then this

task allocation should trigger rescheduling and reallocation.

D. Scheduling Algorithm

We propose a dynamic scheduling algorithm (including task

allocation) for multiple DAGs, which actively addresses the

mixed criticality, to be run with the scheduling framework

discussed above, as shown in Algorithm 1. Our entire approach

is designed to effectively reduce DMR of all functions. The

shaper and the adaptive handling of newly arrived functions,

which will be elaborated later in this subsection, actively

prioritise high-criticality functions and prevent them from

being interfered with. In general, this algorithm does the

followings: (i) tasks from different functions get handled round

by round; (ii) in each round, the scheduling orders of the ready

tasks are dependent on the criticality levels; (iii) every task is

allocated to the processor that provides its earliest finish time;

and (iv) triggering events may cause re-allocation.

Step 0: Initialising system criticality (Line 1). The system

criticality MS.criticality is initialised to S0, i.e., the lowest

criticality level. The initial non-empty function set MSinit is

composed of the functions released during system initialisa-

tion.

Step 1: Prioritising tasks in functions (Lines 2-4). For

each Fm that has already arrived in the multi-function pool,

we put all the tasks of Fm in its task priority queue

Fm.task priority queue, with the descending order of the

tasks’ upward rank values (denoted by ranku as shown in

Table I). For a task Fm.ni,

ranku(Fm.ni) =

Fm.wi + max
Fm.nj∈succ(Fm.ni)

{Fm.ci,j + ranku(Fm.nj)},
(8)

where Fm.wi is the average WCET of Fm.ni over all

supporting processing units and succ(Fm.ni) is the set of

Fm.ni’s immediate successor tasks. The ranku value of a

task is first proposed in [16] and it has been widely used

to prioritise a DAG’s tasks. Intuitively, a task is assigned a

higher priority, if (i) it has long execution time itself; (ii) its

successors (depending on it) have long execution time; (iii)

the communication latency between it and its successors is

long. As long as there are tasks in the task priority queues,

we perform Step 2 to 6 (Lines 5-44).

Step 2: Preparing tasks for allocation (Lines 6-16). By

employing the shaper component, our algorithm adaptively

selects the tasks for allocation round by round. In each

round, for a function Fm satisfying Fm ≥ MS.criticality,

we try to select the top Nmax(Fm), as computed by (6),

tasks from the head of Fm.task priority queue, and put

them in MS.common ready queue (ordered from high to

low criticality and then rank for the same criticality). If the

number of tasks in Fm.task priority queue is smaller than

Nmax(Fm), all of them get selected.

Intuitively, the system criticality level MS.criticality acts

as a threshold to prevent functions with lower criticality levels

from being handled in this and following steps. Among the

functions above this threshold, Nmax(Fm) is used for further

6

prioritisation according to their criticality levels, allowing

more tasks in higher-criticality functions to participate in a

round. MS.criticality takes the lowest value S0 by default

(i.e., every function can be handled) and only gets elevated

if impending deadline misses are observed (i.e., the system

is not able to sustain all functions and has to abandon the

low-criticality ones).

For example, after initialisation, the Nmax of the functions

with the lowest criticality level S0 is 1, according to (5)

and (6). That is, all functions get scheduled to some extent.

By comparison, the Nmax of the functions with the highest

criticality level S3 is 4, reflecting prioritisation. Afterwards,

when impending deadline misses are observed, the system

criticality level is raised from S0 to S1. In this case, the

Nmax of the functions with the lowest criticality level S0

becomes 0. That is, these S0 functions are abandoned. De-

tails about how the impending deadline misses are treated

will be explained in Step 4. As long as there are tasks in

MS.common ready queue, we perform Step 3 to 5.

Step 3: Task allocation (Lines 17-19). We take out the task

at the head of MS.common ready queue and compute its

allocation. Assuming that the selected task Fm.ni is allocated

on pk, the earliest finish time, i.e., EFT (Fm.ni, pk), is the

earliest time when Fm.ni can finish its execution on pk. It

depends on Fm.wi,k (the WCET of the task Fm.ni on pk)

and the earliest time when Fm.ni can start its execution on pk,

which is denoted by EST (Fm.ni, pk). The relation is shown

below

EFT (Fm.ni, pk) = EST (Fm.ni, pk) + Fm.wi,k. (9)

On the other hand, EST (Fm.ni, pk) depends on both the

earliest idle time of pk and Fm.ni ’s immediate predecessors,

EST (Fm.ni, pk) =

max

{
avail[k];

max
Fm.nj∈pre(Fm.ni)

{AFT (Fm.nj) + Fm.cj,i},
(10)

where avail[k] is the earliest idle time of pk and pre(Fm.ni)
denotes the set of immediate predecessors of Fm.ni.

The task Fm.ni is then allocated to the processor p̂k
(in fact, p̂k.task allcation queue instead of the processor

itself), which provides the minimum earliest finish time. The

actual finish time of Fm.ni, i.e., AFT (Fm.ni) is equal to

EFT (Fm.ni, p̂k). The actual start time AST (Fm.ni) is equal

to AFT (Fm.ni)−Fm.wi,k. Only at the time of AST (Fm.ni),
is the task Fm.ni assigned to the processor p̂k.

Once the allocation is decided, the WCRT of the whole

function Fm (note the difference from the WCRT of com-

munication messages explained in Section III-B) is equal to

AFT (Fm, nexit)−Fm.arrivaltime, i.e., the actual finish time

of the exit task Fm.nexit minus the release time of Fm.

Step 4: Checking deadline alert triggering event and can-

celling tasks (Lines 20-25). We check if this allocation of

Fm.ni in Step 3 is a deadline alert triggering event based

on Definition 4. If it is, we elevate MS.criticality to be the

same as Fm.criticality. The unexecuted tasks getting out of

the task priority queues in this round and the previous round,

i.e., including the tasks entering the task allocation queues in

Algorithm 1 The scheduling algorithm

Input: P = {p1, p2, . . . , p|P |}, S = {S0, S1, S2, S3}, MSinit = {F1,

F2,. . . ,F|MS|}
Output: Scheduling results

1: MS.criticality ← S0 and MS ←MSinit;

2: for (m← 1;m 6 |MS|;m + +) do

3: sort Fm’s tasks to Fm.task priority queue in descending order of ranku

;

4: end for

5: while (task priority queues are not all empty) do

6: for (m← 1;m 6 |MS|;m + +) do

7: if (Fm.criticality < MS.criticality) then

8: continue;

9: end if

10: Nmax(Fm)← Fm.criticalityslack + 1,

11: cnt← Nmax(Fm);

12: while ((cnt−−)&&(!Fm.task priority queue.empty())) do

13: ni ← Fm.task priority queue.out();

14: common ready queue.insert(ni);

15: end while

16: end for

17: while (!MS.common ready queue.empty()) do

18: Fm.ni ← common ready queue.out();

19: Assign Fm.ni to task allocation queue(pk) with the minimum EFT;

20: if (AFT (Fm.ni)>abs deadline(Fm.ni)&&

Fm.criticality>MS.criticality) then

21: MS.criticality ← Fm.criticality;

22: cancelled task set
remove
←−−− tasks in MS.common ready queue;

23: cancelled task set
remove
←−−−tasks in task allocation queues allo-

cated in the current and previous round

24: cancelled task set
remove back
−−−−−−→ task priority queues

25: end if

26: if (Scheduling of Fm, which causes the system criticality to rise, is

completed) then

27: cancelled task set
remove
←−−− tasks in MS.common ready queue;

28: cancelled task set
remove back
−−−−−−→ task priority queues

29: MS.criticality ← S0;

30: end if

31: end while

32: if (new functions MSnew arrive) then

33: HI ← the highest criticality of functions in MSnew ;

34: if (at least one task in task allocation queues has lower criticality level

than HI) then

35: cancelled task set
remove
←−−−tasks in task allocation queues with

lower criticality levels than HI;

36: cancelled task set
remove
←−−− tasks in MS.common ready queue;

37: cancelled task set
remove back
−−−−−−→ task priority queues

38: end if

39: for (m← 1;m 6 |MSnew|;m + +) do

40: MS.add(Fnew

m);

41: sort Fnew

m ’s tasks to Fnew

m .task priority queue in descending

order of ranku

42: end for

43: end if

44: end while

this and previous round, and all tasks in the common ready

queues (all inserted in this round), are cancelled. Note that

we do not cancel tasks that have already started executing on

the processing units. These cancelled tasks will be moved to

cancelled task set, and then back to the corresponding task

priority queues. Once a cancelled task gets a second chance,

it may be allocated to a different processing unit.

Step 5: Resetting system criticality (Lines 26-30). Once

the scheduling of Fm causing the deadline alert trigger-

ing event in Step 4 is completed, the system criticality

MS.criticality is reset to S0. The remaining tasks in

MS.common ready queue are then moved back to the task

priority queues via cancelled task set.

Step 6: Handling newly arrived functions (Lines 34-42).

If one or more new functions arrive (implemented by the

interrupt service routine), with the highest criticality level of

HI , we check whether this is a new arrival triggering event

with Definition 3. If it is, we cancel the unexecuted tasks in the

7

task allocation queues with lower criticality levels than HI ,

and all tasks in the common ready queues. These cancelled

tasks will be put back in the task priority queues. The newly

arrived functions will be added to the multi-function pool

and sorted for the task priority queues as in Step 1. Such

cancellation has negligible cost.

Whilst the system is running, it is highly unlikely, especially

for those complex CPS we are investigating like autonomous

vehicles, that task priority queues get all emptied. There

is always some function waiting to be scheduled and run.

Therefore, Algorithm 1 runs continuously. If no functions are

queuing, it means that the system is shut down or suspended,

following which there will be a new initialisation.

A summary of the active strategies: The proposed algo-

rithm uses active strategies to prioritise high-criticality func-

tions in the scheduling process: (i) In each scheduling round,

the shaper adaptively sets the number of tasks that can partici-

pate according to the criticality levels of both the functions and

systems, and the tasks in the common ready queues are ordered

from high to low criticality (followed by ranku values for the

same criticality), giving more opportunities to functions with

higher-criticality levels; (ii) When responding to the newly

arrived functions, task cancelling operations are adaptively

performed based on the criticality levels of both the new func-

tions and the current unexecuted tasks. This strategy avoids

the undesirable situation that the newly arrived functions with

lower-criticality levels interfere with the previously computed

schedules of the higher-criticality functions. The reduction of

rescheduling efforts also contributes to the timing behaviour

of the algorithm. Assuming a function to have at most α tasks,

there are a maximum of |MS| ·α tasks in the system function

set MS. The most frequent and time-consuming operation in

the proposed algorithm is to find the proper processing unit

for a task through computing its EFT value, which requires

traversing the task’s immediate predecessors (at most α) and

all the |P | processing units. Therefore, the asymptotic time

complexity of this algorithm is O(|MS| · α2 · |P |).

E. Scheduling Process of the Motivating Example

The motivating example in Figure 2 is again used to

illustrate the scheduling process. MS.criticality is initialised

to S0. At time instant 0, F1 and F2 arrive concurrently.

Since F1.criticality = S3 and F2.criticality = S0, ac-

cording to (5) and (6), Nmax(F1) = 4 and Nmax(F2) =
1. So in this scheduling round, at most four tasks in F1

and one task in F2 are allowed to participate. In the first

round, all the three tasks of F1 (in the descending order

of the ranku values) and one task of F2 are selected and

moved to MS.common ready queue. The allocation order is

F1.n1, F1.n2, F1.n3, F2.n1, from high to low criticality. Since

all tasks in F1 get allocated, next, one task in F2 is selected

and allocated in each round. The results are shown in Figure 4.

When the time is 10, a new function F3 with the criticality

level of S1 arrives. Therefore, HI is S1. The unexecuted tasks

F2.n4 and F2.n3 are cancelled since F2.criticality < HI ,

as shown in Figure 5. After the above task cancelling, the

p1

F1.n1 F1.n2 F1.n3

F2.n1 F2.n2 F2.n3

F1.abs_deadline=34

F2.abs_deadline=46

p2

p3

F2.n4

F1n2

n1

n3n3

n2

n1

n3

n3n3

n1

n2

n4

n3

n1

n2

n4

F2

When t =0, MS.criticality = S0 . The functions

F1 and F2 arrive concurrently and get
scheduled. The deadlines are met.

t
0 20 40 60 8010 30 50 700 20 40 60 8010 30 50 70

F1.criticality =S3 F2.criticality =S0

Fig. 4. Scheduling results for F1 and F2 that arrive at t=0.

p1

F1.n1 F1.n2 F1.n3

F2.n1 F2.n2 F2.n3

F1.abs_deadline=34 F2.abs_deadline=46

p2

p3

F2.n4

t
0 20 40 60 8010 30 50 700 20 40 60 8010 30 50 70

n2

n1

n3

F3

n2

n1

n3

F3

p1

F1.n1 F1.n2 F1.n3

F2.n1 F2.n2 F2.n3

F1.abs_deadline=34 F2.abs_deadline=46

p2

p3

F2.n4

t
0 20 40 60 8010 30 50 70

n2

n1

n3

F3 When t=10, MS.criticality=S0. The function F3 arrives.
 HI=S1. F2.n4 and F2.n3 get cancelled.

F3.criticality=S1

Fig. 5. Task cancelling caused by the arrival of F3 at t=10.

p1

F1.n1 F1.n2 F1.n3

F2.n1 F2.n2 F2.n3

F1.abs_deadline=34
F2.abs_deadline=46

p2

p3

t
0 20 40 60 8010 30 50 700 20 40 60 8010 30 50 70

n2

n1

n3

F3

n2

n1

n3

F3

F3.n1 F3.n2

F3.n3

F3.abs_deadline=56

After the task cancelling, the scheduling continues, and no deadline is
missed.

F2.n4

F3.criticality = S1

Fig. 6. Scheduling results after the task cancelling in Figure 5.

scheduling continues as follows. Since F2.criticality = S0,

F3.criticality = S1, and MS.criticality is still S0. Accord-

ing to (5) and (6), Nmax(F2) = 1, and Nmax(F3) = 2. The

tasks F3.n1, F3.n2, and F2.n3 are allocated successively in

the first round, ordered from high to low criticality followed

by rank. The tasks F3.n3 and F2.n4 are allocated in the next

round. Figure 6 shows the related scheduling results, and no

deadline is missed.

When the time is 20, F4 with the criticality level of S2

arrives, making HI S2. The unexecuted tasks belong to F3

and F2, which both have lower criticality than HI , and

thus get cancelled, as shown in Figure 7. Afterwards, since

F4.criticality = S2, F2.criticality = S0, F3.criticality =
S1, and MS.criticality = S0, according to (5) and (6),

Nmax(F4) = 3, Nmax(F2) = 1, and Nmax(F3) = 2. The tasks

F4.n1, F4.n2, F4.n3, F3.n2, F3.n3, and F2.n3 are allocated

successively in the first round, and F2.n4 is allocated in the

next round, as shown in Figure 8.

It is noted that the deadline alert triggering events do not

appear in this example. The active strategies reduce their

8

F4

p1

F1.n1 F1.n2 F1.n3

F2.n1 F2.n2 F2.n3

F1.abs_deadline=34

F2.abs_deadline=46

p2

p3

t
0 20 40 60 8010 30 50 700 20 40 60 8010 30 50 70

F3.n1 F3.n2

F3.n3

F3.abs_deadline=56

When t=20, MS.criticality = S0. The function F4 arrives, HI = S2.
The unexecuted tasks with lower criticality levels than HI get cancelled.

F2.n4

n2

n1

n3

n2

n1

n3 F4.criticality=S2

Fig. 7. Tasks cancelling caused by the arrival of F4.

p1

F1.n1 F1.n2 F1.n3

F2.n1 F2.n2

F1.abs_deadline=34

F2.abs_deadline=46

p2

p3

t
0 20 40 60 8010 30 50 70

F3.n1 F3.n2

F3.abs_deadline=56

F4.n1

F4.n2

F4.n3 F3.n3F2.n3 F2.n4

Fig. 8. Scheduling results after the task cancelling in Figure 7.

occurrence, making it difficult to present both two types of

triggering events with a simple example and a short scheduling

process.

We would like to stress that, whilst the automotive systems

are used as an example, the proposed approach is fairly general

and can be deployed for dynamic scheduling of any systems

with mixed-criticality functions, such as in the domains of

robotics and industrial automation. The extension from four

to any number of criticality levels is trivial.

V. EXPERIMENTAL RESULTS

We compare our proposed approach with three existing

works for evaluation, i.e., FDWS [4], FDS MIMF [5], and

ADS MIMF [5], all of which address the dynamic scheduling

of multiple DAGs. As discussed before, FDWS does not

consider mixed criticality, and MIMF passively utilises the

criticality features, trying to fix the observed deadline misses

with a remedy. Note that these three methods are the closest

to our approach and they can be directly applied in the context

we study.

A. Experimental Setting and Metrics

We mainly evaluate these approaches from two aspects.

The first is on the scheduling results, focusing on the DMR

of functions DMR(Sx) referring to (1), and especially the

high-criticality ones, i.e., DMR(S3) in this work. The second

aspect is on the timing efficiency, which is reflected primarily

by the time cost in simulation, with the average number of

times a task is rescheduled as an auxiliary indicator.

The functions are randomly generated according to the

model in Section III-B within the following realistic parameter

ranges [17] under uniform distribution. The WCET of a task

and the WCRT of communication are between 100 and 400

time units, i.e., 100 6 wi,k 6 400, and 100 6 ci,j 6 400. For

a function Fm, the number of tasks it contains (denoted by |N |
as mentioned before) is 8 6 |N | 6 23. There is no restriction

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

100 200 300 400 500 600 700 800

FDWS FDS_MIMF ADS_MIMF ASDYS

DMR(S3)

Fig. 9. DMR(S3) on |MS|.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

100 200 300 400 500 600 700 800

FDWS FDS_MIMF ADS_MIMF ASDYS

|MS|

DMR(overall)

Fig. 10. DMR(overall) on |MS|.

imposed on the communication network topology or protocol

for the sake of generality. The deadline-slack of Fm is set as

Fm.deadlineslack = Fm.lowerbound/40 [5]. To reflect the

increasing complexity of CPS in both functions and platforms,

we consider up to 800 functions dynamically arriving and

running on 100 heterogeneous distributed processing units. For

each task, certain processing units, in the range of [0, 9], are

randomly chosen to be non-supportive.

The simulator is implemented with Java. The global sched-

uler executing Algorithm 1 is aware of all the parameters

of functions except for the arrival time, which is randomly

initialised. Both the task priority queues and task allocation

queues are maintained with the scheduler. All the algorithms

under comparison run on the same PC with Intel i7 CPU

(4.00GHz) and 16GB RAM.

B. Results

Experiment 1: The approaches are compared under dif-

ferent workloads, represented by the function set size |MS|
varying from 100 to 800. We limit the time range between the

first and the last arrived function to be 40000 time units, and

the functions arrive randomly under uniform distribution. The

number of functions with each of the four critical levels is set

to be the same. The obtained values of the evaluation metrics

are statistic averages.

Table III shows the DMR results, among which DMR(S3)
and DMR(overall) are plotted in Figure 9 and 10. The

utilisation of the processing unit can be computed as

U =

|P |∑

k=1

busytime(pk)/

|P |∑

k=1

makespan(pk) (11)

and also reported in Table III, where |P | is the size of

processor set, makespan(pk) is the time span between 0 and

the finish time instant of the last task executed on pk, and

busytime(pk) is the total time when there are tasks executing

on pk. The utilisation in DAG scheduling is usually not high,

due to the dependency constraints between tasks. Considering

mixed criticality and trying to reduce DMR make it even

worse.

With increasing workloads (reflected by |MS|), the

DMR(overall) and DMR(Sx), where x ∈ [0, 3], of all

approaches under comparison increase. This is expected as the

resources are limited. As shown in Table III and Figure 9, our

proposed ASDYS always has the lowest DMR(S3), i.e., the

DMR of functions with the highest criticality level, which is

the most important metric in this work. As shown in Table III

and Figure 10, our ASDYS has the lowest DMR(overall).

9

TABLE III
DMR COMPARISON WITH DIFFERENT FUNCTION SET SIZES

(REPRESENTED AS SAMPLE MEAN±1.96SE (STANDARD ERROR), 95%
CONFIDENCE INTERVAL)

|M
S
|

Approach
DMR (sample mean±1.96SE) Reschedule

/task
U

Overall S3 S2 S1 S0

1
0
0

FDWS 0.11±0.02 0.11±0.03 0.10±0.04 0.10±0.03 0.14±0.04 0.00 0.08

FDS MIMF 0.11±0.02 0.12±0.03 0.13±0.05 0.07±0.05 0.12±0.05 2.03 0.08

ADS MIMF 0.11±0.03 0.05±0.03 0.11±0.03 0.11±0.06 0.17±0.05 2.34 0.08

ASDYS 0.09±0.02 0.02±0.01 0.06±0.02 0.10±0.05 0.18±0.04 1.63 0.08

2
0
0

FDWS 0.20±0.02 0.21±0.03 0.21±0.03 0.19±0.06 0.18±0.04 0.00 0.14

FDS MIMF 0.23±0.02 0.23±0.03 0.23±0.04 0.22±0.06 0.24±0.03 2.91 0.14

ADS MIMF 0.28±0.04 0.17±0.04 0.28±0.06 0.34±0.06 0.32±0.04 3.83 0.14

ASDYS 0.18±0.02 0.03±0.01 0.13±0.03 0.26±0.05 0.27±0.03 2.51 0.14

3
0
0

FDWS 0.29±0.02 0.28±0.03 0.26±0.02 0.30±0.03 0.30±0.03 0.00 0.20

FDS MIMF 0.31±0.02 0.31±0.03 0.30±0.04 0.31±0.05 0.32±0.02 3.15 0.20

ADS MIMF 0.38±0.02 0.23±0.03 0.34±0.03 0.42±0.03 0.52±0.04 4.21 0.20

ASDYS 0.28±0.02 0.09±0.02 0.23±0.03 0.37±0.04 0.42±0.03 2.81 0.20

4
0
0

FDWS 0.37±0.02 0.38±0.02 0.37±0.02 0.37±0.04 0.36±0.04 0.00 0.26

FDS MIMF 0.41±0.02 0.40±0.04 0.39±0.03 0.42±0.03 0.42±0.03 3.39 0.26

ADS MIMF 0.45±0.01 0.27±0.03 0.39±0.03 0.52±0.02 0.60±0.02 4.49 0.27

ASDYS 0.34±0.01 0.11±0.02 0.32±0.03 0.42±0.04 0.51±0.03 2.98 0.26

5
0
0

FDWS 0.41±0.01 0.44±0.02 0.39±0.03 0.40±0.04 0.41±0.02 0.00 0.32

FDS MIMF 0.47±0.01 0.47±0.04 0.48±0.02 0.47±0.03 0.46±0.03 3.41 0.31

ADS MIMF 0.48±0.01 0.26±0.03 0.43±0.02 0.58±0.03 0.64±0.03 4.39 0.33

ASDYS 0.39±0.01 0.15±0.03 0.39±0.03 0.47±0.03 0.55±0.02 2.94 0.32

6
0
0

FDWS 0.48±0.02 0.48±0.02 0.48±0.03 0.49±0.02 0.48±0.03 0.00 0.37

FDS MIMF 0.53±0.01 0.53±0.02 0.51±0.02 0.55±0.02 0.54±0.03 3.44 0.37

ADS MIMF 0.51±0.01 0.27±0.02 0.45±0.03 0.60±0.02 0.71±0.02 4.37 0.38

ASDYS 0.44±0.01 0.17±0.02 0.41±0.03 0.55±0.03 0.64±0.02 2.95 0.37

7
0
0

FDWS 0.54±0.01 0.54±0.03 0.52±0.02 0.55±0.02 0.54±0.03 0.00 0.42

FDS MIMF 0.58±0.01 0.59±0.02 0.59±0.02 0.57±0.02 0.59±0.03 3.50 0.42

ADS MIMF 0.53±0.01 0.28±0.03 0.48±0.03 0.63±0.02 0.75±0.02 4.36 0.44

ASDYS 0.47±0.01 0.19±0.02 0.45±0.02 0.57±0.03 0.69±0.03 2.98 0.42

8
0
0

FDWS 0.58±0.01 0.58±0.02 0.58±0.02 0.55±0.02 0.59±0.03 0.00 0.48

FDS MIMF 0.64±0.01 0.64±0.02 0.64±0.02 0.64±0.02 0.65±0.02 3.58 0.47

ADS MIMF 0.58±0.01 0.29±0.03 0.53±0.03 0.69±0.02 0.80±0.01 4.39 0.50

ASDYS 0.52±0.01 0.21±0.03 0.51±0.02 0.63±0.02 0.74±0.03 3.02 0.48

TABLE IV
FOUR CASES WITH FEWER S3 FUNCTIONS

Case |MS(S3)| |MS(S2)| |MS(S1)| |MS(S0)|
Case 1 20 100 100 180

Case 2 40 100 100 160

Case 3 60 100 100 140

Case 4 80 100 100 120

This indicates that the proposed approach does not compro-

mise the DMR of lower-criticality functions when improving

the DMR of high-criticality functions. As reported in Table III,

the DMR(Sx) values at the four criticality levels for FDWS

and FDS MIMF are much more balanced than those for

ADS MIMF and the proposed ASDYS. This observation is

consistent with the characteristics of the approaches where

FDWS does not consider mixed criticality and FDS MIMF

not effectively.

Figure 11 shows the average simulation time cost compar-

ison. The average number of times a task gets rescheduled

is shown in Table III as an ancillary metric. FDWS always

has the least time cost due to its simplicity. Our ASDYS has

clear improvement compared with ADS MIMF, mainly since

ADS MIMF frequently and unconditionally cancels tasks

when responding to new arrival, which leads to much more

rescheduling, whilst ASDYS adaptively and only partially

cancels and reschedules tasks.

Experiment 2: Missing the deadlines of functions with the

highest criticality level may have severe consequences. In the

design process of safety-critical CPS, some of the functions at

the highest criticality level may be decomposed into multiple

lower-criticality functions, such as by SIL (Safety Integrity

Level) decomposition [1] [18], thereby reducing the amount

of these functions. This experiment evaluates the performance

when reducing the proportion of S3-level functions. The total

size |MS| is fixed to be 400, with MS(S2) and MS(S1) both

fixed as 100. We then reduce MS(S3) from 100, and corre-

TABLE V
DMR COMPARISON WITH FEWER S3 FUNCTIONS (REPRESENTED AS SAMPLE

MEAN±1.96SE (STANDARD ERROR), 95% CONFIDENCE INTERVAL)

Case Approach
DMR(sample mean±1.96SE) Reschedule

/task
U

Overall S3 S2 S1 S0

1

FDWS 0.36±0.01 0.37±0.09 0.34±0.02 0.36±0.03 0.37±0.02 0.00 0.26

FDS MIMF 0.39±0.02 0.39±0.08 0.38±0.03 0.41±0.03 0.40±0.02 3.34 0.26

ADS MIMF 0.44±0.01 0.18±0.04 0.27±0.02 0.43±0.03 0.56±0.02 4.30 0.26

ASDYS 0.34±0.02 0.03±0.03 0.16±0.02 0.36±0.03 0.47±0.03 3.48 0.26

2

FDWS 0.37±0.01 0.35±0.06 0.37±0.03 0.37±0.03 0.36±0.02 0.00 0.26

FDS MIMF 0.39±0.01 0.40±0.03 0.38±0.03 0.42±0.03 0.39±0.02 3.31 0.26

ADS MIMF 0.44±0.02 0.22±0.03 0.32±0.03 0.44±0.04 0.57±0.02 4.36 0.27

ASDYS 0.33±0.02 0.04±0.02 0.19±0.02 0.34±0.02 0.49±0.03 3.36 0.26

3

FDWS 0.35±0.02 0.35±0.04 0.36±0.03 0.36±0.02 0.34±0.03 0.00 0.25

FDS MIMF 0.40±0.01 0.41±0.04 0.40±0.03 0.41±0.02 0.40±0.03 3.31 0.25

ADS MIMF 0.44±0.01 0.25±0.04 0.34±0.02 0.48±0.03 0.57±0.02 4.34 0.27

ASDYS 0.33±0.01 0.07±0.02 0.23±0.02 0.40±0.03 0.47±0.01 3.22 0.25

4

FDWS 0.35±0.02 0.35±0.03 0.34±0.05 0.36±0.03 0.35±0.04 0.00 0.25

FDS MIMF 0.39±0.02 0.41±0.04 0.38±0.03 0.40±0.04 0.39±0.02 3.30 0.25

ADS MIMF 0.45±0.02 0.24±0.03 0.41±0.03 0.50±0.03 0.57±0.03 4.35 0.27

ASDYS 0.33±0.02 0.08±0.02 0.29±0.04 0.42±0.03 0.46±0.03 3.06 0.26

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800

se
co

n
d

s

|MS|

FDWS FDS_MIMF ADS_MIMF ASDYS

0

2

4

6

8

10

12

100 200 300

Fig. 11. Time cost on |MS|.

0

5

10

15

20

25

30

20 40 60 80 100

se
co

n
d

s

|MS3|

FDWS FDS MIMF ADS MIMF ASDYS

Fig. 12. Time cost in 4 cases.

| |
0.00

0.10

0.20

0.30

0.40

0.50

20 40 60 80 100

FDWS FDS_MIMF ADS_MIMF ASDYS

DMR(S3)

|MS(S3)|

Fig. 13. DMR(S3) in 4 cases.

0.30

0.40

0.50

20 40 60 80 100

FDWS FDS_MIMF ADS_MIMF ASDYS

DMR(overall)

|MS(S3)| | |

Fig. 14. DMR(overall) in 4 cases.

spondingly increase MS(S0) from 100. Four cases are shown

in Table IV. The results (statistical averages) are reported in

Table V and Figure 12. The DMR(S3) and DMR(overall)
are shown in Figure 13 and 14.

Clearly, for all the four cases, our ASDYS is better than the

existing approaches in both DMR(S3) and DMR(overall),
especially DMR(S3). The observation on the timing effi-

ciency (shown in Figure 12) is similar to Experiment 1,

where FDWS is simple and fast, and ASDYS outperforms

ADS MIMF.

VI. CONCLUSION AND FUTURE WORK

There is a demand from the industry, such as for highly

automated driving, to schedule complex dynamically arriv-

ing mixed-criticality functions on distributed heterogeneous

architectures. This paper proposes ASDYS as the first ap-

proach precisely treating this scenario. Aiming at minimising

the DMR of functions, ASDYS actively prioritises higher-

criticality functions throughout the scheduling process, which

is reflected in the scheduling framework design and the

algorithm development. Experimental results show that AS-

DYS achieves significantly lower DMR for the functions

on the highest criticality level, and also performs better in

the overall DMR accounting for functions on all criticality

10

levels. Considering the polynomial time complexity, ASDYS

can be directly applied to industrial systems, such as on the

central vehicular computer, which is expected in future highly

automated automobiles.

This work may be extended in several directions. First, it

is possible to further reduce the DMR with new scheduling

algorithms. Second, the proposed approach has no guarantee

on deadlines even for high-criticality functions. One simple

yet conservative solution is isolation, i.e., the resources are

partitioned and the hard real-time functions get their dedicated

portions. Otherwise, complex response time analysis needs to

be developed. Third, the workload models can be refined,

with, e.g., minimum inter-arrival time of functions, which

potentially leads to better performance and which is helpful

for the certification. Fourth, the time cost of the dynamic

scheduling algorithm can be reduced, where one angle is to

adapt it for hardware acceleration.

ACKNOWLEDGEMENT

This work was supported by the National Natural Sci-

ence Foundation of China (Grants 61932010, 61672217,

61702172 and 61972139), the CCF-Tencent Open Fund

(Grant CCF-TecentRAGR20190119), the Industry-University-

Research Project of United Automotive Electronic Systems

Co.,Ltd. (Grant 20TMS0047CN), the Natural Science Foun-

dation of Hunan Province (Grant 2018JJ3076), the Open

Research Project of the State Key Laboratory of Synthetical

Automation for Process Industries (SAPI), Northeastern Uni-

versity, China (Grant PAL-N201803), and the Fundamental

Research Funds for the Central Universities, Hunan University,

China.

REFERENCES

[1] “Road vehicles-functional safety, iso 26262,” 2011.
[2] “Road vehicles-functional safety,2nd edition, iso 26262,” 2018.
[3] AUTOSAR, “Adaptive platform 19.03,” 2019. [Online]. Available: https:

//www.autosar.org/standards/adaptive-platform/adaptive-platform-1903/
[4] H. Arabnejad and J. Barbosa, “Fairness resource sharing for dynamic

workflow scheduling on heterogeneous systems,” in Parallel and Dis-

tributed Processing with Applications (ISPA), 2012 IEEE 10th Interna-

tional Symposium on. IEEE, 2012, pp. 633–639.
[5] G. Xie, G. Zeng, Z. Li, R. Li, and K. Li, “Adaptive dynamic scheduling

on multi-functional mixed-criticality automotive cyber-physical sys-
tems,” IEEE Trans. Veh. Technol, vol. 66, no. 8, pp. 6676–6692, 2017.

[6] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,”
IEEE Transactions on Computers, vol. 50, no. 4, pp. 308–321, 2001.

[7] X. Gu and A. Easwaran, “Dynamic budget management with service
guarantees for mixed-criticality systems,” in 2016 IEEE Real-Time

Systems Symposium (RTSS). IEEE, 2016, pp. 47–56.
[8] B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll, “Adaptive runtime

shaping for mixed-criticality systems,” in 2015 International Conference

on Embedded Software (EMSOFT). IEEE, 2015, pp. 11–20.
[9] S. Vestal, “Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance,” in 28th IEEE International

Real-Time Systems Symposium (RTSS 2007). IEEE, 2007, pp. 239–243.
[10] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu, “Mixed-

criticality federated scheduling for parallel real-time tasks,” Real-time

systems, vol. 53, no. 5, pp. 760–811, 2017.
[11] S. Baruah, “The federated scheduling of systems of mixed-criticality

sporadic dag tasks,” in 2016 IEEE Real-Time Systems Symposium

(RTSS). IEEE, 2016, pp. 227–236.
[12] M. Hu, J. Luo, Y. Wang, and B. Veeravalli, “Scheduling periodic

task graphs for safety-critical time-triggered avionic systems,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 51, no. 3, pp.
2294–2304, 2015.

[13] R. Medina, E. Borde, and L. Pautet, “Scheduling multi-periodic mixed-
criticality dags on multi-core architectures,” in 2018 IEEE Real-Time

Systems Symposium (RTSS). IEEE, 2018, pp. 254–264.
[14] G. Xie, G. Zeng, R. Li, and K. Li, “High-performance real-time schedul-

ing,” in Scheduling Parallel Applications on Heterogeneous Distributed

Systems. Springer, 2019, pp. 147–179.
[15] Y. Liu, G. Xie, X. Chen, L. Jin, Y. Tang, and R. Li, “An active

scheduling policy for automotive cyber-physical systems,” Journal of

Systems Architecture, vol. 97, pp. 208–218, 2019.
[16] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and

low-complexity task scheduling for heterogeneous computing,” IEEE

transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260–
274, 2002.

[17] J. Gan, “Tradeoff analysis for dependable real-time embedded systems
during the early design phases,” Ph.D. dissertation, Technical University
of Denmark (DTU), 2014.

[18] D. Tămaş-Selicean and P. Pop, “Design optimization of mixed-criticality
real-time embedded systems,” ACM Transactions on Embedded Comput-

ing Systems (TECS), vol. 14, no. 3, p. 50, 2015.

