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Abstract 

Heat Release Rate (HRR) analysis is indispensable in engine research. 

The HRR of Internal Combustion Engines (ICEs) is most sensitive to 

gamma (𝛾). The proposed HRR models in literature were largely based 

on 𝛾 expressed as functions of temperature. However, 𝛾 is depended 

on temperature as well as the excess air ratio (𝜆). In this work, an 

improved HRR model based on 𝛾(𝑇, 𝜆) was used to investigate the 

combustion behaviour of standard diesel, Gas–to-Liquid (GTL) diesel 

and Hydrotreated Vegetable Oil (HVO) diesel in a 96 kW, multiple 

fuel injection, Euro V, Direct Injection (DI) engine. The improved 

HRR model (Leeds HRR model) was validated for the alternative fuels 

by comparing the fuel masses predicted by the model to the measured 

fuel masses. The fuel masses predicted by the Leeds HRR model were 

also compared to the predictions from four HRR models that were 

based on 𝛾(𝑇). No work has been done in the past to investigate the 

combustion behaviour of GTL and HVO diesel in a multiple fuel 

injection, Compression Ignition (CI) engine. This work also featured 

two novel approximation techniques that were used to estimate the rate 

of evaporation of the injected fuel from the HRR profiles and the actual 

SoC from the HRR and fuel burn profiles (for the case of significant 

heat release bTDC). The overall average error in the predictions of the 

Leeds HRR model was 4.86% with a standard deviation of 2.39 while 

the typical error in the other models ranged from 14.66% to 19.99%. 

The accuracy of the HRR model of CI engines for the HRR analysis of 

GTL and HVO diesel is therefore, improved by using 𝛾(𝑇, 𝜆). The 

combustion of HVO diesel was found to be the smoothest of the three 

fuels due to the narrow distillation range of HVO diesel. 

Introduction 

Heat Release Rate (HRR) analysis is carried out in engine research to 

investigate the combustion behaviour of fuels and to enhance the 

thermal efficiency of Internal Combustion Engines (ICEs). Accuracy 

is of the essence in the development of HRR models for ICEs because 

the HRR of an ICE cannot be measured real–time, it can only be 

modelled mathematically.  The ratio of specific heats, gamma (𝛾) is 

the most important thermodynamic property in the modelling of the 

HRR of an ICE [1] because it has the greatest impact on the accuracy 

of the model. The existing models of 𝛾 were largely expressed in terms 

of the temperature of the gases in the cylinder even though 𝛾 is known 

to be strongly depended on the excess air ratio (𝜆) of the engine. The 

authors of the current work have developed an HRR model, Leeds 

HRR, [2] that has a better accuracy in terms of the prediction of the 

fuel consumption compared to the experimental results 

(measurement). The aim of this work was to apply and validate the 

model to alternative fuels: Gas–to–Liquid (GTL) diesel, and 

Hydrotreated Vegetable Oil (HVO) diesel. HVO diesel is derived from 

waste cooking oil or animal fats while GTL diesel is produced from 

the Fischer-Tropsch process by the conversion of methane-rich gases 

into longer-chain hydrocarbons (liquid synthetic fuels). GTL and HVO 

diesels have lower engine out emissions than ULSD [3,4]. 

Furthermore, the two alternative fuels can be used in CI engines 

without modifying the existing infrastructure. GTL and HVO diesels 

have different distillation characteristics, though the two fuels are 

similar in some thermo-physical properties. The selection of the two 

alternative fuels for the HRR analysis in this work was based on the 

reasons stated above. 

Previous HRR models of ICEs 

The basic differences between the HRR models in literature are the 𝛾 

functions and the heat transfer coefficient models that were used by the 

authors. Various 𝛾 models have been proposed in literature [5,6,7,8]. 

Gatowski, J.A., et al., [5] used a linear function of the mean charge 

temperature to model the specific heats ratio. The 𝛾 model of the 

authors was solely a function of temperature (Eq. (1)).  𝛾 = 𝛾0 − 𝐾1(𝑇 − 𝑇𝑟𝑒𝑓)/1000                                                                   (1) 

The reference value in Eq. (1), 𝛾0 = 1.38, the constant 𝐾1 = 0.08 and 

the reference temperature, 𝑇𝑟𝑒𝑓 = 300 K. 

Brunt, M.F.J., and Andrew, L.E., [6] evaluated the HRR of a Spark 

Ignition (SI) engine by using a second-order function that was derived 

from a multidimensional model (Eq. (2)). The 𝛾 function in their 

equation was evaluated as the mean function of 𝛾 functions within a 

narrow range of 𝜆 (0.83< 𝜆<1.25). The 𝛾 model was based on the 

temperature of the gases in the cylinder, T in Kelvin. 𝛾 = 1.338 − 6.0 × 10−5𝑇 + 1.0 × 10−8𝑇2                                      (2) 

Egnell, R., [7] proposed an exponential 𝛾 function given in Eq. (3). 

The exponential model in Eq. (3) is explicitly a function of temperature 

though the authors chose the values of the constants in the equation 

based on the combined effects of temperature and gas composition. 

 𝛾 = 𝛾0 − 𝑘1exp (−𝑘2 𝑇)⁄                                                                            (3)   

The reference value in Eq. (3), 𝛾0 = 1.38, while the constants 𝑘1 and 𝑘2 have values 0.2 and 900 respectively.  

Blair, G.P., [8] proposed a 𝛾 model which is specifically for exhaust 

gas at stoichiometric condition, equivalence ratio, 𝜙 = 1 (𝜆 = 1 𝜙⁄ =1). The model of the author is also solely depended on temperature as 

shown in Eq. (4). 𝛾 = 1.4221 − 1.8752𝑒 − 4𝑇 + 6.9668𝑒 − 8𝑇2 − ⋯  



         −9.099 − 12𝑇3                                                                              (4) 

Ceviz, M.A., and Kaymaz, I. [1] derived 𝛾 functions for unburned and 

burned mixtures in terms of the in-cylinder temperature and 𝜆 (Eq. (5) 

and Eq. (6) respectively). The ranges of temperature for the unburned 

and burned mixtures respectively were 300 K to 1,500 K and 300 K to 

2,500 K.  𝛾𝑢 = 𝑎1 + 𝑎2𝑇 + 𝑎3𝑇2 + 𝑎4𝑇3 + 𝑎5𝑇4 + 𝑎6𝑇5 + 𝑎7 𝜆⁄                  (5) 𝛾𝑏 = 𝑏1 + 𝑏2𝑇 + 𝑏3 𝜆⁄ + 𝑏4𝑇2 + 𝑏5 𝜆2⁄ + 𝑏6𝑇 𝜆⁄ + 𝑏7𝑇3 + ⋯           + 𝑏8 𝜆3⁄ + + 𝑏9𝑇 𝜆2⁄ + 𝑏10𝑇2 𝜆⁄                                                             (6) 

The final derived equation of 𝛾 was expressed as given in Eq. (7). 𝛾 = 𝑀𝐹𝐵𝛾𝑏 + (1 − 𝑀𝐹𝐵)𝛾𝑢                                                                               (7) 𝑀𝐹𝐵 in Eq. (7) represents the Mass Fraction Burned. 

The coefficients in Eq. (5) and Eq. (6) were given by the authors as 

shown in Table A.1. 

Ceviz, M.A., and Kaymaz, I. [1] used a FIAT, 1.801 dm3 (0.0018 m3), 

four stroke SI engine to investigate the accuracy of their 𝛾 model. The 

engine was operated at ¾ throttle valve opening position and 2,500 

rpm at 𝜆 values of 0.996, 1.089, 1.216 and 1.341. According to the 

authors, the proposed 𝛾 model was accurate for SI engines when 𝜆 was 

approximately 1.1. 

The derived 𝛾 model of Ceviz, M.A., and Kaymaz, I. [1] cannot be 

used as it is for the analysis of the HRR of a CI engine. The authors 

validated the model using an SI engine operating at near-

stoichiometric conditions and a single speed value (2,500 rpm). 

Modern diesel engines operate by the auto-ignition of compressed, 

lean fuel-air mixtures. Consequently, the unburned mass fraction in 

diesels is negligible. Burned mixtures refer to the working fluid or 

products of combustion in the combustion chamber during the 

expansion process (after the SoC) when temperatures are high (>1,700 

K). Unburned mixtures refer to the working fluid during the 

compression stroke prior to combustion and at T<1,700 K. In both 

cases the fuel is assumed to be in the vapour phase [9]. Unburned 

mixtures are mostly applicable to SI and HCCI (Homogeneous Charge 

Compression Ignition) diesel engines for which fuel injection occurs 

during the intake stroke. The current work was carried out on a 

multiple fuel injection strategy CI engine (a lean combustion engine); 

the injected fuel mass per power stroke was injected in phases during 

the power stroke. The injection of fuel occurred near the TDC. The 

auto-ignition and combustion of the injected fuel also commenced near 

the TDC. The duration that the fuel-air mixture was unburned in the 

engine prior to the Start of Ignition (SoI) was relatively short compared 

to SI engines or HCCI-mode diesel engines. Therefore, burned mixture 

properties were assumed for the power stroke of the engine in this 

work. Furthermore, CI (diesel) engines operate within a much wider 

range of 𝜆. For these reasons, the derived equation of Ceviz, M.A., and 

Kaymaz, I. [1] was modified in this work by equating MFB to 1 so that 𝛾𝑚𝑜𝑑(𝑇, 𝜆) = 𝛾𝑏 (Eq. (6)). 

In this work, the modified 𝛾 function, 𝛾𝑚𝑜𝑑(𝑇, 𝜆) and the Leeds HRR 

model developed by Olanrewaju, F.O., et al., [2] were used to 

investigate the combustion behaviour of standard diesel (ULSD), GTL 

diesel, and (HVO) diesel. At low and medium loads, the effect of EGR 

rate on the HRR of a CI engine was found to be insignificant [2]. 

Therefore, EGR rate was not considered in this work. The accuracies 

of 𝛾𝑚𝑜𝑑  and the 𝛾 models given in Eq. (1) to Eq. (4) to model the 

combustion behaviour of the three fuels were investigated by using the 

Leeds HRR model. The Cumulative Heat Release (CHR) profiles of 

the fuels were determined from the HRR curves for the engine modes 

that were tested. The Leeds HRR model in this work was validated for 

standard diesel and the alternative fuels by comparing the predicted 

fuel consumption to the measured fuel consumption. The validated 

HRR model and CHR profiles were, thereafter, used to determine the 

MFB profiles for the fuels and the engine modes considered in this 

work. The combustion behaviour of the diesel fuels and the 

combustion phasing parameters were determined and compared using 

the HRR, CHR and MFB profiles. 

Methodology 

Leeds CI engine HRR model development 

The Leeds CI engine HRR model of Olanrewaju, F.O., et al., [2] (Eq. 

(8)) was used in this investigation.  

𝑑𝑄𝑑𝜃 = 𝛾𝛾−1 𝑝 𝑑𝑉𝑑𝜃 + 1𝛾−1 𝑉 𝑑𝑝𝑑𝜃 + 𝑑𝑄𝑊𝑑𝜃 + ℎ𝑏𝑏 𝑑𝑚𝑏𝑏𝑑𝜃 + 𝑞𝑒 𝑑𝑚𝑓𝑑𝜃                      (8) 

𝑑𝑄𝑑𝜃 = rate of release of heat energy from injected fuel, J/CAD 

𝑝 = instantaneous pressure of the cylinder, Pa  𝑉 = instantaneous volume of the cylinder, m3  

𝑑𝑄𝑊𝑑𝜃 = heat losses through the walls, J/CAD 

𝑑𝑚𝑏𝑏𝑑𝜃 = blow-by mass flow, kg/CAD ℎ𝑏𝑏 = enthalpy of blow-by gases, J/kg 

𝑑𝑚𝑓𝑑𝜃 = rate of evaporation of injected fuel, kg/CAD 𝑞𝑒 = heat of evaporation of fuel, J/kg 𝜃 = crank angle degree (CAD) 

The heat flow to the walls was calculated from Eq. (9). 𝑄𝑤 = ℎ𝐴𝑠(𝑇 − 𝑇𝑟𝑒𝑓)                                                                        (9) 𝑄𝑤 = wall losses, J/s ℎ = heat transfer coefficient, W/m2 K 𝐴𝑠 = total surface area of heat loss (cylinder liner area, piston surface 

and cylinder head above piston) 

The cylinder temperature on the other hand, was estimated from the 

ideal gas law (Eq. (10)) 𝑇 = 𝑝𝑉 𝑚𝑅⁄                                                                                     (10) 𝑚 = amount of gas in the cylinder, kmol 𝑅 = universal gas constant, kJ/kmol K 

The observed steady state temperature of the coolant/lubricant oil was 

used as the reference temperature in Eq. (9). The lubricant oil absorbed 

the heat that was transferred across the walls of the cylinder of the 

engine. The temperature of the lubricant was among the data that was 

logged during the experiment. 



The blow-by rate, dmbb/dt in Eq. (8) was estimated as a function of 

pressure from Eq. (11) and Eq. (12) [10]: 

𝑑𝑚𝑏𝑏𝑑𝑡 = 𝐴𝑒𝑓𝑓𝑝 (√2 (𝑅𝑇)⁄ ) (2 (𝛾 + 1)⁄ )1 𝛾−1⁄ √𝛾 (𝛾 + 1)⁄               (11)                                                       

𝐴𝑒𝑓𝑓 = 𝐷𝜋𝛿                                                                                            (12) 

𝑑𝑚𝑏𝑏𝑑𝑡  = mass flow rate, kg/s 

𝐴𝑒𝑓𝑓 = effective flow area, m2 𝑝 = cylinder pressure, Pa 𝑇 = cylinder temperature, K 𝛾 = ratio of specific heats 𝐷 = cylinder bore, m 𝛿 = blow-by gap (clearance between the piston rings and the cylinder 

liner/wall), m. The value of 𝛿 was specified as 0.00001 m [10].  

The differential, dmbb/dt was converted to dmbb/dθ by multiplying the 

equation by the appropriate conversion factor (which was a function of 

the speed of the engine) for each of the tested modes.  

The fuel evaporation rate in Eq. (8) was estimated by using a novel 

approximation approach. Multiple fuel injection strategy involves 

three distinct injection events: pilot injection (for the control of noise 

and emissions), main injection and post injection. Post injection is 

further divided into close-post injection (for emissions control) and 

late-post injection (for the regeneration of aftertreatment devices) [11]. 

Pilot and post injection fuel masses are much less than the mass of fuel 

that is injected during the main injection event. The approach that was 

used to estimate the fuel evaporation rate in this work was based on 

the knowledge that each of the prominent peaks in the HRR profile of 

the multiple fuel injection strategy CI engine resulted from the auto-

ignition and combustion of the fuel mass that was injected immediately 

before the peak in the preceding main injection event. Prior to auto-

ignition, the injected fuel mass absorbed heat from the hot gases in the 

cylinder to evaporate. The HRR profile was initially modelled from the 

basic input data (the pressure trace) without the evaporation term of 

Eq. (8). The crank angle timing for each of the main injection events 

was meticulously determined from the HRR profiles between the 

estimated SoC and EoC. The heat that was released between the 

injection events was then determined cumulatively. The corresponding 

injected fuel masses were determined by dividing the estimated heat 

release per injection event by the calorific value of the fuel. Thereafter, 

the heat that was absorbed by the injected fuel from the gases in the 

combustion chamber to evaporate was determined by multiplying the 

estimated fuel masses by the heat of vaporization of the fuel. The 

estimated heat of vaporization for each of the injection events was 

incorporated into the model in Excel specifically at the crank angle of 

the prominent peak that was sequel to the injection (fuel injection did 

not occur at all the crank angles of the power stroke). 

Heat transfer coefficient correlation 

The heat transfer correlation of Hohenberg, G.F., [12] (Eq. (13)) was 

utilized in this work to calculate the HRR of the engine.  ℎ = 130𝑉−0.06𝑝0.8𝑇−0.4(𝑐𝑚 + 1.4)0.8                                                         (13) 𝑉, 𝑝 and 𝑇 are cylinder volume (m3), pressure (Pa) and temperature 

(K) respectively while 𝑐𝑚 is the mean piston speed (m/s). 

Model assumptions          

The following assumptions were made to develop the Leeds HRR 

model for the HRR analysis in this work: 

1. Single zone combustion (combustion parameters were 

uniform in the cylinder). 

2. A zero-dimensional (transient) HRR model.  

3. Ideal gas behavior. 

4. The injected fuel mass per power stroke was equal for all the 

four cylinders.  

5. Evaporation of the injected fuel mass was followed by 

combustion [10]. 

6. Complete combustion of the evaporated fuel mass per 

injection 

7. The unburned fuel mass was negligible owing to lean 

combustion and auto-ignition of compressed charge in 

diesels [2].                                               

Engine and instrumentation 

The details of the engine, instrumentation and test conditions that were 

used were as summarized in Tables 1, 2 and 3 below. Each of the three 

fuels (ULSD, GTL, and HVO diesels) was tested at the three engine 

test modes given in the second column of Table 3. The three engine 

test modes depicted in Table 3 (1,000 rpm; 30% throttle, 1,600 rpm; 

50% throttle, and 1,900 rpm; 70% throttle) were chosen to represent 

low, medium and high power conditions in the testing matrix. 

The basic model input data (the cylinder pressure-crank angle data) 

were measured by a pressure transducer and AVL FlexIFEM Indi 601 

(2-channel). The pressure transducer was installed on the head of the 

first cylinder of the engine. The measured cylinder pressures were 

averaged over 50 cycles and logged by AVL Indicom software. The 

measured pressures were used in the HRR analysis that was carried out 

without further post-processing by filtration or averaging techniques. 

The HRR model was solved and analyzed in Microsoft Office Excel 

software.   

Table 1. Engine description  

Feature Specification 

Type 4-stroke, 4-cylinder CI engine 

Make IVECO, EURO V FIAT 

Rated power 96 kW 

Bore/Stroke 95.8 mm/104 mm (0.0958 m/0.104 m) 

Compression ratio 18:1 

Injection strategy Multiple 

Displacement per cylinder 749 cc (0.00075 m3) 

Total volume per cylinder 794 cc (0.0008 m3) 

Dynamometer 100 kW AC Dynamometer 

Injection pressure 160 MPa (1,600 bar) 

 

Table 2. Instrumentation  

Parameter Equipment specification 

Cylinder pressure AVL FlexIFEM Indi 601 (2-channel) 

Fuel flow Fuel meter (BC 3034) 

Engine temperature Thermocouples 

 

 



Table 3. Test conditions  

Test Engine test mode     Fuel Power, kW 

1 1,000 rpm; 30% throttle ULSD 13 

2  GTL  13 

3  HVO 13 

4 1,600 rpm; 50% throttle  ULSD 27 

5  GTL  27 

6  HVO 27 

7 1,900 rpm; 70% throttle ULSD 47 

8  GTL  47 

9  HVO 47 

 

Properties of fuels 

The properties of the three fuels that were investigated in this work 

were as given in Table 4 below [11,12,13,14]. 

Table 4. Properties of the investigated fuels  

Property ULSD  GTL  HVO  

Kinematic viscosity @ 40 oC, mm2/s ~2.7 ~3.5 2.8 

Density @ 40 oC, kg/m3 ~830 762 762 

Cetane number >51 79 78.8 

NCV, MJ/kg 44 44 44 

Sulphur, mg/kg <10 0.05 <1 

Aromatics, wt% 11 (upper limit) 0.3 0.3 

 

Distillation characteristics of tested fuels 

The distillation characteristics of the tested fuels (ULSD, GTL, and 

HVO) were determined by TGA on a METTLER TOLEDO 

Thermogravimetric analyzer. The temperature setting that was used on 

the analyzer was 30 0C to 600 0C.  

 

Determination of SoC and EoC 

The CHR profiles for the tested modes were determined from the 

modelled HRR profiles. The fuel burn profiles were then determined 

from the HRR and the CHR profiles in order to determine the SoC and 

EoC of the tested engine modes. The SoC is defined as the point where 

the HRR is minimum and then followed by a sudden rise in value [15]. 
The crank angle at which the MFB on the fuel burn curve rose 

consistently above zero symbolized the actual (effective) SoC on the 

fuel burn profile. The EoC, on the other hand, was the crank angle at 

which the fuel burn profile began to level off after the MFB50. 

Results and discussions 

Distillation characteristics of fuels 

The distillation characteristics of the tested fuels were presented 

graphically as shown in Figure 1. 

 
Figure 1. Distillation characteristics of ULSD, GTL, and HVO  

Figure 1 showed that, although the properties of GTL and HVO diesels 

shown in Table 4 were similar, the alternative fuels had distinctly 

different distillation characteristics. As mentioned earlier, HVO diesel 

and GTL diesel are produced from different starting materials and by 

different processes. Therefore, due to the difference in the starting raw 

materials and the processes involved in the production of the 

alternative fuels, their constituent hydrocarbon fractions are not 

identical. Consequently, GTL and HVO diesels have different boiling 

ranges (distillation characteristics) as shown in Figure 1. The 

difference in the distillation characteristics of the two alternative fuels 

inadvertently implied that the two fuels would have different 

combustion behaviours notwithstanding the similarities in the fuel 

properties depicted in Table 4. Figure 1 showed that GTL diesel had 

the narrowest boiling range of the three fuels. 

Pressure-crank angle data used as model input data  

The basic input data that were used to carry out this work were the 

pressure traces of the engine at the specified test modes (Table 3) for 

each of the three diesel fuels. The input data were plotted and presented 

as shown in Figures 2 to 4 respectively for standard diesel, GTL diesel, 

and HVO diesel.  

 
Figure 2. Pressure traces (ULSD) 

 
Figure 3. Pressure traces (GTL diesel) 



 
Figure 4. Pressure traces (HVO diesel) 

Calculated in-cylinder temperatures  

The instantaneous cylinder temperatures that were calculated from 

the measured in-cylinder pressures and utilized in the HRR analysis 

were presented graphically as shown in Figures 5 to 7 for the test 

conditions that were considered. 

 
Figure 5. Calculated in-cylinder temperatures as a function of crank angle 

with different loads (ULSD) 

 
Figure 6. Calculated in-cylinder temperatures as a function of crank angle with 

different loads (GTL diesel) 

 
Figure 7. Calculated in-cylinder temperatures as a function of crank angle with 

different loads (HVO diesel) 

The temperature profiles indicated that, for each of the fuels, the 

instantaneous in-cylinder temperature increased as the power of the 

engine was increased. The peak temperatures for the low, medium, and 

high loads occurred at crank angle degrees (CAD) of 26, 29, 32 

respectively for standard diesel as shown in Figure 5. However, for the 

alternative fuels (GTL and HVO diesels), the peak temperatures 

occurred at 25, 31, 24 CAD, and 24, 28, and 25 CAD respectively for 

the low, medium and high power conditions (Figures 6 and 7). 

Therefore, the peak temperature occurred earlier when the engine was 

run on the alternative fuels than when it was run on fossil diesel. The 

early occurrence of the peak temperatures that was observed for the 

alternative fuels was because of the advanced Start of Injection (SoI) 

and the relatively high Cetane Numbers (CN) of the alternative fuels 

(Table 4). The SoI timings can be located on the pressure traces or 

temperature profiles where fluctuations were observed near the TDC. 

At the high power condition, much higher compression pressure and 

temperature were attained as shown in Figures 2 to 7. Therefore, 

advanced injection of fuel was triggered by the ECU of the engine at 

the high power conditions to prevent undesirable high PPRR and 

PHRR, both of which could occur should the SoI and SoC be too close 

to the TDC. The combined effects of advanced SoI and relatively high 

CN caused the auto–ignition of the compressed fuel–air mixture to 

occur earlier when the engine was run on GTL and HVO diesel than 

when it was run on standard diesel.  

The pressure traces for the 3 fuels were quite similar. However, the 

calculated peak temperatures for the alternative fuels were lower than 

those of ULSD. The peak temperatures for ULSD were higher than 

those of the GTL and HVO diesels because of the relatively low CN 

and the late Start of Injection (SoI) of ULSD which meant that most of 

the fuel energy was released after the TDC in the case of ULSD. Due 

to the relatively high CN of GTL and HVO diesels as well as the 

advanced pilot fuel injection of the alternative fuels by the ECU, 

significant heat was released bTDC during the pilot combustion of the 

alternative fuels. This led to the observed decrease in the peak 

temperatures for the alternative fuels below ULSD. 

The temperature profiles fluctuated near the Top Dead Centre (TDC) 

in Figures 5 to 7 above. The observed fluctuations were due to the 

auto–ignition of the pre-injected fuel while pilot injection continued. 

The CI engine that was used to carry out the tests was a multiple fuel 

injection strategy engine. Fuel injection began before the TDC in the 

engine and continued at specific crank angles after the TDC.  

Comparison of the modified 𝜸 function and 𝜸 

functions from literature for alternative fuels  

The values of 𝛾 estimated from various 𝛾 functions were plotted, as 

depicted in Figure 8, against the temperature of the gases in the 

cylinder for 1,600 rpm; 50% throttle operation mode (medium power) 

when the engine was run on HVO. In Figure 8, the values of 𝛾 

estimated from Eq. (1) to Eq. (4) that expressed 𝛾 (T) were graphically 

compared to the values that were evaluated using the modified gamma 

function, 𝛾𝑚𝑜𝑑. Gamma 1 to 4 were the gamma values predicted by 

Eq. (1) to Eq. (4) respectively. Figure 8 showed that the estimated 

values of 𝛾 from 𝛾𝑚𝑜𝑑 at all temperature points were much higher than 

the estimates from the other functions which expressed 𝛾 as a function 

of temperature only. The same trend was observed for standard diesel 

and GTL diesel. Therefore, it can be concluded that 𝜆 has a significant 

effect on 𝛾 when alternative fuels are used in CI engines. Olanrewaju, 

F.O., et al., [2] also showed that 𝜆 had a significant effect on 𝛾 when 

the engine was run on off–road diesel. 

The excess air ratio, 𝜆 was a constant value at each of the tested modes. 

The observed unusual rise in the values of 𝛾 predicted by 𝛾𝑚𝑜𝑑 as the 

temperature increased above 1,000 K was due to the sensitivity of the 

polynomial 𝛾 model (Eq. (6)) to 𝜆. The predicted 𝛾 values were 

observed to drop in the previous work by the authors as the temperature 

increased (the values of 𝜆 were > 2 in the previous work) [2]. In the 

current work, for values of 𝜆 < 2, 𝛾 dropped as the temperature 

increased to 1,000 K for all the fuels. At temperatures above 1,000 K, 𝛾 increased with increase in temperature for all the fuels when 𝜆  was 

< 2 (Figure 8). The same trends were observed for the alternative fuels 



for values of 𝜆 < 2 and 𝜆 >2. However, the values of 𝛾 for pure diesel 

were observed to drop as temperature increased for values of 𝜆 > 2 in 

the previous work. The observed trend of 𝛾 for the alternative fuels 

differed from that of ULSD when 𝜆 was > 2.  

 

 
Figure 8. Comparison of modified gamma and gamma functions from 

literature (HVO: 1,600 rpm; 50% throttle_27 kW) 

Sensitivity of diesel engine HRR model to 𝜸 functions - 

comparison of Leeds model to others 

The HRR profiles from the investigated HRR models were presented 

as shown in Figures 9 to 17. The profiles for standard diesel were as 

depicted in Figures 9 to 11, while the HRR profiles for GTL and HVO 

diesels were as depicted in Figures 12 to 14, and Figures 15 to 17 

respectively. The sensitivity of the HRR model of the engine to 𝛾 

functions was vividly depicted by the figures as the five HRR models 

predicted different PHRR values. The Leeds HRR model predicted the 

lowest PHRR for all the modes that were tested for the three fuels. 

Figure 8 showed that 𝛾(𝑇, 𝜆) gave estimates of 𝛾 that were higher than 

the estimates from the functions that expressed 𝛾(𝑇). However, figures 

9 to 17 showed that, for both standard diesel and the alternative fuels, 

the HRR model that utilized 𝛾(𝑇, 𝜆) predicted lower PHRR values for 

the CI engine than the HRR models that utilized 𝛾(𝑇). Though the five 

HRR models showed the same trend, they predicted different PHRR 

for each of the engine modes that was investigated. This necessitated 

the validation of the Leeds HRR model by comparing the fuel 

consumption of the engine predicted by the models to the measured 

fuel consumption in the next section.  

 
Figure 9. HRR profiles from the Leeds model and other models: standard diesel 

(1,000 rpm; 30% throttle_13 kW) 

 
Figure 10. HRR profiles from the Leeds model and other models: standard 

diesel (1,600 rpm; 50% throttle_27 kW) 

 
Figure 11. HRR profiles from the Leeds model and other models: standard 

diesel (1,900 rpm; 70% throttle_47 kW) 

 
Figure 12. HRR profiles from the Leeds model and other models: GTL diesel 

(1,000 rpm; 30% throttle_13 kW) 

 
Figure 13. HRR profiles from the Leeds model and other models: GTL diesel 

(1,600 rpm; 50% throttle_27 kW) 

 
Figure 14. HRR profiles from the Leeds model and other models: GTL diesel 

(1,900 rpm; 70% throttle_47 kW) 



 
Figure 15. HRR profiles from the Leeds model and other models: HVO diesel 

(1,000 rpm; 30% throttle_13 kW) 

 
Figure 16. HRR profiles from the Leeds model and other models: HVO diesel 

(1,600 rpm; 50% throttle_27 kW) 

 
Figure 17. HRR profiles from the Leeds model and other models: HVO diesel 

(1,900 rpm; 70% throttle_47 kW) 

The crank angle timing of the PHRR of the engine for each of the tested 

modes was determined directly from the HRR profile. As depicted in 

Figure 13, the PHRR for the 1,600 rpm; 50% throttle mode occurred 

at 17o aTDC for GTL diesel. Multiple peaks were also observed in all 

the HRR profiles as a result of the multiple fuel injection strategy of 

the engine. The 1,000 rpm; 30% throttle engine mode showed two 

prominent peaks for HVO diesel. Peak_1 resulted from the heat that 

was released from the combustion of the fuel that was injected during 

the pilot fuel injection and the first main injection, M1 (at 5o aTDC). 

Thereafter, there was another main injection event, M2 at 13o aTDC 

which caused another heat release that lead to the second prominent 

peak (Peak_2).   

Validation of the Leeds HRR model 

The Cumulative Heat Release (CHR) profiles shown in Figures 18 to 

20 (strictly for the heat that was released as a result of the combustion 

of injected fuel) were determined from the HRR profiles. The HRR 

and CHR profiles of the fuels were used to predict the fuel 

consumption of the engine per thermodynamic cycle per cylinder. The 

figures present the heat that was released in each of the four cylinders 

per power stroke (in joules) from the combustion of the injected fuel 

mass. 

 
Figure 18. Cumulative heat release profiles (standard diesel)  

 
Figure 19. Cumulative heat release profiles (GTL diesel)  

 

 
Figure 20. Cumulative heat release profiles (HVO diesel)  

The result of the validation of the HRR models was presented 

graphically as shown in Figure 21. Figure 21 showed that the fuel 

masses predicted by the Leeds model (the pink bars with black 

borderline) were generally more accurate than the predictions from the 

other models for the investigated fuels and engine modes. The Leeds 

HRR model predicted the fuel consumption of the engine for ULSD, 

GTL and HVO diesels with an overall average (absolute) error of 

4.86% compared to the measured fuel consumption (blue bars with 

black borderline). The percentage errors of the fuel masses predicted 

by the Leeds HRR model ranged from -8.27 to +8.69, with a standard 

deviation of 2.39. The overall average error that was obtained for off–
road diesel using the Leeds HRR model was 1.41% [2]. The percentage 

error obtained in the current work was relatively high compared to the 

previous work because in the current work, multiple fuels with quite 

different HRR behaviours were investigated whereas the previous 

work predicted the fuel masses of a single fuel (off-road diesel). The 

overall average errors in the predicted fuel masses by the other HRR 

models that were based on 𝛾(T) ranged from 14.66% to 19.99%. The 

HRR models that were based on 𝛾(T) overpredicted the fuel 

consumption of the engine because the significant effect of 𝜆 on 𝛾 was 

not accounted for in the models. Figure 21 clearly showed that the 

accuracy of the HRR model of CI engines for predicting the 

combustion behaviour of standard diesel and the alternative fuels was 

enhanced by using 𝛾(T, 𝜆). The incorporation of the rate of evaporation 

of the injected fuel into the Leeds HRR model (Eq. (8)) also 

contributed to the accuracy of the model. 



 
Figure 21. Comparison of measured and predicted fuel masses 

The analysis that was done to compare the predicted fuel masses to the 

measured fuel mass was summarized as presented in Table A.2. 

Determination of combustion phasing 

The validated model (Leeds HRR model) was used to determine the 

SoC, EoC and the crank angle timing at which 50% of the injected fuel 

mass was burned (MFB50) from the fuel burn profiles for the fuels and 

the engine modes that were tested. The determination of the phasing of 

the combustion (SoC, MFB50, EoC) for a low power condition (1,000 

rpm; 30% throttle for HVO diesel) and a high power condition (1,900 

rpm; 70% throttle for ULSD) were presented as shown in Figure 22 

and Figure 23. Figure 22 showed that, when the engine was run on 

HVO at low power (1,000 rpm; 30% throttle), the SoC was at 1o bTDC, 

50% of the injected fuel was burned at 17o aTDC while the EoC was 

at 49o aTDC. At low and medium power conditions, the SoC could 

easily be determined from the HRR profile as there were no significant 

heat release and fluctuations from the combustion of pilot injection 

fuel. However, due to the significant heat release from the combustion 

of pilot injection fuel mass (pilot combustion) at the high power 

condition as observed in Figures 11, 14, and 17, two SoC crank angles: 

SoC1, and SoC2 were identified in the fuel burn profile for the high 

power conditions depicted in Figures 23 and 24. The quantity of fuel 

that was injected during the pilot fuel injection to achieve optimum 

charge premix and to minimize peak pressure and peak temperature 

was relatively high at the high power condition. This led to significant 

pilot combustion heat release before the TDC as observed in Figures 

11, 14, and 17. 

 
Figure 22. Determination of combustion phasing for HVO (1,000 rpm; 30% 

throttle_13 kW) 

SoC1 was the start of pilot combustion while SoC2 was the actual 

(effective) start of combustion for the high power condition. The 

significant release of heat bTDC (seen as the fluctuation in the HRR 

profiles for the high power condition) was triggered by the advanced 

SoI for the high power condition. The fluctuations that were observed 

near the TDC in the pressure traces and temperature profiles (Figures 

2 to 7) were amplified in the HRR profiles as the power of the engine 

increased. The crank angle at which the fluctuations began marked the 

start of fuel injection, SoI. SoC2 was determined so that the significant 

heat that was released bTDC for the high power condition could be 

accounted for thereby further increasing the accuracy of the Leeds 

HRR model.  SoC2 could not be determined by direct inspection of the 

HRR curve alone. As such, it was determined from the fuel burn profile 

as shown in Figures 23 and 24. The fuel burn profiles that were 

generated from the HRR profiles resolved the fluctuations that were 

observed bTDC for the high power condition such that SoC2 was 

clearly distinguished from SoC1. As shown in Figures 23 and 24, SoC2 

was the crank angle timing at which the MFB rose consistently above 

zero. 

 
Figure 23. Determination of combustion phasing for ULSD (1,900 rpm; 70% 

throttle_47 kW) 

 
Figure 24. Determination of SoC1 and SoC2 for HVO (1,900 rpm; 70% 

throttle_47 kW) 

SoC2 was clearly identified in Figures 23 and 24 as the point where 

the fuel burn profiles for ULSD and HVO diesel rose consistently 

above zero. As shown in Figure 23, SoC1 was 9o bTDC while SoC2 

was 5o bTDC for ULSD. It could be seen from the fuel burn profile in 

Figure 24 that the MFB rose consistently above zero at 6o bTDC 

(SoC2) even though the combustion of the pilot injection HVO fuel 

commenced at 12o bTDC (SoC1). The MFB cannot be negative. 

Therefore, for the high load condition, SoC2 was chosen as the 

actual/effective SoC while SoC1 was designated as the start of pilot 

fuel combustion. The start of pilot combustion (SoC1) and the actual 

start of combustion (SoC2) for GTL diesel at the high power condition 

were 13o bTDC, and 7o bTDC respectively. The combustion phasing 

for the low and medium power conditions were determined as shown 

in Figure 22, while the combustion phasing of the fuels for the high 

power condition were determined as shown in Figures 23 and 24.  

The phasing of the combustion for the three fuels were tabulated as 

shown in Table 5. The injection timings for the three fuels were not the 

same for all the modes as shown in Table 5. The injection event was 

controlled by the ECU of the engine. The estimated injection timings 

in Table 5 were the crank angle timings for the start of pilot injection. 
The observed early combustion of GTL and HVO was not only due to 

their relatively high CN, it was also due to the advanced injection of 

the alternative fuels by the ECU. Generally, the SoI values at the higher 

power conditions showed that the injection event occurred much 

earlier for the alternative fuels than for ULSD. At the high power 

condition, much higher compression pressure and temperature were 

attained as shown in Figures 2 to 7. Therefore, advanced injection of 

fuel was triggered by the ECU of the engine at the higher power 



conditions to prevent undesirable high PPRR and PHRR, both of 

which could occur should the SoI and SoC be too close to the TDC. 

The SoI of the alternative fuels was advanced by the ECU because they 

had a higher CN than ULSD. Generally, as the power of the engine 

was increased, the SoI was advanced for all the fuels. This was to 

enhance lean combustion and efficient premixing of fuel and air to 

prevent high PPRR, PHRR and the formation of local rich zones which 

would lead to high THC, CO, and NOx emissions.  Apart from the 

cylinder pressure and temperature, the fuel consumption of the engine 

also increased as the power of the engine increased. As such, to keep 

the combustion mixture lean (λ >1), the ECU advanced the injection 

timing of the fuels as the power was increased so that the multiple 

injection events occurred over a relatively wide crank angle range at 

the higher power conditions.   

Table 5. Combustion phasing of the fuels (ULSD, GTL, and HVO diesel) at 

the tested engine modes  

Test Test 

mode     
Fuel 

CAD 

PP PHRR SoI SoC EoC MFB50 

1 1,000 

rpm; 

30% 

throttle 

ULSD 17 15 -2 -1 50 18 

GTL 16 15 -3 -2 49 17 

HVO 19 15 -2 -1 49 17 

2 1,600 

rpm; 

50% 

throttle  

ULSD 18 17 -6 -5 56 19 

GTL 18 17 -8 -5 48 19 

HVO 18 15 -8 -5 47 18 

3 1,900 

rpm; 

70% 

throttle 

ULSD 20 16 -10 -5 47 19 

GTL 13 13 -14 -7 46 16 

HVO 13 13 -13 -6 46 16 

 

Generally, for the three fuels that were investigated, Table 5 showed 

that as the power of the engine increased, the SoI and SoC of the fuels 

were advanced (occurred earlier). The auto-ignition of the diesel fuels 

was enhanced by the relatively high compression pressure and 

temperature which were attained in the cylinder as the power of the 

engine increased.    

The Peak Pressures (PP) and the PHRR were determined from the 

pressure traces and the modelled HRR profiles respectively for the 

tested modes and fuels. The values of the PP and the PHRR for the 

tested modes were summarized as shown in Table 6. 

Table 6. Model results for Peak Pressures (PP) and PHRR at the tested engine 

modes    

Engine test mode Fuel PP, bar PHRR, J/CAD 

1,000 rpm; 30% throttle ULSD 61.24 113.69 

 GTL 58.23 136.70 

 HVO 58.49 141.71 

1,600 rpm; 50% throttle ULSD 68.40 150.14 

 GTL 66.48 121.15 

 HVO 68.35 114.79 

1,900 rpm; 70% throttle ULSD 102.60 146.25 

 GTL 102.64 131.01 

 HVO 103.23 131.08 

 

Smoothness of combustion of fossil diesel and 

alternative diesels 

The smoothness of the combustion of standard diesel (ULSD) and the 

alternative fuels was also analyzed from the HRR profiles by 

superimposing the HRR profiles of the three fuels at the tested low, 

medium and high power conditions as shown in Figures 25 to 27. The 

figures showed that the combustion of HVO diesel in the engine was 

smoother than the combustion of standard diesel or GTL diesel. The 

HRR profiles of HVO diesel (the black curve) in the figures were not 

as wavy (noisy) as those of the other fuels. This could be attributed to 

the narrow distillation range of HVO (Figure 1). As depicted in Figures 

25 to 27, as the power of the engine increased from low to high power, 

the tendency of the compressed charge to combust before the TDC 

increased. There was more combustion of pilot injection fuel (early 

SoC before TDC) when the engine was run on the alternative fuels than 

when it was run on ULSD. Consequently, to keep the actual SoC near 

the TDC as much as possible, the Engine Control Unit (ECU) 

suppressed the combustion of the pilot injection fuel by causing more 

fuel masses of GTL and HVO diesel to be injected before the TDC 

compared to the pilot injection fuel mass of ULSD. This multiple fuel 

injection strategy of the ECU was also aimed at preventing the PHRR 

from occurring before the TDC for the fuels with high CN. This would 

have a negative impact on the efficiency of the engine due to the early 

release of the chemical energy of the fuel before the actual 

commencement of the power stroke. 

 
Figure 25. Comparison of the smoothness of combustion of ULSD, GTL, and 

HVO diesel (1,000 rpm; 30% throttle) 

 
Figure 26. Comparison of the smoothness of combustion of ULSD, GTL, and 

HVO diesel (1,600 rpm; 50% throttle) 

 
Figure 27. Comparison of the smoothness of combustion of ULSD, GTL, and 

HVO diesel (1,900 rpm; 70% throttle) 



The PHRR was highest for ULSD at the higher power conditions 

(Figure 27 and Table 6) due to the relatively late SoI and low CN of 

ULSD that led to relatively late SoC as well as low pilot combustion 

heat release when the engine was run on ULSD. The start of pilot 

combustion (SoC1) for ULSD at the high power condition was 9o 

bTDC while the SoC1 were 13o bTDC and 12o bTDC respectively for 

GTL and HVO diesel fuels at the high power condition (Figures 11, 

14, and 17). This implied that, at the high power condition for GTL 

diesel, pilot combustion started 4 CAD earlier than for diesel. Pilot 

combustion started 3 CAD earlier than it started for ULSD at the same 

condition (1,900 rpm; 30% throttle) when the engine was run on HVO 

diesel. The relatively low PHRR values of GTL and HVO diesel fuels 

compared to ULSD at the high power condition was due to the 

significant release of heat that occurred during the pilot combustion of 

the alternative fuels as explained in the previous section.    

Summary/Conclusions 

In this work, an improved HRR model – Leeds HRR model - was used 

to analyze the HRR of standard diesel, GTL and HVO diesels in a 

multiple fuel injection strategy, CI (diesel) engine. No work has been 

done in the past to model and analyze the HRR of the alternative diesel 

fuels in a multiple fuel injection strategy, CI (diesel) engine. The 

current work has shown that the accuracy of the HRR models of CI 

engines for both fossil and alternative diesel fuels is strongly depended 

on the specific heats ratio (𝛾). The effect of the excess air ratio (𝜆) on 𝛾 was investigated in this work. 𝜆 was found to have a significant effect 

on 𝛾 for the three fuels that were investigated. Therefore, in the current 

work, a modified 𝛾 function, 𝛾𝑚𝑜𝑑(𝑇, 𝜆) was used in the Leeds HRR 

model to model the HRR of the three fuels. The Leeds HRR model 

predicted the fuel consumption of the engine for ULSD, GTL and 

HVO diesels with an overall average (absolute) error of 4.86% 

compared to the measured fuel consumption. The errors in the fuel 

masses predicted by the Leeds HRR model ranged from -8.27% to 

+8.69%, with a standard deviation of 2.39. The average error in the 

fuel mass predictions of the other models which were based on 𝛾(𝑇) 

ranged from 14.66% to 19.99%. The errors in the predictions of the 

other models were high because 𝜆 was neglected in the models. 

Therefore, in this work, it was shown that the accuracy of the HRR 

model of CI engines for the determination of the combustion behaviour 

of fossil and alternative diesel fuels is enhanced by using 𝛾(𝑇, 𝜆). The 

PHRR was highest for ULSD at the high power condition due to the 

relatively late SoI and low CN of ULSD compared to GTL and HVO 

diesels. The combustion of HVO diesel was found to be the smoothest 

of the three fuels due to the narrow distillation range of HVO diesel. 

The novel techniques that were used to estimate the rate of evaporation 

of the injected fuels from the HRR profiles and the actual SoC from 

the HRR and fuel burn profiles (for the case of significant heat release 

bTDC) also contributed to the accuracy of the Leeds HRR model. 
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𝒃𝟏  Coefficients of ratio of 

specific heats function for 

burned mixtures. 𝒄𝒎  Mean piston speed 𝒄𝒗  Specific heat capacity at 

constant volume 

HCCI Homogeneous Charge 

Compression Ignition 𝒉  Heat transfer coefficient 𝒉𝒃𝒃  Enthalpy of blow-by gases 𝑲𝟏  Constant 𝒎  Amount of gas in cylinder 𝒎𝒃𝒃   Mass of blow-by gases 𝒎𝒇  Mass of injected fuel 𝒑  Pressure 𝑸  Heat release from injected 

fuel 𝑸𝒃  Heat loss through blow-by 

gases 𝑸𝒘  Heat loss through cylinder 

walls 𝒒𝒆  Heat of evaporation of fuel 𝑹  Universal gas constant 𝑻  Temperature 

t Time 𝑼  Internal energy 𝑽  Volume 𝑾  Pressure-volume (pV) work 

wt Weight 𝜸  Ratio  of specific heats 𝜹                         Blow-by gap 𝒌𝟏, 𝒌𝟐  Constants 𝝀  Excess air ratio 𝝓  Equivalence ratio 𝝆  Density 

𝜽  Crank Angle Degree 𝝎𝟏, 𝝎𝟐, 𝝎𝟑  Constants 𝒃  Burned mixture 𝒃𝒃  Blow-by 𝒆  Evaporation 𝒎𝒐𝒅  Modified 𝒓𝒆𝒇  Reference 𝒔  Surface 𝒖  Unburned mixture 𝒘  Wall 

aTDC After Top Dead Centre 

bTDC Before Top Dead Centre 

CAD Crank Angle Degree 

CHR Cumulative Heat Release  

CI Compression Ignition 

CN Cetane Number 

DI Direct Injection 

ECU Engine Control Unit 

EGR Exhaust Gas Recirculation 

EoC End of Combustion 

EVC Exhaust Valve Closing 

GTL Gas-to-Liquid 

HRR Heat Release Rate 

HVO Hydrotreated Vegetable Oil 

ICE Internal Combustion Engine 

IVC Intake Valve Closing 

MFB Mass Fraction Burned 

NCV Net Calorific Value 

PHRR Peak Heat Release Rate 

PP Peak Pressure 

PPRR Peak Pressure Rise Rate 

rpm Revolutions per minute 



SI Spark Ignition 

SoC Start of Combustion 

ULSD Ultra Low Sulphur Diesel 



Appendix 

Table A.1. Coefficients for use in Equations 5, and 6 

Coefficients (𝛾𝑢) Values Coefficients (𝛾𝑏) Values 𝑎1 1.464202464 𝑏1 1.498119965 𝑎2 -0.000150666 𝑏2 -0.00011303 𝑎3 -7.34852e-08 𝑏3 -0.26688898 𝑎4 1.55726e-10 𝑏4 4.03642e-08 𝑎5 -7.6951e-14 𝑏5 0.273428364 𝑎6 1.19535e-17 𝑏6 5.7462e-05 𝑎7 -0.063115275 𝑏7 -7.2026e-12 

  𝑏8 -0.08218813 

  𝑏9 -1.3029e-05 

  𝑏10 2.35732e-08 

 

Table A.2. Summary of model validation results 

 Fuel mass, mg/thermodynamic cycle % Deviation from measured fuel mass 

Engine mode Fuel 
Lambda, 𝜆 

 Measured  Leeds HRR HRR1 HRR2 HRR3 HRR4 Leeds HRR HRR1 HRR2 HRR3 HRR4 

1,000 rpm; 30 

% throttle (Low 

load) 

USLD 1.80  34.57 32.82 34.71 35.27 35.27 35.42 -5.06 0.41 2.03 2.04 4.46 

GTL 1.87  31.78 29.15 31.95 32.62 32.57 32.72 -8.27 0.52 2.63 2.49 2.95 

HVO 1.91  31.78 30.59 33.80 34.47 34.44 34.59 -3.74 6.34 8.46 8.36 8.85 

1,600 rpm; 50 

% throttle 

(Medium load) 

USLD 1.60  38.89 36.78 42.58 42.59 42.75 42.85 -5.43 9.48 9.50 9.93 10.19 

GTL 1.66  35.75 35.10 40.84 40.97 41.14 41.26 -1.81 14.24 14.60 15.06 15.43 

HVO 1.70  35.75 35.34 41.25 41.32 41.50 41.62 -1.14 15.38 15.57 16.07 16.41 

1,900 rpm; 70 

% throttle (High 

load) 

USLD 1.14  54.58 59.32 88.02 78.05 79.71 79.01 8.69 61.27 43.01 46.05 44.76 

GTL 1.19  50.17 47.52 62.68 59.05 59.86 59.54 -5.28 24.93 17.70 19.31 18.68 

HVO 1.21  50.17 47.99 63.05 59.40 60.21 59.89 -4.35 25.68 18.40 20.01 19.38 

      Average of absolute errors:                                      4.86                        19.99                14.66                    15.48                   15.46 

      Standard deviation:                                                  2.39                        17.71                11.53                    12.48                   11.94 

      Error range:                                                        -8.27 - +8.69          0.41 – 61.27        2.03 - 43.01         2.04 – 46.05        2.46 - 44.76  

 


