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Abstract—Electromagnetic (EM) vector sensor arrays can

track both the polarisation and direction of arrival (DOA) of

the impinging signals. For linear crossed-dipole arrays, as shown

by our analysis, due to inherent limitation of the structure, it can

only track one DOA parameter and two polarisation parameters.

For full four-dimensional (4-D, 2 DOA and 2 polarization

parameters) estimation, we could extend the linear crossed-dipole

array to the planar case. In this paper, instead of extending the

array geometry, we replace the crossed-dipoles by tripoles and

construct a linear tripole array. It is proved that such a structure

can estimate the 2-D DOA and 2-D polarisation information

effectively in general and a dimension-reduction based MUSIC

algorithm is developed so that the 4-D estimation problem can be

simplified into two separate 2-D estimation problems, significantly

reducing the computational complexity of the solution. The

Cramér-Rao Bound (CRB) is also derived as a reference for

algorithm performance. A brief comparison between the planar

crossed-dipole array and the linear tripole array is performed

at last, showing that although the planar structure has a better

performance, it is achieved at the cost of increased physical size.

Keywords—linear tripole array, linear crossed-dipole array,

direction of arrival (DOA), polarisation estimation, Cramér-Rao

Bound.

I. INTRODUCTION

The joint estimation of direction of arrival (DOA) and

polarisation for signals based on electromagnetic (EM) vector

sensor arrays has been widely studied in the past [1]–[25].

In [1], the EM vector sensor was first used to collect both

electric and magnetic information of the impinging signals,

where all six electromagnetic components are measured to

identify the signals. So far most of the studies are focused

on the linear array structure employing crossed-dipoles, where

the general two-dimensional (2-D) DOA model is simplified

into one-dimensional (1-D) by assuming that all the signals

arrive from the same known azimuth angle φ. In [26], a

quaternion MUSIC algorithm was proposed to deal with the

joint DOA (θ) and polarisation (ρ, φ) estimation problem by

considering the two complex-valued signals received by each

crossed-dipole sensor as the four elements of a quaternion,

where a three-dimensional (3-D) peak search is required with

a very high computational complexity. In [27], a quaternion

ESPRIT algorithm was developed for direction finding with

a reduced complexity. Furthermore, a dimension-reduction

MUSIC algorithm based on uniform linear arrays (ULAs) with

crossed-dipole sensors was introduced in [28], where the 3-D

joint peak search is replaced by a 1-D DOA search and a 2-D

polarisation search.

In practice, the azimuth angle θ and the elevation angle φ

of the signals are unknown and they are usually different for

different signals and need to be estimated together. The exist-

ing 3-D joint DOA and polarisation work could be extended to

4-D (2 DOA and 2 polarisation). However, the 4-D estimation

work comes with a uniqueness problem [29]–[34]. In [29], it

indicates that the uniqueness estimation problem is due to the

linear dependence of joint steering vectors. In [34] and [31],

Tan proved that for an EM vector sensor and EM vector sensor

array, every three joint steering vectors with different DOAs

are linearly independent, while the fourth joint steering vector

with different DOA is possible to be the linear combination

of the first three steering vectors. The linear dependence of

steering vectors with tripole sensors is discussed in [32] from

the point of DOA estimation, where a special case of linear

dependence is introduced that with some strict constraints, two

steering vectors with different DOAs may be parallel to each

other. Besides, the work also illustrates that the parallel can

be avoided if the signals are nonlinearly polarised and arrives

strictly from a hemispherical space.

When further reducing the tripole sensor array to a cross-

dipole sensor array, as rigorously proved for the first time in

this work, linear crossed-dipole array has the parallel ambigu-

ity problem in general cases, where the azimuth angle and the

elevation angle of the impinging signals can not be uniquely

identified and there could also be false peaks in the resultant

spatial spectrum. To tackle this ambiguity problem, one so-

lution is to extend the linear geometry to a two-dimensional

(2-D) rectangular planar array, such as the uniform rectangular

array (URA), at significant space cost, and one good example

for this solution is the work presented in [35], where based on

a URA, a pencil-MUSIC algorithm is proposed to solve the full

4-D DOA and polarisation estimation problem. However, it is

not always feasible to use the rectangular array as a solution

http://arxiv.org/abs/2004.08469v1


due to space limit. On the other hand, it is possible to add one

dipole to the crossed-dipole structure to form a tripole sensor

and tripole sensor array has been proposed in the past for DOA

estimation [36], [37]. Therefore, as another solution, motivated

by simultaneously simplifying the array structure and reducing

the computational complexity, instead of extending the linear

crossed-dipole array to a higher spatial dimension, we replace

the crossed-dipoles by tripoles and construct a linear tripole

array in our earlier conference publication for joint 4-D DOA

and polarisation estimation for the first time [38]. Moreover,

for the first time, we give a clear proof about why a linear

tripole array can be used for 4-D joint DOA and polarisation

estimation, while avoiding the ambiguity problem except for

some special cases.

At the algorithm level, two MUSIC-like algorithms for the

4-D estimation problem are proposed. The first is a direct

search in the 4-D space to locate the DOA and polarisation

parameters simultaneously (4-D MUSIC), which has an ex-

tremely high computational complexity. The other algorithm is

to transform the 4-D search into two separate 2-D searches (2-

D MUSIC), significantly reducing the computational complex-

ity. To evaluate the performance of the proposed algorithms,

the Cramér-Rao Bound (CRB) of the linear tripole array for 4-

D estimation is derived. In the past, CRBs have been derived

under different circumstances, such as the results for arrays

with arbitrary geometries in [39]. Obviously, the types of

signals and noise will affect the derived CRB result. Normally,

noise is assumed to be temporally and spatially white and the

source signal can have two different types: one is to assume

the source signal is deterministic [40]–[42], while the other

assumes that the signal is random and a common choice is

being Gaussion distributed [43]–[48]. In this work, we assume

the source signal is of the second type.

As mentioned, a URA of cross-dipoles can also achieve

effective 4-D joint DOA and polarisation estimation. Then it

would be interesting to know that given the same number of

dipoles, which structure performs better. Our simulation results

show that the planar array has a better performance, but this is

achieved at the cost of increased physical size of the structure.

Overall, the contribution of our work is twofold. One is the

detailed analysis and proof to show that the crossed-dipole

linear array cannot uniquely identify the azimuth angle and

the elevation angle of the impinging signals, while the tripole

linear array can avoid the ambiguity problem for 4-D joint

DOA and polarisation estimation in the general case. The

other one is the proposed 4-D joint DOA and polarisation

estimation method and its low-complexity version, with their

performances compared to the newly derived CRB.

One note is that it is possible to have directive sensors

with different orientations to solve this ambiguity problem

associated with the crossed-dipole array, but in general no fast

search algorithms exist for such cases. Moreover, the choice

of orientation distribution will be another difficult problem to

solve.

This paper is structured as follows. The linear tripole array

is introduced in Section II with a detailed proof for the 4-D

ambiguity problem associated with the linear crossed-dipole

array and why the linear tripole array can solve the problem.

The two 4-D estimation algorithms are proposed in Section

III with the CRB derived in detail. Simulation results are

presented in Section IV, and conclusions are drawn in Section

V.

II. TRIPOLE SENSOR ARRAY MODEL

A. Tripole sensor array

Suppose there are M uncorrelated narrowband signals im-

pinging upon a uniform linear array with N tripoles, where

each tripole consists of three co-located mutually perpendic-

ular dipoles, as shown in Fig. 1. Assume that all signals are

stationary and nonlinearly-polarised (elliptically or circularly

polarised). The parameters, including DOA and polarisation

of the m-th signal are denoted by (θm, φm, γm, ηm),m =

1, 2, ...,M , where θm ∈ [0, π/2], φm ∈ [0, 2π], i.e. the signals

come from the upper hemisphere. The inter-element spacing d

of the array is λ/2, where λ is the wavelength of the incoming

signals. For each tripole sensor, the three components are

parallel to x, y and z axes, respectively. The background noise

is Gaussian white with zero mean and variance σ2
n, which is

uncorrelated with the impinging signals. Due to the phase shift

among the sensors, the steering vector for the m-th signal can

be denoted as

am = [1, e−jπ sin θm sinφm , ..., e−j(N−1)π sin θm sinφm ] (1)

and the polarisation vector pm is determined by the product

of DOA component Ωm and the polarization component gm,

where

pm = Ωmgm (2)

The DOA component is a matrix consisting of two vectors

that are orthogonal to the signal direction. There are infinite

number of choices for these two vectors and generally the

following two are used [49]

Ωm =





cos θm cosφm − sinφm

cos θm sinφm cosφm

− sin θm 0



 (3)

The corresponding polarization component is given by

gm =

[

sin γmejηm

cos γm

]

(4)

where γm is the auxiliary polarization angle and ηm the po-

larization phase difference. By expanding (2), the polarisation

vector pm can be divided into three different components in

x, y and z axes

pm =





cos θm cosφm sin γmejηm − sinφm cos γm
cos θm sinφm sin γmejηm + cosφm cos γm

− sin θm sin γmejηm



 (5)
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Fig. 1. Geometry of a uniform linear tripole array, where a signal arrives

from elevation angle θ and azimuth angle φ.

For convenience, we replace the three elements in pm by pmx,

pmy and pmz , given by:

pmx = cos θm cosφm sin γmejηm − sinφm cos γm

pmy = cos θm sinφm sin γmejηm + cosφm cos γm

pmz = − sin θm sin γmejηm (6)

The received signal at the tripole sensor array can be denoted

as a function of steering vector am, polarisation vector pm,

source signals sm(t) and background noise n. At the k-th

time instant, the received signal vector x[k] can be expressed

as

x[k] =

M
∑

m=1

[am ⊗ pm]sm[k] + n[k]

=

M
∑

m=1

vmsm[k] + n[k] (7)

where ⊗ stands for the Kronecker product, vm is the Kro-

necker product of am and pm, and n[k] is the 3N×1 Gaussian

white noise vector. The covariance matrix R of the received

signal vector is given by

R = E{x[k]x[k]H}

=

M
∑

m=1

vmE{s[k]s[k]∗}vHm + σ2
nI3N (8)

In practice, R is not available and can be estimated by

averaging a finite number of snapshots. In such a case, an

estimated covariance matrix R̂ is used to replace R

R̂ ≈ 1

K

L
∑

l=1

x[k]x[k]H (9)

where K is the number of snapshots.

B. Comparison between Crossed-dipole Array and Tripole

Array

This section will mainly show why the ULA with crossed-

dipoles cannot uniquely determine the four parameters associ-

ated with each impinging signal, leading to the spatial aliasing

problem, and why the ULA with tripoles can provide a unique

solution for the joint 4-D estimation problem.

To show the ambiguity problem, we consider one source

signal impinging upon the array so that the subscript m can

be dropped for convenience. The joint DOA and polarisation

estimation problem can be considered as an estimation of the

steering vector of this source signal.

For crossed-dipole sensor array, its joint steering vector w

is given by

w = a ⊗ q (10)

where

q =

[

px
py

]

(11)

Here, w is a 2N × 1 vector with a 2 × 1 polarisation vector

q. For the tripole sensor array, the joint steering vector v is a

3N × 1 vector with a 3× 1 polarisation vector p, i.e.

v = a ⊗ p (12)

where

p =





px
py
pz



 (13)

For convenience, we use α = (θ, φ, γ, η) to denote the four

parameters. The ambiguity problem associated with the cross-

dipole array can be stated as follows: If there is an arbitrarily

polarised signal from α1, we can always find another signal

from α2 that satisfies w1//w2, with α1 6= α2, where // means

the two vectors are in parallel. By parallel we mean

w2 = k · w1 (14)

where k is an arbitrary complex-valued scalar.

When we say that the tripole array can avoid the ambiguity

problem, it means that for nonlinearly polarised signals if α1 6=
α2, the joint steering vectors v1 and v1 will never be in parallel

with each other.

To prove these two statements, firstly we give the following

definition and lemma.

Definition. Given two signals from distinct directions (θ1, φ1)

and (θ2, φ2), the two signals are in DOA parallel if a1 = a2.

Equation (1) indicates that a is only determined by the value

of sin θ sinφ. If it satisfies that

sin θ1 sinφ1 = sin θ2 sinφ2 (15)

the two steering vectors will be the same, i.e. a1 = a2. It can

be seen that in the upper hemisphere space (0 ≤ θ ≤ π/2,

0 ≤ φ ≤ 2π), there are infinite number of directions in DOA

parallel with a given direction.

Lemma. Given two complex-valued vectors w1 = a1⊗q1 and

w2 = a2 ⊗ q2, w1//w2 is necessary and sufficient for a1//a2
and q1//q2.



The proof of the lemma can be found in Appendix A.

Although we used the joint steering vector of the crossed-

dipole array in the proof, it is straightforward to show that the

lemma is also applicable to the joint steering vector of tripole

sensor arrays.

Now we first consider the ambiguity problem in crossed-

dipole sensor arrays. Given w1 = a1⊗ q1, our aim is to find a

vector w2 = a2 ⊗ q2 with a1//a2 and q1//q2 when α1 6= α2.

As mentioned in the DOA parallel definition, any direction

that satisfies (15) has the steering vector a2//a1. With the

constraints, we need further choose values for γ2 and η2 to

satisfy q1//q2. From (6) and (11), the polarisation vector q1

is determined by all four parameters θ1, φ1, γ1 and η1, where

q1 =

[

cos θ1 cosφ1 − sinφ1

cos θ1 sinφ1 cosφ1

] [

sin γ1e
jη1

cos γ1

]

= Ψ1g1 (16)

Hence, the other polarisation vector q2 = Ψ2g2 needs to

satisfy

Ψ1g1 = λΨ2g2

⇒g2 = λ−1
Ψ

−1
2 Ψ1g1 (17)

λ is a constant and without loss of generality we assume its

value is 1. Here g2 is a 2 × 1 vector with g2[1] = sin γ2e
jη2

and g2[2] = cos γ2, where “[1]” and “[2]” denote the first and

the second elements of the vector.

tan γ2 =
|g2[1]|
|g2[2]|

tan η2 =
Im{g2[1]/g2[2]}
Re{g2[1]/g2[2]}

(18)

The new parameters from (15) ensure a1//a2 and the new

parameters from (18) ensure q1//q2 with the constraint α1 6=
α2. After that, the new joint steering vector w2 will be in

parallel with the original w1. As a result, we can not uniquely

determine the four DOA and polarisation parameters of a

source using the crossed-dipole array.

Next, we consider the tripole sensor array case. Given a

joint steering vector v1 = a1 ⊗ p1, we want to prove that

a parallel v2 = a2 ⊗ p2 does not exist and we prove it by

contradiction. Similar to the crossed-dipole case, firstly a new

direction which is in DOA parallel to the original direction is

selected so that the new elevation and azimuth angles ensure

a1//a2. This step is clearly feasible and the new direction can

be obtained by (15). The remaining part of the problem is that

whether there exists another polarisation vector p2 which is in

parallel with p1. Assuming that p2 exists, i.e.

Ω1g1 = λΩ2g2 (19)

where λ is an unknown complex-valued constant. Expanding

Ω1 and Ω2 by the column vector, where Ω11 and Ω12 are the

first and second column vectors of Ω1, and Ω21 and Ω22 are

the first and second column vectors of Ω2, respectively. (19)

is transformed to

[Ω11 Ω12]

[

g1[1]

g1[2]

]

= λ[Ω21 Ω22]

[

g2[1]

g2[2]

]

m
Ω11g1[1] +Ω12g1[2] = Ω21g2[1]λ+Ω22g2[2]λ (20)

The left side of (20) can be viewed as a vector which is a linear

combination of Ω11 and Ω12. The right is a linear combination

of Ω21 and Ω22. Here we define a two-dimensional space A1

spanned by Ω11 and Ω12, also A2 spanned by Ω21 and Ω22.

Since Ω11,Ω12,Ω21 and Ω22 are all 3×1 vectors, the equation

holds only in the following two cases:

Case 1: A1 and A2 are the same two-dimensional span.

It can be noticed that A1 intersects with the x− y plane at

vector Ω12, and A2 intersects with the x − y plane at vector

Ω22. If A1 and A2 are the same two-dimensional span, it must

satisfy that Ω12//Ω22, then we have




− sinφ1

cosφ1

0



 //





− sinφ2

cosφ2

0



 ⇔ − sinφ1

cosφ1
= − sinφ2

cosφ2

⇔ tanφ1 = tanφ2 (21)

However, φ1 6= φ2 and (21) conflicts with the basic assump-

tion, which means that with the tripole sensor array, there is

no other joint steering vector v2 in parallel with the given v1
in such a case.

Case 2: A1 and A2 are two different two-dimensional spans.

Then p1 and p2 must be in parallel with the intersecting vector

of A1 and A2.

Firstly we denote the intersecting vector as Ωx. Since

Ω11,Ω12,Ω21,Ω22 are all real-valued vectors, all the ele-

ments in the intersection vector Ωx must also be real-valued.

From eq.(5), p1 can be transformed to

p1 = ejη





cos θ cosφ sin γ − sinφ cos γe−jη

cos θ sinφ sin γ + cosφ cos γe−jη

− sin θ sin γ





= ejη · p̂1 (22)

It can be seen that p1//p̂1. In most situations, with γ 6=
90◦, γ 6= 0 and η 6= 0 (nonlinearly polarized), the first two

elements in p̂1 are complex-valued and the last element in p̂1

is real-valued, which indicates that with such a situation, it is

impossible for p̂1 to be in parallel with the intersecting vector

Ωx. Hence, if the incoming signal is nonlinearly polarised, for

example, circular polarised or elliptically polarised, there is no

ambiguity in joint estimation with tripole sensors. A detailed

analysis about the ambiguity induced by linearly polarisation

can be found in Appendix B.

III. THE PROPOSED ALGORITHM

In the following, the proposed low-complexity joint 4-D

DOA and polarisation estimation algorithm for tripole sensor

arrays is introduced based on a subspace approach.



A. Joint 4-D Search

Firstly, by applying eigenvalue decomposition (EVD), the

covariance matrix R can be decomposed into

R = Rs + Rn =

3N
∑

k=1

λkukuH
k (23)

where uk is the k-th eigenvector and λk is the corresponding

eigenvalue (in descending order). Furthermore, we can rewrite

(23) into

R = UsΛsUH
s + UnΛnUH

n (24)

where Us = [u1, u2, · · · , uM ] and Un =

[uM+1, uM+2, · · · , u3N ] are the eigenvectors of the signal

subspace and noise subspace, respectively. Λs and Λn are

diagonal matrices holding the corresponding eigenvalues λk.

As the rank of the noise subspace cannot be less than 1, the

DOF (degree of freedom) of the algorithm is 3N − 1, which

means the maximum number of signals that can be estimated

is 3N − 1.

Clearly, the joint steering vector vm is orthogonal to the

noise subspace Un, i.e.

UH
n vm = 0 (25)

or

vHmUnUH
n vm = 0 (26)

As a result, to find the DOA and polarisation parameters

(θm, φm, γm, ηm) of the m-th signal, we construction the

following function with normalization

F (θ, φ, γ, η) =
1

vHUnUH
n v

(27)

The peaks in (27) indicate the DOA and polarisation infor-

mation (θ, φ, γ, η) for impinging signals.

B. Proposed Algorithm

The above MUSIC-type algorithm is based on direct 4-D

peak search with an extremely large computational complexity.

In the following, we transform the 4-D search process into

two 2-D searches, significantly reducing the complexity of the

solution.

First, we separate vm into two components: one with

DOA information (θ, φ) only, while the other only contains

the polarisation information (γ, η). In this way, (25) can be

changed to

0 = UH
n [am ⊗ (Ωmgm)]

= UH
n [(am ⊗Ωm)gm]

= [UH
n Bm]gm (28)

where Bm is the Kronecker product of am and Ωm.

Following the approach in [12] for three-dimensional esti-

mation (one DOA parameter and two polarisation parameters),

an estimator can be constructed by searching for the minimum

eigenvalue of the 2× 2 matrix as follows,

f1(θ, φ) =
1

λmin{BHUnUH
n B}

(29)

where λmin denotes the minimum eigenvalue of the matrix.

Note that UH
n Bm is a (3N−M)×2 vector and gm is a 2×1

vector. (28) indicates that gm lies in the null space of UH
n Bm.

Since UH
n Bm is a (3N −M)× 2 matrix, it has the null space

only if its rank is less than or equivalent to 1. Consequently,

multiplied by the Hermitian transpose on the right, the new

2×2 product matrix cannot have a full rank, which means the

determinant equals to zero. Here we use det{} to denote the

determinant of a matrix. Then, we have

det{BH
mUnUH

n Bm} = 0 (30)

We can see that Bm is dependent on the parameters (θ, φ)

only. As a result, a new estimator can be established corre-

sponding to θ and φ as [50]

f2(θ, φ) =
1

det{BHUnUH
n B}

(31)

Compared to the solution in (29) based on calculating the

minimum eigenvalue, the determinant-based solution in (31)

has a lower complexity as will be shown next in Sec. III-B,

although there is no clear difference between their estimation

performances as demonstrated by computer simulations later.

After performing a 2-D peak search over θ and φ by (29) or

(31), the polarisation parameters γ and η can be obtained by

another 2-D search in the following

f2(γ, η) =
1

gHBHUnUH
n Bg

(32)

The following is a summary of the proposed algorithm:

• Calculate the estimated covariance matrix R̂ from the

received signals.

• Calculate the noise space Un by applying the eigenvalue

decomposition on R̂. The last 3N −M eigenvalues and

the corresponding eigenvectors form the noise space.

• Use the 2-D estimator (31) to locate the DOA parameters

θ and φ.

• Use the 2-D estimator (32) to locate the corresponding

polarisation parameters γ and η.

C. Complexity Comparison

For all the algorithms (the solution in (27), the solution in

(29) and the solution in (31) together with their associated

solution in (32)), they have the same process of calculating

the covariance matrix R and its EVD. Therefore, to compare

their computational complexity, we ignore this common part

and focus on the complexity of the searching process. In

the following analysis, the number of search points of each

parameter is assumed to be the same, which is L.

In the direct 4-D search algorithm, the four parameters are

estimated within L4 searches. During each search, it requires



3N(3N−M) multiplications and (3N−1)(3N−M) additions

to calculate vHUn. The denominator in (27) is the product of

vHUn and its Hermitian transpose, which requires (3N −M)

multiplications and (3N −M − 1) additions. Consequently, if

the additions are ignored, the 4-D search requires L4(3N +

1)(3N −M) multiplications. In the 2-D search analysis, the

additions will be ignored as well.

In the 2-D search algorithm, we discuss the computational

complexity of eigenvalue based estimator (29) and (31) re-

spectively. The two estimators can be both divided into the

DOA estimation step and the polarisation estimation step. The

complexity difference is in their DOA estimation step and the

two estimators have the same complexity in the polarisation

estimation step. In the following, the DOA estimation step will

be firstly discussed.

The DOA parameters estimated by (29) are within L2

searches. During each search, the computation operations will

be doubled to calculate BHUn compared to the operations of

vHUn since BH is a 2× (3N−M) matrix. The required mul-

tiplications will be 6N(3N −M). The product of BHUn and

its Hermitian transpose requires four times operations as those

needed for 4-D search, which is 4(3N −M) multiplications.

Besides, the computation of the minimum eigenvalue requires

six multiplications. As a result, the step for DOA estimation

by (29) requires L2[(6N + 4)(3N −M) + 6] multiplications.

When using (31) to estimate DOAs, during each search, it

has the same complexity to calculate the matrix BHUnUH
n B

with (6N +4)(3N −M) multiplications. While the computa-

tion of the determinant of the 2× 2 matrix requires only two

multiplications. Thus, the complexity of DOA estimation by

(31) is L2[(6N + 4)(3N −M) + 2].

In the polarisation estimation step, the polarisation parame-

ters are estimated by (32) within another L2 searches. As BH

has already been estimated by the first step, there is no need

to calculate BHUn in every search. Similar to the DOA search

step, the product of BHUn and its Hermitian transpose requires

(6N + 4)(3N − M) multiplications. After that, the denomi-

nator matrix in (32) requires eight multiplications. Hence, the

multiplications required for the polarisation parameters will be

8L2+(6N+4)(3N−M). To sum up, the 2-D search estimator

by (29) has a complexity of L2[(6N + 4)(3N −M) + 14] +

(6N + 4)(3N −M) and the estimator (31) has a complexity

of L2[(6N + 4)(3N −M) + 10] + (6N + 4)(3N −M).

In practice, especially in high resolution estimations, L

is far larger than M and N . The complexity of the two

algorithms is mainly dependent on the value of L. Based on the

given results, it can be seen that the 2-D search has a much

lower computational complexity O(L2) than the direct 4-D

search O(L4). Moreover, the determinant based 2-D search

estimator has a slightly lower computational complexity than

the eigenvalue based 2-D search estimator.

D. Cramér-Rao Bound for Tripole Sensor Array

The Cramér-Rao bound (CRB) provides a lower bound on

the variance of unbiased estimators. In the joint estimation

problem, (θ, φ, γ, η) are four unknown parameters. With the

N-element linear tripole array, the probability density function

for a single received snapshot is given by [39]

px|(α) =
1

det[πRx(α)]
e{−[x(t)−m(α)]HR−1

x (α)[x(t)−m(α)]} (33)

where Rx(α) is the covariance matrix and m(α) is the mean

value of received vector data.

With K independent snapshots, the likelihood function can

be denoted as the product of K single functions

px1,x2,...,xK
|(α) =

K
∏

k=1

1

det[πRx(α)]

× e{−[xk−m(α)]HR−1

x (α)[xk−m(α)]} (34)

The log-likelihood function is given by

Lx(α) = ln px1,x2,...,xK
|(α)

=−K ln det[Rx(α)] −KN lnπ

−
K
∑

k=1

[xk − m(α)]HR−1
x (α)[xk − m(α)] (35)

Considering the unconditional model, which means the

source signals are random in all realizations [51], for one

source the mean value and covariance matrix are given by

m(α) = 0

Rx(α) = E[x(t)− m(α)]H [x(t)− m(α)]

= E[xH(t)x(t)] = σ2
svvH + σ2

nI (36)

where σ2
s is the power of source signal and σ2

n is the noise

power.

The Fisher information matrix can be denoted as:

F(α) =









Fθ,θ Fθ,φ Fθ,γ Fθ,η

Fφ,θ Fφ,φ Fφ,γ Fφ,η

Fγ,θ Fγ,φ Fγ,γ Fγ,η

Fη,θ Fη,φ Fη,γ Fη,η









(37)

Each element in the matrix can be expressed as the product of

derivatives of (35) with respect to the corresponding parameter

[39]:

Fαi,αj
=tr{R−1

x (α)
∂Rx(α)

αi

R−1
x (α)

∂Rx(α)

αj

}

+ 2Re{∂mH(α)

αi

R−1
x (α)

∂m(α)

αj

} (38)

where the symbol tr{} denotes the trace of a matrix, Re{}
the real part, and αi, αj two arbitrary parameters among

(θ, φ, γ, η).

With (36), (38) can be simplified to

Fαi,αj
= tr{R−1

x (α)
∂Rx(α)

αi

R−1
x (α)

∂Rx(α)

αj

} (39)
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Fig. 2. DOA estimation spectrum using the linear crossed-dipole sensor array

(top contour view).

The CRB matrix C(α) is the inverse of Fisher information

matrix, i.e.

C(α) = F−1(α) (40)

Finally, the Cramér-Rao bounds for each estimated parameter

are given by:

CRB(θ) = Cθ,θ = [F−1(α)]1,1

CRB(φ) = Cφ,φ = [F−1(α)]2,2

CRB(γ) = Cγ,γ = [F−1(α)]3,3

CRB(η) = Cη,η = [F−1(α)]4,4 (41)

IV. SIMULATION RESULTS

In this section, simulation results are presented to demon-

strate the ambiguity issues discussed earlier and the perfor-

mance of the proposed algorithm.

A. Ambiguity Phenomenon

Assuming one source signal from (θ, φ, γ, η) =

(30◦, 80◦, 20◦, 50◦) impinges on a uniform linear crossed-

dipole array and a uniform linear tripole array respectively.

Both arrays have the same senor number N = 5 and the

inter-element space is set to d = λ/2.

Figs. 2 and 3 present the DOA estimation results for these

two arrays, respectively. Apparently, the tripole array gives a

unique peak at the source direction while the crossed-dipole

array shows a peak line due to the ambiguity problem and

there is no way to identify the real direction of the signal.

B. RMSE Results

Now we study the performance of the proposed algorithm

based on tripole sensor arrays. Firstly, we make a comparison

between the performance of the two 2-D estimators in (29)

and (31). Consider a single source signal from (θ, φ, γ, η) =

(10◦, 20◦, 15◦, 30◦) impinging on a ULA with four tripole

sensors and half-wavelength spacing. The root mean square
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Fig. 3. DOA estimation spectrum using the linear tripole sensor array (top

contour view).
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Fig. 4. RMSE of θ with determinant based and eigenvalue based estimators.

error (RMSE) versus SNR of the two 2-D estimators are

plotted with snapshot number K = 1000 and 200 Monte-

Carlo trials in Figs.4 and 5. From the results, it can be

observed that the two estimators have no clear difference in

their performance.

As the two 2-D estimators have the same performance, in

the following, we only compare the determinant based 2-D
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Fig. 5. RMSE of φ with determinant based and eigenvalue based estimators.
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estimator with the 4-D estimator and CRB. Assume there are

two source signals from (θ, φ, γ, η) = (10◦, 20◦, 15◦, 30◦) and

(θ, φ, γ, η) = (60◦, 70◦, 60◦, 80◦). The tripole sensor number

is set to N = 4 and the number of snapshots for each

simulation is K = 1000. The RMSE results of the estimated

parameters by 200 Monte-Carlo trials are shown in Figs. 6-9,

where we can see that with the increase of SNR, the RMSE

level decreases consistently. The accuracy of the 4-D MUSIC

using (27) is always better than the proposed 2-D MUSIC

algorithm for any parameters at the cost of a much higher

level of computational complexity. The performance of both

algorithms are close to the CRB.

C. Linear Tripole and Planar Crossed-dipole Array

Since a planar crossed-dipole array can also be used to

estimate the four parameters of an impinging signal, it would

be interesting to know that given the same number of dipoles,

which one is more effective for 4-D parameter estimation, the

linear tripole array or the planar crossed-dipole array. To find

out, in this part, we consider a 4 × 1 linear tripole array and

a 2 × 3 planar crossed-dipole array both of which have the

same number of dipoles or DOFs. We compare their estimation

accuracy using the proposed 2-D MUSIC algorithm. All the

other conditions are the same as in Section IV-B.
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Fig. 10 shows the RMSE results for the first signal’s azimuth

angle. It can be seen that the planar array has given a higher

estimating accuracy and its CRB is much lower than the linear

tripole array, which means that the compact structure of the

linear tripole sensor array is achieved at the cost of estimation

accuracy.

V. CONCLUSION AND DISCUSSION

With a detailed analysis and proof, it has been shown that

due to inherent limitation of the linear crossed-dipole structure,
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Fig. 10. RMSE of crossed-dipole and tripole sensor array.



it cannot uniquely identify the four parameters associated

with impinging signals. In order to simultaneously estimate

both the 2-D DOA and 2-D polarisation parameters of the

impinging signals, we could increase the dimension of the

array and construct a planar crossed-dipole array. To avoid

this and have a compact structure, a linear tripole array has

been employed instead. It has been proved and also shown

that such a structure can estimate the 2-D DOA and 2-

D polarisation information effectively except for some very

special cases. Moreover, a dimension-reduction based MUSIC

algorithm was developed so that the 4-D estimation problem

can be simplified to two separate 2-D estimation problems,

significantly reducing the computational complexity of the

solution. However, the dimension-reduction also brings the

problem of less accuracy. Since both the planar crossed-dipole

array and the linear tripole array can be used to effectively

estimate the four parameters of an impinging signal, a brief

comparison between them was also carried out and it was

shown that given the same number of dipoles, the planar

structure has a better performance, although this is achieved

at the cost of increased physical size.

APPENDIX A

PROOF OF THE LEMMA

Necessity: If a1//a2 and q1//q2, then

a2 = k1 · a1

q2 = k2 · q1 (42)

where k1 and k2 are arbitrary complex-valued constants. Then,

w2 = a2 ⊗ q2

= (k1 · a1)⊗ (k2 · q1)

= (k1k2) · (a1 ⊗ q1)

= (k1k2) · w1 (43)

Hence, w1//w2.

Sufficiency: By (10), w can be expanded as

w = a ⊗ q =













a1q

.

.

.

aNq













=





















a1px
a1py
.

.

.

aNpx
aNpy





















(44)

The Hermitian transpose wH is given by

wH = aH ⊗ qH (45)

The norm of w is

|w| =
√

wHw

=
√

(a1a∗1 + ...+ aNa∗N )(pxp∗x + pyp∗y)

= |a| · |q| (46)

Then, we have

|w1| = |a1| · |q1|
|w2| = |a2| · |q2| (47)

Generally, by (45), the modulus of the inner product of w1

and w2 can be expanded as

|wH
1 w2| = |(aH

1 ⊗ qH1 ) · (a2 ⊗ q2)| (48)

According to the mixed-product property of Kronecker prod-

uct, lemma 4.2.10 in [52], (48) can be deduced to

|wH
1 w2| = |aH1 · a2| ⊗ |qH

1 · q2|
≤ |a1| · |a2| · |q1| · |q2| (49)

On the other hand, since w1//w2, we know w2 = kw1 and

|w2| = |k||w1|, which leads to

|wH
1 w2| = |wH

1 · kw1| = |k||w1| · |w1|
= |w1| · |w2| = |a1| · |a2| · |q1| · |q2| (50)

The equality in (49) holds only when a1//a2 and q1//q2.

Combined with (50), the sufficiency proof is completed.

APPENDIX B

AMBIGUITY ON TRIPOLE SENSOR ARRAY WITH LINEARLY

POLARISED SIGNALS

If the signals are linearly polarised, γ = 90◦ or γ = 0 or

η = 0. p̂1 or p1 becomes a vector with all elements being

real-valued, and it may be possible for p1 to be in parallel

with the intersecting vector Ωx. Now with the assumption

p1//p2//Ωx, p1 and p2 must all be real-valued, which means

γ1 = 90◦ or γ1 = 0 or η1 = 0, and at the same time γ2 = 90◦

or γ2 = 0 or η2 = 0. With the constraint sin θ1 sinφ1 =

sin θ2 sinφ2, we consider all of the nine different cases:

Case 1: γ1 = 90◦ and γ2 = 90◦.

In this case

p1 = ejη1





cos θ1 cosφ1

cos θ1 sinφ1

− sin θ1





p2 = ejη2





cos θ2 cosφ2

cos θ2 sinφ2

− sin θ2



 (51)

With θ1 = θ2 and φ1 = φ2, we have p1//p2 for ar-

bitrary η1 and η2. An example is (30◦, 60◦, 90◦, 20◦) and

(30◦, 60◦, 90◦, 50◦).

Case 2: γ1 = 90◦ and γ2 = 0◦. (same for γ1 = 0◦ and

γ2 = 90◦)

p1 = ejη1





cos θ1 cosφ1

cos θ1 sinφ1

− sin θ1





p2 =





− sinφ2

cosφ2

0



 (52)



In this case, with θ1 = 0◦ and tanφ1 = − cotφ2, we

have p1//p2 for arbitrary θ2, η1 and η2. An example is

(0◦, 90◦, 90◦, 20◦) and (50◦, 0◦, 0◦, 50◦).

Case 3: γ1 = 90◦ and η2 = 0◦. (same for η1 = 0◦ and

γ2 = 90◦)

p1 = ejη1





cos θ1 cosφ1

cos θ1 sinφ1

− sin θ1





p2 =





cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2
cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

− sin θ2 sin γ2



 (53)

Given arbitrary θ1, φ1, θ2, φ2 which satisfy the constraint (15),

if p1//p2, then















sin θ1
sin θ2 sin γ2

=
cos θ1 cosφ1

cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2
sin θ1

sin θ2 sin γ2
=

cos θ1 sinφ1

cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

(54)

leading to

{

sinφ2 = cosφ2

sinφ2 = − cosφ2

(55)

which causes contradiction. In this case, there is no ambiguity.

Case 4: γ1 = 0◦ and γ2 = 0◦.

p1 =





− sinφ1

cosφ1

0





p2 =





− sinφ2

cosφ2

0



 (56)

In this case, with φ1 = φ2, we have p1//p2 for arbitrary η1 and

η2. An example is (30◦, 60◦, 0◦, 20◦) and (30◦, 60◦, 0◦, 50◦).

Case 5: γ1 = 0◦ and η2 = 0◦. (same for η1 = 0◦ and

γ2 = 0◦)

p1 =





− sinφ1

cosφ1

0





p2 =





cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2
cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

− sin θ2 sin γ2



 (57)

In this case, to satisfy the parallel condition, firstly θ2 should

be 0◦ and η1 can be an arbitrary value. Further we have

tan γ2 =
cosφ1 sinφ2 − sinφ1 cosφ2

cosφ1 cosφ2 + sinφ1 sinφ2
(58)

An example is (30◦, 0◦, 0◦, 30◦) and (0◦, 30◦, 30◦, 0◦).

Case 6: η1 = 0◦ and η2 = 0◦.

p1 =





cos θ1 cosφ1 sin γ1 − sinφ1 cos γ1
cos θ1 sinφ1 sin γ1 + cosφ1 cos γ1

− sin θ1 sin γ1





p2 =





cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2
cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

− sin θ2 sin γ2



 (59)

In this case, due to the parallel condition, we know














sin θ1 sin γ1
sin θ2 sin γ2

=
cos θ1 cosφ1 sin γ1 − sinφ1 cos γ1
cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2

sin θ1 sin γ1
sin θ2 sin γ2

=
cos θ1 sinφ1 sin γ1 + cosφ1 cos γ1
cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

(60)

Each equations in (60) will produce a unique solution

to tan γ2. Except that all the parameters (θ1, φ1, γ1) =

(θ2, φ2, γ2), there is no other solutions for γ2 and therefore

there is no ambiguity in this case.
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