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Abstract 

The Theory of Critical Distances (TCD) is a powerful design tool capable of estimating the 

strength of notched/cracked materials, with this being done by directly post-processing the 

linear-elastic stress fields ahead of the stress raisers being assessed. In the present study, an 

advanced formulation of the TCD is devised to specifically predict static and dynamic strength 

of notched unreinforced concrete subjected to Mixed-Mode I/II loading. The reliability and 

accuracy of the design approach being proposed was checked against a large number of 

experimental results generated by testing plain concrete containing notches of different 

sharpness, with these experiments being run not only under various degrees of Mode mixity, 

but also under different values of the nominal displacement rate (i.e., in the range 0.002-35 

mm/s). The predictions made by this advanced version of the TCD were seen to fall mainly 

within an error interval of ±30%, that is, within an error band as wide as the band 

characterizing the intrinsic scattering of the calibration data. This suggests that that the TCD 

philosophy can effectively be extended also to the assessment of notched plain concrete 

subjected to in-service static/dynamic Mixed-Mode loading, with the relevant stress fields 

being determined by modelling concrete as a linear-elastic, homogeneous and isotropic 

material. 

 

Keywords: Concrete, notch, critical distance, static loading, dynamic loading, mixed-mode 

I/II. 
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Nomenclature 

3PB three-point bending 

4PB four-point bending 

af, bf material constants in the f vs. Ż relationship aKId , bKId  material constants in the KId vs. Ż relationship 

aL, bL material constants in the L vs. Ż relationship 

rn notch root radius 

DIF Dynamic Increase Factor 

K1 Mode I stress intensity factor 

K2 Mode II stress intensity factor 

KIc plane strain fracture toughness 

KId dynamic fracture toughness 

Kt,b stress concentration factor under pure bending 

L critical distance 

Oxyz system of coordinates 

P vertical load Ż reference dynamic variable Żlower value for Ż defining the lower asymptotic limit Żupper value for Ż defining the upper asymptotic limit 

p local opening normal strain at the hot-spot ε̇p rate of the local opening normal strain at the hot spot ε̇p,lower value for ε̇p defining the lower asymptotic limit 

 ratio between the Mode II and the Mode I stress intensity factor 

0 inherent strength 

σeff effective stress 

σf dynamic strength (i.e., failure stress under dynamic loading) 

n(r) normal linear-elastic stress perpendicular to the focus path 

σnom nominal stress 

σp failure value of the local opening normal stress at the hot-spot 

σy normal stress parallel to axis y 

σUTS ultimate tensile strength 

θ, r polar coordinates 

θc angle defining the orientation of the focus path 

θa angle defining the orientation of the actual crack initiation plane Δ̇c displacement rate parallel to the focus path Δ̇c,lower  value for Δ̇c defining the lower asymptotic limit 
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1. Introduction 

As far as unreinforced concrete is concerned, most of the available design methods focus on 

modelling the mechanical behaviour/properties of cementitious materials by considering 

mainly the static problem. However, during their lifespan, real concrete structures can be 

damaged also by other events such as transient, time-variable, and dynamic loading, with the 

latter being due to, for instance, impact, crash, blast, or land sliding. This explain why, since 

the beginning of the last century, several attempts have been made also to establish a link 

between dynamic strength of cementitious materials and the rate of the applied loading [1-4]. 

In this context, examination of the state of the art shows that most of these studies were based 

on the so-called Dynamic Increase Factor (DIF). For a given mechanical property (such as, for 

instance, tensile strength or fracture toughness), the DIF is defined as the ratio between the 

value under the specific dynamic loading being considered over the corresponding value under 

quasi-static loading. This simple way of assessing the effect of rapidly increasing loading 

demonstrates that concrete materials can be very sensitive to the rate of the applied 

forces/moments. For instance, as far as strength is concerned, the associated DIF is seen to 

reach values larger than 2 under compression and way larger than 6 under tension [5]. 

However, despite this relatively large body of work, the available technical literature shows 

that, overall, the international scientific community has not yet agreed a commonly accepted 

approach suitable for assessing the strength of concrete under dynamic loading. 

Concrete is made of coarse and fine aggregates bonded together via hydrated cement paste. As 

far as its mechanical response is concerned, concrete is usually treated as a brittle material, 

with this being done even though its incipient failure behaviour is always characterised by a 

certain level of plasticity/non-linearity [6]. 

The cracking processes being observed in concrete are very complex and difficult to anticipate 

because they depend on several factors that include, amongst others, water-to-cement ratio, 

characteristic of cement, type of aggregates, and curing protocol [7, 8]. Turning to the fracture 

mechanisms, cracks can originate either from pre-existing defects (i.e., the so-called 
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technological damage) or due to de-bonding between cement paste and aggregates [9, 10], 

with the latter being the prevailing failure process in situations of practical interest. 

Due to the important role played by the fracture toughness, over the years specific 

experimental protocols have been developed to determine this classic mechanical property for 

concrete materials subjected to pure Mode I loading [11]. In parallel, systematic research work 

has been carried out also to measure the fracture toughness under Mode II loading as well as 

under Mixed-Mode I/II loading [12, 13]. In this context, different test arrangements have been 

proposed, optimised, and validated experimentally. Amongst the available solutions, certainly 

those methods making use of anti-symmetric four-point bending and single/double edge 

notches have rapidly gained popularity in industry. As far as these testing configurations are 

concerned, it is commonly believed that they can be used also to produce pure Mode II failures 

[14]. However, unfortunately, further studies [15-17] have demonstrated that under anti-

symmetric four-point bending the crack propagation process can still be affected by secondary 

Mode I stress components even when the test is set-up to specifically investigate the fracture 

behaviour under pure Mode II loading. 

While much theoretical and experimental work has been done to quantify and model the 

static/dynamic behaviour of unreinforced concrete, surprisingly, the detrimental effect of 

finite radius geometrical features (here termed notches) has so far received just little attention 

[18]. This lack of systematic research work is certainly surprising especially in light of the fact 

that, in the near future, additive manufacturing will bring into the concrete engineering 

discipline unprecedented design freedoms, with this allowing complex forms to be 

incorporated into innovative structural components [19]. From a strength point of view, the 

fact that concrete artefacts can contain complex geometrical features leads to localised stress 

concentration phenomena, the resulting stress gradients having a detrimental effect on the 

overall strength of the concrete parts themselves. Thus, effective and straightforward design 

methods need to be developed as a matter of urgency to allow engineers to effectively perform 

the static and dynamic assessment of concrete materials when they contain complex 

geometrical features. 
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Given the context briefly summarised above, the present investigation aims at advancing our 

understanding of the static and dynamic assessment of notched un-reinforced concrete. This 

will be done by reformulating the Theory of Critical Distances (TCD) [20] to allow this design 

approach to be employed also to estimate the strength of unreinforced concrete containing 

notches of different sharpness and subjected to static/dynamic Mixed-Mode I/II loading. The 

reliability and accuracy of this novel reformulation of the TCD will be checked against a large 

number of experimental results generated in the Sheffield Structures Laboratory by testing 

notched concrete beams under different degrees of Mode mixity as well as under different 

values of the displacement rate. 

 

2. Fundamentals of the TCD under Mode I static loading 

According to the TCD [20], an engineering material weakened by a stress raiser will withstand 

the static loadings being applied as long as the following condition is satisfied [20-22]: 

 σeff < σ0             (1) 

 

In the above strict inequality σ0 is the inherent material strength, whereas σeff is the TCD 

effective stress calculated by post-processing the linear-elastic stress field acting on the 

material in the vicinity of the geometrical feature under consideration. Much experimental 

evidence demonstrates that, as far as brittle or quasi-brittle materials are concerned, σ0 can 

be taken invariably equal to the ultimate tensile strength, σUTS [22-24]. In contrast, σ0 is seen 

to be larger than σUTS for those material whose final breakage is preceded by a certain amount 

of plastic deformation [25-27]. Accordingly, for those material for which σ0 is larger than σUTS, 

the only way to determine the inherent strength is by running appropriate experiments [21]. 

This experimental procedure will be explained below in detail. 

Turning back to the effective stress, according to the TCD, σeff can be determined in different 

ways by simply changing the strategy being adopted to post-process the relevant linear-elastic 

stress fields. In this setting, the simplest way to calculate σeff is by taking it equal to the stress 



6 

at a certain distance from the notch apex [28]. This formalisation of the TCD is known as the 

Point Method (PM) [20]. Alternatively, σeff can be determined also by averaging the relevant 

stress over a line [29] and this formalisation of the TCD is usually referred to as the Line 

Method (LM) [29]. It is worth re-calling here that the TCD effective stress can also be 

determined by adopting more sophisticated definitions. For instance, σeff can be calculated by 

averaging the relevant stress over a semi-circular area centred at the notch tip [30]. This bi-

dimensional formalisation of the TCD is usually referred to as the Area Method [20]. 

Alternatively, according to the Volume Method, σeff can also be calculated by averaging the 

linear-elastic stress over a hemisphere centred at the notch tip [31]. 

Focussing attention solely on the simplest formalisations of the TCD, according to the systems 

of coordinates as defined in Fig. 1a, the mathematical equations to be used to calculate under 

static loading the TCD Mode I effective stress in terms of the PM and LM can be written in 

explicit form as follows [20, 22]: 

 σeff = σy (θ = 0, r = L2)  – Point Method (PM, Fig. 1b)      (2) 

σeff = 12L ∫ σy2L0 (θ = 0, r)dr  – Line Method (LM, Fig. 1c)      (3) 

 

In definitions (2) and (3) L is the material critical distance. As postulated by the TCD, this 

length is a property which is different for different materials, but its value does not depend on 

the specific profile of the stress raiser being assessed [20]. In this framework, L can be thought 

of as a length scale parameter modelling the underlying microstructure. This explains why its 

value is seen to be directly linked with the relevant size of the microstructural heterogeneity 

characterising the material under investigation [32, 33]. As far as unreinforced concrete is 

concerned, some experimental evidence suggests that L is of the order of the average inter-

aggregate distance [18, 34]. 

Under Mode I quasi-static loading, L can be estimated via the following well-known definition 

[23, 24, 35]: 
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L = 1π (KIcσ0 )2
            (4) 

 

where KIc is the plane stress fracture toughness and σ0 is the material inherent strength. 

As far brittle or quasi-brittle materials are concerned, once KIc is known, L can be estimated 

directly via Eq. (4) since for this type of materials 0 is invariably equal to UTS [20]. In 

contrast, seeing that ductile materials are characterised by an inherent strength that is larger 

than the conventional ultimate tensile strength [21, 26], the only way to determine L for this 

type of materials is by post-processing the results generated by testing specimens containing 

notches of different sharpness. This alternative strategy to determine L - which is based on the 

PM - is explained in Fig. 2a. In particular, assume that, for the material of interest, the strength 

of a series of notched specimens is determined experimentally. In this context, the calibration 

results are to be generated by testing a set of samples containing a known blunt notch and 

another set of specimens weakened by a known sharp notch. As per Fig. 2a, the resulting 

linear-elastic stress fields can then be plotted together in the incipient failure condition. By so 

doing, the coordinates of the point at which these two stress-distance curves intersect each 

other return the value not only of inherent strength 0, but also of critical distance L (Fig. 2a). 

In this setting, it is interesting to observe that, when KIc is unknown, a similar strategy can be 

followed also to determine L for brittle materials, the advantage being that in this case just one 

type of notch is needed to estimate the critical distance. In particular, according to Fig. 2b, 

given the notch stress field distribution in the incipient failure condition, the distance at which 

the stress equals the material ultimate tensile stress allows distance L/2 to be estimated 

directly. These considerations suggest that the TCD can be used also as an alternative strategy 

to estimate the plane stress fracture toughness from experimental results generated by testing 

specimens containing known geometrical features [36]. 

This section briefly summarises the key features of the TCD when this powerful design 

approach is used to perform the static assessment of engineering materials containing stress 
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raisers of all kinds and subjected to Mode I loading. In the next section, by taking full 

advantage of the work we did in the recent past [18, 22, 26, 37, 38], the TCD will be generalised 

so that it can be used also to design notched unreinforced concrete subjected to in-service 

static/dynamic Mixed-Mode loading. 

 

3. Assessing notch strength of concrete under static/dynamic Mixed-Mode 

loading 

As briefly discussed in the previous section, the inherent material strength and the critical 

distance are two key material properties that are needed to apply the TCD. 

As far as the inherent strength is concerned, since the mechanical response of unreinforced 

concrete under quasi-static loading can be modelled as being predominantly brittle [6], the 

hypothesis can be formed that, for cementitious materials as well, 0 is invariably equal to 

UTS. This hypothesis can then be extended also to those situations involving dynamic loading 

[18]. In other words, the assumption can be made that, under dynamic forces and moments 

as well, the inherent material strength of unreinforced concrete can directly be taken equal to 

its dynamic strength, f. 

With regard to a suitable definition for 0, it is important to recall here that, in general, the 

flexural strength of engineering materials is seen to be larger than the corresponding strength 

under tensile loading. This phenomenon is particularly evident in concrete. As far as 

conventional engineering materials are concerned, much experimental evidence [20, 21] 

suggests that the TCD calibrated using the ultimate tensile stress is somehow capable of taking 

into account the increase in strength that is observed under bending. Unfortunately, when it 

comes to concrete, nothing definitive can be said about this aspect due to a lack of suitable 

experimental results. Thus, certainly, this point deserves to be investigated in detail in the 

future. Having considered this important aspect, in the present investigation we used the static 

and dynamic flexural strength to determine the inherent material strength because, as long as 

concrete is involved, bending is certainly one of the most relevant loading scenarios in 

situations of practical interest. 
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Focussing attention on f, according to the large number of experimental results collected and 

re-analysed by Malvar and Crawford [5], the tensile dynamic strength of unreinforced concrete 

is seen to increase as the local strain rate increases. This monotonic trend can be modelled by 

employing two simple power laws [5, 18], with an evident change in the exponent occurring as 

the strain rate approaches 1 mm/mm∙s-1 [5]. Similarly, the dynamic fracture toughness as well 

is seen to increase linearly (in a log-log schematisation) as the local strain rate increases [39, 

40]. Again, also for the dynamic fracture toughness a change in the slope is observed as soon 

as the local strain rate becomes larger than 1 mm/mm∙s-1 [18]. 

If Ż is used to denote either the loading rate, the displacement rate, the stress rate, the strain 

rate, or the stress intensity factor rate, the previous considerations can be generalised by 

assuming that the dynamic strength, σf(Ż), and the dynamic fracture toughness, KId(Ż), vary 

with Ż according to the following power laws [18, 37]: 

 σ0(Ż) = σf(Ż) = afŻbf           (5) KId(Ż) = aKIdŻbKId            (6) 

 

where af, bf, aKId, and bKId are material constants either to be determined experimentally or to 

be derived theoretically. It is worth observing here that relationships (5) and (6) must be 

defined so that they cover in a consistent way also the quasi-static case. In other words, Eqs 

(5) and (6) should be calibrated so that under quasi-static loading they return UTS and KIc, 

respectively. 

In more general terms, it is reasonable to expect that both Eq. (5) and Eq. (6) are characterised 

by a lower and an upper asymptotic limit (or plateau). Clearly, this aspect could be easily 

incorporated into the model by using more complex mathematical functions to define 

relationships σ0(Ż) and KId(Ż). However, we do believe that this would make the model more 

complicated without resulting in any real improvement in terms of accuracy. Further, certainly 

using complex functions would result in more experimental work so that the required 
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calibration constants can be estimated accurately. In this context, it is important to observe 

that it is in any case very difficult to accurately define the values for Ż delimiting the position 

of the asymptotic plateaus. For instance, under quasi-static bending, standard code EN 12390‐

5:2019 [41] recommends to select a constant rate of stress within the range 0.04 MPa/s 

(N/mm2·s) to 0.06 MPa/s (N/mm2·s). Further, a specific formula is provided to calculate the 

testing loading rate according to the size of the specimens and the distance between the lower 

rollers. Having highlighted this important aspect, certainly the simplest way to take into 

account the presence of the asymptotic plateaus is by simply limiting functions (5) and (6) as 

follows: 

 σ0(Ż) ≡ σf(Ż𝑙𝑜𝑤𝑒𝑟) and KId(Ż) ≡ KId(Ż𝑙𝑜𝑤𝑒𝑟)  for Ż < Ż𝑙𝑜𝑤𝑒𝑟 σ0(Ż) ≡ σf(Ż𝑢𝑝𝑝𝑒𝑟) and KId(Ż) ≡ KId(Ż𝑢𝑝𝑝𝑒𝑟) for Ż > Ż𝑢𝑝𝑝𝑒𝑟 

 

where Ż𝑙𝑜𝑤𝑒𝑟 and Ż𝑢𝑝𝑝𝑒𝑟 are used to determine the initial point of the lower and upper 

asymptotic plateau, respectively. 

Having derived ad hoc expressions suitable for modelling strength and fracture toughness of 

unreinforced concrete under dynamic loading, the critical distance value is then proposed to 

be estimated as follows [18, 37]: 

 

L(Ż) = 1π [KId(Ż)σ0(Ż) ]2 = aLŻbL            (7) 

 

where aL and bL can directly be determined as soon as the calibration constants in relationships 

(5) and (6) are known. 

It is important to recall here that, from a structural integrity viewpoint, critical distance L plays 

the role of a material length defining the size of that region (i.e., the so-called process zone) 

which controls the overall strength of the component being assessed [21, 22]. Accordingly, 

since the mechanical/fracture behaviour of concrete changes as the rate of the applied 



11 

loading/deformation varies [5], the size of the process zone (i.e., critical distance L) must vary 

with increasing of Ż so that these changes in terms of mechanical response and strength can 

be modelled accurately. In other words, definition (7) is used to create a link between the 

critical distance under quasi-static loading and the corresponding values under dynamic 

loading. 

After extending to the dynamic case the definition of the inherent material strength, Eq. (5), 

as well as of the critical distance, Eq. (7), the subsequent step in the reasoning is establishing 

a simple rule suitable for determining under Mixed-Mode loading the orientation of the focus 

path that is needed to apply the TCD in the form of either the PM or the LM. To this end, the 

hypothesis can be formed that both initiation and initial propagation of static/dynamic cracks 

in unreinforced concrete are Mode I governed [7, 42]. Therefore, concrete is hypothesised to 

fail due to tensile cracks whose initial propagation occurs along those directions experiencing 

the maximum opening normal stress [22]. According to this simple assumption, the focus path 

to be used to apply the TCD can directly be taken coincident with a straight line emanating 

from the hot-spot (i.e., the assumed crack initiation site) and perpendicular to the surface at 

the hot-spot itself. In this specific context, the hot-spot is defined as that superficial point 

which experiences the maximum value of the opening normal stress – with the opening 

normal stress being tangential to the surface at the hot-spot and, therefore, coincident with 

the maximum principal stress. This definition suggests that, according to the opening normal 

stress-based damage model being adopted, the focus path is then assumed to be coincident 

with the crack initiation plane. 

In order to better clarify the way the focus path is suggested as being determined under Mixed-

Mode loading, consider the concrete notched beam loaded in combined bending and shear 

that is shown in Fig. 3a. Since the system of external forces/moments results in local Mixed-

Mode stress distributions, the superficial point which is subjected to the maximum value of 

the maximum principal stress is no-longer coincident with the notch tip [43]. Accordingly, its 

exact location must be determined either by solving Finite Element (FE) models or by using 

suitable analytical solutions [44-46]. Having found the position of the location experiencing 
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the maximum opening normal stress, the focus path then is obtained by plotting a straight line 

that emanates from the hot-spot and is perpendicular to the surface at the hot-spot itself (Fig. 

3a). In Fig. 3a the angle between the focus path and the notch bisector is denoted as c. 

Assume now that the notched beam under consideration is simply loaded in pure Mode I 

bending (Fig. 3b). According to the geometrical rule as defined above, under these specific 

circumstances the focus path invariably coincides with the notch bisector (i.e., c=0°) since, 

obviously, the notch tip is now the point experiencing the maximum opening stress. This 

confirms that, as the general rule being proposed is adopted to address pure Mode I situations, 

it returns a focus path having the same orientation as the one recommended to be used to 

apply the TCD in its classic, standard form [20] – see Fig. 1. 

Clearly, the simple rule being proposed above works well with finite radius stress 

concentrators. In contrast, it cannot be used to define the orientation of the focus path in the 

presence of stress raisers (i.e., either cracks or notches) that are modelled by taking the root 

radius invariably equal to zero. Under these circumstances, by using the LM argument, the 

focus path can then be taken coincident with a straight line emanating from the crack/notch 

tip and experiencing the maximum averaged value of the stress perpendicular to the line itself. 

This simple rule allows then the focus path to be defined unambiguously also in the presence 

of sharp geometrical features. 

Having devised a set of simple rules to define origin and orientation of the focus path, the 

subsequent step is defining in a more rigorous way dynamic variable Ż to be used along with 

Eqs (5) to (7). In particular, Ż is proposed here to be calculated in terms of either the 

displacement rate, Δ̇𝑐, or the local opening normal strain rate at the hot spot, ε̇𝑝. In this 

context, displacement rate Δ̇𝑐 will be use to check the accuracy of the TCD when a global, 

nominal quantity is used to define dynamic variable Ż. In contrast, since the strain rate is the 

most commonly adopted variable to model the behaviour of engineering materials under 

dynamic loading, ε̇𝑝 will be employed to assess the accuracy of the PM and LM as they are 

applied along with a local quantity. 
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Turning back to the displacement rate, for the sake of consistency in the re-analyses discussed 

in what follows Δ̇𝑐 will be determined always along a direction that is parallel to the focus path 

– see Figs 3a and 3b. As far ε̇𝑝 is concerned, this local quantities instead will be taken equal to 

the rate of the tangential (i.e., opening) normal strain at the hot-spot. 

By making use of the definitions discussed in the previous sections, the TCD can now be 

reformulated consistently to be used to perform the static/dynamic assessment of notched 

unreinforced concrete under Mixed-Mode loading. In particular, initially, condition (1) has to 

be extended to the dynamic case (i.e., generalised) by assuming that failure takes place as soon 

as the TCD effective stress becomes equal to corresponding reference strength, i.e.: 

 σeff(Ż) = σ0(Ż)  failure          (8) 

 

where σ0(Ż) is defined according to Eq. (5). Effective stress σeff(Ż) instead can directly be 

calculated according to the PM and the LM by re-writing definitions (2) and (3) as follows: 

 σeff(Ż) = σn (𝑟 = L(Ż)2 )  – Point Method (PM)                  (9) 

σeff(Ż) = 12L(Ż) ∫ σn2L(Ż)0 (r)dr  – Line Method (LM)                  (10) 

 

where n(r) gives the distribution of the normal linear-elastic stress perpendicular to the focus 

path (Fig. 3), r is a rectilinear coordinate coincident with the focus path, and critical distance L(Ż) is determined according to Eq. (7). 

As far as the calibration of the TCD is concerned, another important aspect that must be 

mentioned explicitly is the so-called volume effect. In particular, it is well-known that the 

overall strength of concrete is affected by the absolute volume of material under stress. 

Accordingly, given the actual dimensions of the structural detail aimed to be assessed, the size 

of the specimens to be used to determine the relevant material properties must be chosen 

according to the recommendations of the available standard codes. By so doing, the TCD 
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becomes safe to be used to perform static and dynamic assessment, with this holding true 

independently of the absolute dimensions of the component being designed. 

Having reformulated the TCD to be used to assess static/dynamic strength of notched 

unreinforced concrete under Mixed-Mode loading, the next step is obviously checking the 

accuracy and reliability of the design approach being proposed against relevant experimental 

results. This will be done in what follows. 

To conclude, it is worth pointing out that, as devised in the present section, the method being 

proposed can be used to model the role of macroscopic geometrical features. However, thanks 

to the unique features of the TCD, it is reasonable to believe that a similar methodology could 

be used also to assess the detrimental effect of manufacturing flaws, with this being done by 

taking into account their size, shape and location. To this end, the TCD should be re-

formulated by addressing the problem either at a mesoscopic or at a microscopic level. In this 

setting, due to the important role played by manufacturing flaws in determining the overall 

strength and fracture behaviour of concrete materials, certainly this alternative way of using 

the TCD would deserve to be investigated systematically both from a theoretical and an 

experimental point of view. 

 

4. Details of the experimental investigation 

To investigate whether the proposed reformulation of the TCD is successful in estimating 

static/dynamic Mixed-Mode strength of notched unreinforced concrete, a large number of 

experimental results were generated in the Sheffield Structures Laboratory by testing, under 

symmetric and asymmetric bending, 100 mm x 100 mm square section beams having length 

equal to 500 mm. These beams were cast so that both the un-notched (Fig. 4a) and the notched 

specimens (Figs 4b and 4c) had net nominal width equal to 50 mm. The U-notched specimens 

were designed to investigate experimentally the detrimental effect of three different values of 

the root radius, rn. As shown in Figs 4b and 4c, the blunt notches had root radius equal to 24 

mm, with the resulting stress concentration factor under pure bending, Kt,b, being equal to 
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1.44. The intermediate notches had instead root radius equal to 12.5 mm (Kt,b=1.76), whereas 

for the sharp notches rn was equal to 1.3 mm (Kt,b=4.51). 

The blunt as well as the intermediate notches were manufactured by gluing plastic pipes 

(having outer diameter equal to 48 mm and to 25 mm, respectively) onto the bottom of the 

moulds. After curing, the pipes were removed by cutting out the concrete, so that the 

specimens could be tested with the region in the vicinity of the notch tip being in the as-cast 

condition. In contrast, the sharp notches were directly machined by making the crack-like slits 

with a circular saw having thickness equal to 2.6 mm. 

Both the un-notched and the notched specimens were fabricated according to the standardised 

procedures recommended in Refs [47, 48]. In more detail, 30 N/mm2 Portland cement was 

mixed with 10 mm graded natural round gravel and grade-M sand. The water-to-cement ratio 

was set equal to 0.44. Before casting the concrete mix, the moulds were internally coated with 

a release agent to allow the concrete beams to easily be demoulded without causing any 

damage to the specimens themselves. Both un-notched and notched samples were removed 

from the moulds 24 hours after casting and then cured and stored in a moist room. This 

procedure resulted in a concrete having under quasi-static loading the following mechanical 

properties: flexural strength equal to 5.8 MPa, compressive strength equal to 65 MPa and 

Young’s modulus to 38 GPa. 

Turning to the mechanical testing, the levels of Mode mixity being investigated were 

quantified via the ratio, , between the Mode II (K2) and the Mode I (K1) stress intensity factor, 

i.e., =K2/K1. In particular,  was determined analytically [49, 50] for all the load 

configurations being considered by simply replacing the notches in the specimens of Figs 4b 

and 4c with ideal zero-tip radius cracks having length equal to 50 mm. 

The results under pure Mode I loading (ρ=0) were generated by using a standard symmetric 

three-point bending (3PB) set-up as shown in Fig. 5a. According to the testing configuration 

sketched in Fig. 5b, the same 3PB set-up was also used with the asymmetric specimens to 

generate results under a Mode mixity ratio, , equal to 0.18. Finally, a series of experiments 

were run under asymmetric four-point bending (4PB). In particular, the testing set-up shown 
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in Fig. 5c was used to investigate the static/dynamic behaviour of the notched concrete 

specimens of Fig. 4b under a Mode mixity ratio, , equal to 0.30. 

As far as the un-notched specimens (Fig. 5a) are concerned, they were tested under three point 

bending, with the experimental set-up being optimised so that the cracks always initiated and 

propagated at the centre of the specimens themselves - i.e., away from the re-entrant corners. 

All the tests were run by employing a vertical hydraulic actuator. A pre-load of approximately 

0.2 kN was always used to ensure that, before applying the ramp loading, the specimens were 

already in full contact with the cylindrical rollers. The magnitude of the force applied during 

testing was measured and then gathered using a high-precision dynamic loading cell that was 

attached to the end of the piston road of the hydraulic cylinder. The experimental results were 

generated by controlling the vertical movement of the piston road itself, with the nominal 

displacement rate ranging from about 0.002 mm/s to about 35 mm/s. 

High-speed camera Phantom Miro 310 was used to double-check the synchronism between 

crack initiation process and recorded peak failure force as well as to measure the actual 

displacement rate being applied during testing. Furthermore, by taking full advantage of the 

Digital Image Correlation (DIC) technique, the camera was used also to measure the local 

displacements in the notch tip regions. 

Synchronising the high-speed/high-resolution videos with the force vs. time signals gathered 

from the loading cell allowed us to fully confirm that the maximum force in the force vs. time 

curve always corresponded to the presence of a visible initiation crack on the surface of every 

specimen being tested. Accordingly, for each test, the maximum load gathered during testing 

was used to define the corresponding failure force. This was done being sure that neither the 

inertia of the piston road nor a possible delay in the signal gathered from the loading cell were 

affecting the post-processing of the experimental results. 

 

5. Experimental results, cracking behaviour and focus path 

The stress distributions in the tip regions of the notches being tested were determined by using 

commercial FE code ANSYS®. In the bi-dimensional models being solved numerically, the 
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concrete under investigation was assumed to behave like a linear-elastic, homogeneous and 

isotropic material. The notched samples shown in Figs 4b and 4c were modelled by using 4-

node structural plane elements (plane 182), with the mesh density in the vicinity of the 

identified hot-spots being gradually increased until convergence occurred. 

Initially, for any notch/loading configuration being investigated, the results from the FE 

analyses were used to determine the position of the hot-spots as well as the orientation of the 

corresponding focus paths. According to Section 3, the hot-spots were defined as those 

superficial points experiencing the maximum value of the tangential normal stress, with the 

focus paths being perpendicular to the surface at the hot-spots themselves. Given the different 

testing set-ups shown in Fig. 5, the directions of the focus path determined according to this 

simple rule were then used to calculate local displacement c via DIC – see Fig. 3 and Section 

3 for the definition of c. Fig. 6 shows two examples of the forces and the corresponding DIC-

measured displacements gathered under pure Mode I loading (Fig. 6a) as well as under Mixed-

Mode I/II loading with ρ=0.3 (Fig. 6b). In these charts the directions of displacement c were 

determined according to the FE-based procedure discussed above. 

The results generated by testing both the un-notched and the notched specimens are all 

summarised not only in Tables 1 to 4, but also in the semi-logarithmic diagrams seen in Fig. 

7. In more detail, the chart of Fig. 7a reports the results obtained by testing the un-notched 

specimens under pure Mode I loading, with f denoting the dynamic strength determined 

according to the beam theory in the incipient failure condition (i.e., under the maximum force 

recorded during testing). This graph makes it evident that the strength of the concrete being 

tested was characterised by an intrinsic level of scattering, with the experimental points falling 

within an error interval of ±30% [51]. However, the best-fit curved line based on a power law 

shown in Fig. 7a confirms that, as expected [5], the strength of the concrete being tested 

increased as the displacement rate, ∆̇𝑐, increased. The charts reported in Figs 7b to 7j 

summarise instead the experimental results that were generated by testing the notched 

specimens under Mode I as well as under Mixed-Mode I/II loading. In these graphs the 

strength, p, is expressed in terms of tangential stress at the hot-spots determined, in the 
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incipient failure condition, from the FE models. Figs 7b to 7j confirm that, as expected, in the 

presence of stress raisers as well p increased as ∆̇𝑐 increased, with the experimental data 

falling again within error bands of ±30%. 

The pictures seen in Fig. 8 show some examples of the cracking behaviour that was observed 

in the notched concrete being tested under Mode I loading (Fig. 8a) as well as under Mixed-

Mode I/II (Figs 8b and 8c). Independently of loading rate and Mode mixity, the direct 

inspection of all the fracture surfaces revealed that the cracks initiated in the highly-stressed 

regions mainly at the interfaces between matrix and aggregates, with the subsequent 

propagation taking place in the cement paste. The formation of these initial short tensile 

cracks was followed by an instable fracture process leading to the complete breakage of the 

specimens. In a number of cases, this fast, instable propagation resulted also in the breakage 

of some aggregates positioned away from the notch tip region. 

Another interesting aspect that is worth considering here briefly is the effect in the notch 

regions of the three-dimensional stress constraint phenomenon. In particular, the specimens 

containing the crack-like notches (i.e., nominal notch root radius, rn, equal to 1.3 mm) were 

characterised at a the mid-thickness section by a stress distribution that was very close to the 

one due to plane strain [52-54]. Accordingly, in the sharply notched specimens the stress state 

in the mid-thickness region was characterised by the largest degree of triaxiality, with this 

resulting in crack initiations mainly taking place at the mid-section. In contrast, for the other 

notches (i.e., specimens with rn equal to 12.5 mm and 24 mm, respectively) the fact that the 

local constrain effect decreases as rn increases resulted in initiations occurring also away from 

the mid-section, with the position of the crack initiation region being influenced more 

markedly also by the local material morphology. 

The pictures on the left-hand side of Fig. 8 allow the observed crack paths to be compared 

directly with the directions of the focus path as determined numerically according to the rule 

stated in Section 3. These pictures confirm that, as expected, the cracks always initiated in the 

vicinity of those material hot-spots experiencing the largest value of the tangential normal 

stress. Further, the initial propagation was seen to occur predominantly along those directions 
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of maximum opening stress, with the TCD focus path as defined in Section 3 being clearly 

capable of locating the orientation of the crack initiation plane. 

The accuracy and reliability in modelling the crack initiation process of the focus path as 

proposed to be defined in the present investigation is fully confirmed also by the graphs of Fig. 

9. In more detail, these diagrams compare the theoretical value of angle c as defined in Fig. 3 

with the corresponding value, a, directly measured on the surfaces of the broken specimens. 

These charts make it evident that the simple rule being proposed here to determine the 

orientation of the focus path is capable of capturing in a very accurate way the essence of the 

crack initiation process, with this holding true independently of Mode mixity and nominal 

displacement rate. 

To conclude, it can be observed that, according to the charts of Fig. 9, the orientation of both 

the predicted and the experimentally measured crack initiation planes appears not to vary 

monotonically with . To explain this trend, it is worth recalling here that  was defined as the 

ratio between K2 and K1, with stress intensity factors K2 and K1 being determined analytically 

[49, 50] by assuming that the specimens of Fig. 4 contained cracks having length equal to 50 

mm and tip radius equal to zero. According to Fig. 5, a nominal Mode mixity ratio, , of 0.18 

was obtained by testing the notched specimens under symmetric 3PB, whereas a  value of 0.3 

was obtained by testing the notched samples under asymmetric 4PB. The orientation of both 

the crack initiation planes and the focus paths were determined by defining angles c and a as 

seen in Fig. 3a. In order to clearly show the level of correlation between c and a in the charts 

of Fig. 9, the orientation for the crack initiation planes in the specimens tested under 3PB and 

under 4PB were measured on opposite lateral surfaces. This explains the reason why c and a 

are positive for  equal to 0.18, whereas they are negative for  equal to 0.30. In terms of 

absolute values of anglesc and a instead, as expected, the orientation of the crack initiation 

planes tend to increase as  increases, with this holding true independently of the sharpness 

of the notch being tested. 
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6. Validation of the proposed reformulation of the PM and the LM 

As briefly mentioned in Section 3, in order to check the accuracy of the PM, Eq. (9), and the 

LM, Eq. (10), in estimating the static and dynamic strength of the notched specimens being 

tested, variable Ż was defined by exploring two different strategies. In particular, Ż was taken 

either equal to the rate of the displacement parallel to the focus path, Δ̇𝑐 or equal to the rate of 

the opening normal strain determined at the hot spot, ε̇𝑝. Accordingly, by post-processing the 

results obtained by testing the plain specimens under Mode I static/dynamic loading (Fig. 7a), 

it was straightforward to derive (via the standard least-squares method) the following values 

for constants af and bf in Eq. (5): 

 σf(Δ̇𝑐) = 8.67 ∙ ∆̇𝑐0.071          (11) σf(ε̇𝑝) = 14.58 ∙ 𝜀𝑝̇0.078          (12) 

 

The subsequent step was determining constants aL and bL in the L vs. Ż relationship, Eq. (7). 

This was done according to the methodology explained in Fig. 2b by post-processing the 

results from both the plain specimens and the sharply notched samples tested under Mode I 

loading (see Fig. 7d). By so doing, L was estimated for different values of either Δ̇𝑐 or ε̇𝑝, 

obtaining: 

 L(Δ̇𝑐) = 4.7 ∙ ∆̇𝑐−0.03          (13) L(ε̇𝑝) = 3.3 ∙ 𝜀𝑝̇−0.03          (14) 

 

It is important to highlight here that this simple and straightforward procedure allowed us to 

calibrate Eqs (11) to (14) so that, by setting Δ̇𝑐,𝑙𝑜𝑤𝑒𝑟=0.0035 mm/s or ε̇𝑝,𝑙𝑜𝑤𝑒𝑟 = 7.4 ∙ 10−6 𝑠−1, 

under quasi-static loading these functions return the values characterising the conventional 

mechanical behaviour. In contrast, owing to the fact that the experimental set-up being used 
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did not allowed us to explore the very-high loading rate regime, nothing can be said about the 

values for Δ̇𝑐 or ε̇𝑝 that delimit the asymptotic upper limit. 

Another important aspect that is worth pointing out here is that, according to Eqs (13) and 

(14), under quasi-static loading the critical distance value, L, was seen to approach 5.5 mm, 

with its value decreasing down to about 4.2 mm under the highest values of the loading rate 

that were explored. This suggests that, as observed in other related investigations [18, 34], also 

for the concrete being tested to generated the results summarised in Tabs 1 to 4, length L was 

seen to be of the order of the average inter-aggregate distance. 

The reference strength quantified via Eqs (11) and (12) together with the critical distance 

expressed through Eqs (13) and (14) were then used to post-process all the results being 

generated in terms of the PM and the LM. To calculate the effective stress according to Eqs (9) 

and (10), the relevant stress fields were determined, in the incipient failure condition, by 

solving the linear-elastic FE models as briefly described at the beginning of Section 6. 

Having calculated the TCD effective stress by taking dynamic variable Ż equal to either Δ̇𝑐 or ε̇𝑝, the accuracy of the predictions being made were assessed by adopting the following 

definition for the error: 

 Error = σeff(Ż)−σ0( Ż)σ0( Ż) × 100                     (15) 

 

This simple definition allowed us to check whether the reformulation of the TCD being 

proposed predicted failures conservatively or non-conservatively by assigning either positive 

or negative sign, respectively. 

The overall accuracy obtained by applying the TCD in the form of the PM and the LM is 

summarised in the error diagrams of Figs 10. In particular, the charts of Figs 10a and 10c 

report the predictions made by considering the results generated under quasi-static loading. 

The diagrams seen in Figs 10b and 10d summarise instead the accuracy that was obtained 

when post-processing the results generated under dynamic loading. The charts of Fig. 10 
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demonstrate that the proposed approach was capable of accurately predicting the strength of 

the notched concrete being tested, with this holding true for the results generated both under 

Mode I and under Mixed-Mode I/II static/dynamic loading. In particular, as expected, a 

higher level of accuracy was achieved as taking dynamic variable Ż equal to ε̇𝑝, i.e., when the 

TCD was applied along with a local quantity determined in the vicinity of the estimated crack 

initiation point. 

To conclude, it is possible to observe that, in terms of overall accuracy, the level of scattering 

characterising the predictions being obtained is definitely adequate. This is because, according 

to Fig. 10, the systematic usage of the PM and LM returned estimates falling mainly within an 

error interval of ±30%, i.e., within a scatter band as wide as the scatter band characterising 

the two populations of data used for calibration (see Fig. 7a and 7d). This is certainly 

satisfactory since, by definition, a predictive method cannot return estimates that are less 

scattered than the population of data used to calibrate the method itself. 

 

7. Conclusion  

In the present investigation, a large number of notched samples were tested under 

static/dynamic Mixed-Mode loading in the Structures Laboratory of the University of 

Sheffield to investigate the strength of un-reinforced concrete weakened by stress 

concentrators of different sharpness. The TCD was reformulated in order to make it suitable 

for designing notched concrete against static/dynamic uniaxial/multiaxial loading. The 

accuracy and reliability of this alternative reformulation of TCD was checked against the 

results being generated. As per the outcomes from the research work summarised in the 

present paper, it is possible to draw the following key conclusions: 

 the strength of concrete increases as the rate of the dynamic loading increases also in 

the presence of notches and under Mixed-Mode loading; 

 the cracking behaviour of notched un-reinforced concrete is governed by the opening 

normal stress, with this holding true independently of degree of Mode mixity and rate 

of the applied displacement/loading; 
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 the focus path as recommended to be defined in the present investigation is seen to be 

capable of accurately predicting/modelling the orientation of the crack initiation 

planes; 

 according to the TCD philosophy, for design purposes un-reinforced concrete can be 

modelled as a linear-elastic, homogenous, and isotropic material, with this resulting in 

a great simplification of the stress analysis problem; 

 the linear-elastic TCD is seen to be successful in predicting the strength of notched un-

reinforced concrete subjected to static/dynamic Mixed-Mode loading; 

 the systematic use of the TCD applied in the form of the PM and the LM returned 

estimates falling mainly within an error band of ±30%, i.e. in estimates as scattered as 

the population of data used for calibration; 
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Table 1.  Summary of the results generated by testing the un-notched specimens under static 

and dynamic Mode I loading. 

Table 2.  Summary of the results generated by testing under Mode I and Mixed-Mode I/II 
static and dynamic loading the specimens containing the sharp notches (rn=1.3 mm). 

Table 3.  Summary of the results generated by testing under Mode I and Mixed-Mode I/II 
static and dynamic loading the specimens containing the intermediate notches 
(rn=12.5 mm). 

Table 4.  Summary of the results generated by testing under Mode I and Mixed-Mode I/II 
static and dynamic loading the specimens containing the blunt notches (rn=25 mm). 

Figure 1.  Notched component subjected to Mode I static loading (a) and the TCD effective 

stress, eff, determined according to the Point Method (b) and the Line Method (c). 

Figure 2.  Using notched specimens to determined critical distance L for ductile materials (a) 
and for brittle/quasi-brittle materials (b). 

Figure 3.  Schematisation of the rule to be used to define the focus-path under Mixed-Mode 
loading (a) and resulting orientation under pure Mode I loading (b). 

Figure 4.  Un-notched samples (a); symmetric (b) and asymmetric (c) notched specimens 
(dimensions in millimetres) 

Figure 5.  Experimental set-ups used to run Mode I three-point bending tests with ρ=0 (a), 
Mixed-Mode I/II three-point bending (3PB) with ρ=0.18 (b), and Mixed-Mode I/II 
four-point bending (4PB) with ρ = 0.3 (c) - dimensions in millimetres. 

Figure 6.  Examples showing the increase over time of the cross head load, P, measured using 

a loading cell and the resulting local displacement, c, under pure Mode I loading (a) 
as well as under Mixed-Mode I/II loading with ρ=0.3 (b). 

Figure 7.  Summary of the experimental results generated by testing both the un-notched (a) 

and the notched specimens (b-j) under Mode I (=0) as well as under Mixed-Mode 

I/II (=0.18, 0.3) static/dynamic loading. 

Figure 8.  Examples of cracking behaviour observed in the notched samples tested under Mode 
I loading as well as under Mixed-Mode loading with ρ=0.18 (b) and with ρ=0.3 (c). 

Figure 9.  Comparison between estimated orientation of the focus path, c, and orientation of 

the crack initiation plane, a, measured on the surface of the broken specimens 
containing blunt (a), intermediate (b), and sharp (c) notches. 

Figure 10.  Accuracy of the PM and LM in estimating the static/dynamic strength of the notched 

specimens being tested when variable Ż is taken equal to Δ̇𝑐 (a, b) and to ε̇𝑝 (c, d). 
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Specimen 
Code 

Testing 
Set-up 

Loading 
Mode 

Width 
[mm] 

Thickness 
[mm] 

Time to 
failure 

[s]  

Failure 
force 
[kN] 

Displacement 
rate(a) [mm/s]  

S-P1-I (3PB) 

3PB I 

50.1 101.2 24.33 3.39 0.0051 

S-P2-I (3PB) 50.0 101.0 23.47 3.49 0.0036 

S-P3-I (3PB) 50.9 101.0 23.15 3.06 0.0045 

M-P1-I (3PB) 50.6 101.3 0.0243 6.94 5.7666 

M-P2-I (3PB) 50.5 101.0 0.0309 6.01 5.8159 

M-P3-I (3PB) 50.5 101.0 0.0276 5.04 8.6186 

F-P1-I (3PB) 49.5 101.3 0.0218 5.56 23.869 

F-P2-I (3PB) 49.8 101.2 0.0166 5.94 20.147 

F-P3-I (3PB) 49.7 101.4 0.0184 5.74 20.727 

(a)Vertical displacement rate measured at the notch tip using DIC 
 
 

Table 1. Summary of the results generated by testing the un-notched specimens under static 
and dynamic Mode I loading. 
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Specimen 
Code 

Testing 
Set-up 

Loading 
Mode 

Notch 
depth 
[mm] 

Gross 
width 
[mm] 

Thickness 
[mm] 

Time 
to 

failure 
[s]  

Failure 
force 
[kN] 

Displacement 
rate(a) [mm/s]  

S-S1-I (3PB) 

3PB I 

51.0 100.3 100.9 19.4200 3.25 0.0029 

S-S2-I (3PB) 51.8 101.3 101.3 17.0300 3.36 0.0018 

S-S3-I (3PB) 52.3 102.3 100.6 17.4400 2.76 0.0057 

M-S1-I (3PB) 51.4 101.1 102.0 0.0282 5.21 9.0375 

M-S2-I (3PB) 51.2 100.8 101.3 0.0297 4.36 9.9544 

M-S3-I (3PB) 51.7 101.2 101.1 0.0280 4.82 10.506 

F-S1-I (3PB) 51.1 100.9 100.9 0.0121 4.77 17.592 

F-S2-I (3PB) 51.4 100.4 100.6 0.0120 4.39 24.926 

F-S3-I (3PB) 51.2 100.3 100.7 0.0116 5.62 23.446 

S-S1-I/II (3PB) 

3PB I/II 

52.0 101.3 100.6 25.8200 7.24 0.0035 

S-S2-I/II (3PB) 51.8 101.6 100.4 20.0100 5.79 0.0073 

S-S3-I/II (3PB) 49.0 101.0 101.2 24.8700 5.32 0.0033 

M-S1-I/II (3PB) 51.8 100.8 101.5 0.0282 9.28 3.9562 

M-S2-I/II (3PB) 51.6 101.7 101.3 0.0290 9.37 2.524 

M-S3-I/II (3PB) 51.5 100.3 100.9 0.0287 9.26 3.7578 

F-S1-I/II (3PB) 51.8 100.6 101.0 0.0135 9.21 14.431 

F-S2-I/II (3PB) 51.6 101.7 101.4 0.0113 8.92 25.465 

F-S3-I/II (3PB) 51.3 101.9 100.9 0.0145 9.25 16.975 

S-S1-I/II (4PB) 

4PB I/II 

50.6 100.2 101.5 28.4134 9.98 0.0084 

S-S2-I/II (4PB) 50.6 100.7 100.9 32.9130 11.86 0.081 

S-S4-I/II (4PB) 50.9 100.9 101.2 32.3030 10.72 0.0092 

M-S1-I/II (4PB) 51.7 101.4 101.1 0.0576 21.84 5.8798 

M-S2-I/II (4PB) 51.4 101.2 101.5 0.0595 18.00 8.4348 

M-S4-I/II (4PB) 50.9 101.6 100.7 0.0527 17.69 6.9353 

F-S1-I/II (4PB) 51.4 100.8 100.7 0.0330 18.24 12.58 

F-S2-I/II (4PB) 51.4 101.7 100.8 0.0350 16.95 13.296 

F-S4-I/II (4PB) 51.8 101.3 101.1 0.0324 15.81 11.819 

(a)Vertical displacement rate measured at the notch tip using DIC 
 
 

Table 2. Summary of the results generated by testing under Mode I and Mixed-Mode I/II static 
and dynamic loading the specimens containing the sharp notches (rn=1.3 mm). 
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Specimen 
Code 

Testing 
Set-up 

Loading 
Mode 

Notch 
depth 
[mm] 

Gross 
width 
[mm] 

Thickness 
[mm] 

Time 
to 

failure 
[s]  

Failure 
force 
[kN] 

Displacement 
rate(a) [mm/s]  

S-I1-I (3PB) 

3PB I 

49.2 100.4 100.5 13.3500 2.78 0.006 

S-I2-I (3PB) 50.7 101.2 100.7 13.3500 2.96 0.0058 

S-I3-I (3PB) 51.1 100.9 100.6 13.3400 3.13 0.0109 

M-I1-I (3PB) 50.5 100.5 100.9 0.0222 3.69 11.25 

M-I2-I (3PB) 50.3 101.2 101.6 0.0164 4.56 9.1224 

M-I3-I (3PB) 49.5 101.6 101.2 0.0181 4.30 5.7606 

F-I1-I (3PB) 51.1 101.7 100.9 0.0104 4.53 17.791 

F-I2-I (3PB) 49.9 100.6 101.1 0.0084 4.88 19.623 

F-I3-I (3PB) 51.9 102.0 101.1 0.0099 4.81 19.676 

S-I1-I (3PB) 

3PB I/II 

52.7 102.0 101.2 21.0300 6.94 0.0096 

S-I2-I (3PB) 50.1 100.9 101.0 23.0800 5.60 0.0121 

S-I3-I (3PB) 51.1 100.1 100.8 24.2200 7.08 0.0076 

M-I1-I (3PB) 50.4 100.7 101.0 0.0286 8.62 4.7446 

M-I2-I (3PB) 50.8 101.6 101.1 0.0229 7.69 5.8804 

M-I3-I (3PB) 50.9 100.8 100.8 0.0326 6.94 8.0843 

F-I1-I (3PB) 51.2 101.5 100.7 0.0154 10.36 19.692 

F-I2-I (3PB) 51.2 101.1 100.3 0.0124 7.73 22.747 

F-I3-I (3PB) 51.2 101.5 100.4 0.0152 9.68 19.854 

S-I1-I (4PB) 

4PB I/II 

51.5 101.4 101.2 38.8000 14.06 0.0111 

S-I2-I (4PB) 51.6 102.5 100.5 39.1500 13.08 0.01 

S-I4-I (4PB) 52.6 101.2 101.5 39.2500 15.98 0.0084 

M-I1-I (4PB) 51.2 101.4 101.4 0.0524 17.89 8.254 

M-I2-I (4PB) 50.3 101.2 71.1 0.0523 15.10 6.3663 

M-I4-I (4PB) 51.0 101.1 101.2 0.0501 17.95 5.8772 

F-I1-I (4PB) 50.8 100.5 100.5 0.0291 19.41 17.376 

F-I2-I (4PB) 50.7 100.8 100.9 0.0371 21.79 13.052 

F-I4-I (4PB) 50.8 101.1 100.9 0.0286 21.90 18.707 

(a)Vertical displacement rate measured at the notch tip using DIC 
 
 

Table 3. Summary of the results generated by testing under Mode I and Mixed-Mode I/II static 
and dynamic loading the specimens containing the intermediate notches (rn=12.5 mm). 
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Specimen Code 
Testing 
Set-up 

Loading 
Mode 

Notch 
depth 
[mm] 

Gross 
width 
[mm] 

Thickness 
[mm] 

Time 
to 

failure 
[s]  

Failure 
force 
[kN] 

Displacement 
rate(a) [mm/s]  

S-B1-I (3PB) 

3PB I 

49.6 100.6 100.6 12.7100 3.06 0.0064 

S-B2-I (3PB) 50.2 102.3 101.2 15.9500 2.91 0.0116 

S-B3-I (3PB) 50.5 100.3 100.6 16.0800 3.24 0.0095 

M-B1-I (3PB) 51.8 102.3 101.3 0.0316 4.02 9.4825 

M-B2-I (3PB) 50.6 100.3 101.4 0.0186 4.48 7.9204 

F-B1-I (3PB) 51.1 100.6 101.1 0.0093 4.71 19.7 

F-B2-I (3PB) 50.4 101.2 100.9 0.0102 5.37 22.196 

F-B3-I (3PB) 51.2 100.2 101.2 0.0116 5.27 20.324 

S-B1-I/II (3PB) 

3PB I/II 

50.9 101.3 100.9 31.0700 7.20 0.0065 

S-B2-I/II (3PB) 50.3 101.5 100.8 25.0700 7.01 0.0134 

S-B3-I/II (3PB) 51.8 100.7 100.4 25.6600 6.64 0.0087 

M-B1-I/II (3PB) 50.9 100.7 101.7 0.0257 7.39 5.687 

M-B2-I/II (3PB) 50.2 101.3 101.1 0.0286 7.69 4.0413 

M-B3-I/II (3PB) 50.9 101.1 100.9 0.0270 8.39 5.5763 

F-B1-I/II (3PB) 51.0 100.8 100.6 0.0184 9.00 17.481 

F-B2-I/II (3PB) 50.6 101.2 100.8 0.0173 10.38 17.943 

F-B3-I/II (3PB) 51.0 101.2 101.2 0.0177 9.49 18.98 

S-B1-I/II (4PB) 

4PB I/II 

47.3 100.5 101.5 28.7500 10.10 0.0078 

S-B2-I/II (4PB) 50.1 101.3 100.5 36.0100 12.55 0.0074 

S-B4-I/II (4PB) 50.6 100.0 100.6 32.8100 11.05 0.0085 

M-B1-I/II (4PB) 51.4 101.5 101.2 0.0422 12.99 8.9264 

M-B2-I/II (4PB) 50.6 101.3 101.6 0.0487 14.29 6.707 

M-B4-I/II (4PB) 50.5 100.7 100.7 0.0465 14.62 7.1323 

F-B1-I/II (4PB) 51.2 101.6 101.0 0.0289 19.51 17.078 

F-B2-I/II (4PB) 49.8 100.7 100.8 0.0264 20.07 15.934 

F-B4-I/II (4PB) 49.9 100.5 100.7 0.0324 20.63 17.759 

(a)Vertical displacement rate measured at the notch tip using DIC 
 
 

Table 4. Summary of the results generated by testing under Mode I and Mixed-Mode I/II static 
and dynamic loading the specimens containing the blunt notches (rn=25 mm). 
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(a) (b) (c) 

 
 

Figure 1. Notched component subjected to Mode I static loading (a) and the TCD effective 

stress, eff, determined according to the Point Method (b) and the Line Method (c). 
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(a) (b) 

 
 

Figure 2. Using notched specimens to determined critical distance L for ductile materials (a) 
and for brittle/quasi-brittle materials (b). 
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(b) 
 
 

Figure 3. Schematisation of the rule to be used to define the focus-path under Mixed-Mode 
loading (a) and resulting orientation under pure Mode I loading (b). 

 
  



26 
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(b) 

 

 
(c) 

 
 

Figure 4. Un-notched samples (a); symmetric (b) and asymmetric (c) notched specimens 
(dimensions in millimetres) 

 
  



27 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
 

Figure 5. Experimental set-ups used to run Mode I three-point bending tests with ρ=0 (a), 
Mixed-Mode I/II three-point bending (3PB) with ρ=0.18 (b), and Mixed-Mode I/II four-point 

bending (4PB) with ρ=0.3 (c) - dimensions in millimetres. 
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 Δ̇𝑐 = 20.42 𝑚𝑚/𝑠 
 Δ̇𝑐 = 7.40 𝑚𝑚/𝑠 

(a) (b) 
 
 

Figure 6. Examples showing the increase over time of the cross head load, P, measured using a 

loading cell and the resulting local displacement, c, under pure Mode I loading (a) as well as 
under Mixed-Mode I/II loading with ρ=0.3 (b). 
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 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

 (g)  (h) 

 (i)  (j) 

 

Figure 7. Summary of the experimental results generated by testing both the un-notched (a) 

and the notched specimens (b-j) under Mode I (=0) as well as under Mixed-Mode I/II (=0.18, 
0.3) static/dynamic loading. 
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(b) 

 
 

(c) 

 
 

Figure 8. Examples of cracking behaviour observed in the notched samples tested under Mode 
I loading as well as under Mixed-Mode loading with ρ=0.18 (b) and with ρ=0.3 (c). 
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(a) 

 

 
(b) 

 

 
(c) 

 
 

Figure 9. Comparison between estimated orientation of the focus path, c, and orientation of 

the crack initiation plane, a, measured on the surface of the broken specimens containing blunt 
(a), intermediate (b), and sharp (c) notches. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 10. Accuracy of the PM and LM in estimating the static/dynamic strength of the 

notched specimens being tested when variable Ż is taken equal to Δ̇𝑐 (a, b) and to ε̇𝑝 (c, d). 
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