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Abstract 

Organelles such as mitochondria, lysosome, and nucleus, are essential for controlling basic 

cellular operations and metabolism. Because mitochondria play a critical role in energy 

production and programmed cell death, they act as prime therapeutic targets for various 

diseases and dysfunctional states. In this study, a multifunctional nanoplatform based on 

lanthanide upconverting nanorods is developed for concurrent mitochondria-targeted 

fluorescence imaging and preclinical MRI. This study provides critical insights into the spectral 

profiles of mitochondria and paves the way to developing novel, multimodal nanoprobes for 

mitochondria-targeted theranostics. 

 

 

 

  



          Mitochondria, aptly called as the “powerhouses of cell”, regulate various biological 

processes within a cell that are crucial for its survival and functioning. Besides producing 

adenosine triphosphate (ATP), the “energy currency” of the cell through oxidative 

phosphorylation, they play a critical role in controlling the electron transport chain, cell cycle 

regulation, intracellular calcium signalling, cell proliferation and apoptosis.1 Mitochondrial 

dysfunction has been identified as the root cause of several diseases including type 2 diabetes, 

cancer, diabetes and a range of age-related neurodegenerative disorders such as Parkinson’s 

disease, Alzheimer’s disease, muscular dystrophy, Lou Gehrig’s disease, Huntington’s disease 

and amyotrophic lateral sclerosis. 2-4 To develop a better understanding on the role of 

mitochondrial dysfunction in various diseases, as well as to control them, recent years have 

seen a phenomenal impetus in the development of mitochondria-targeted probes  

            A myriad of imaging techniques are used in current clinical practice which include but 

not limited to optical imaging, magnetic resonance imaging (MRI), ultrasound, single-photon 

emission computed tomography (SPECT) and X-ray computed tomography (CT) 2-3 . With the 

advent of higher resolution luminescence-based imaging techniques, there have been a recent 

surge in reports on various mitochondria-specific fluorescent markers. 5-8  However, one single 

imaging modality may not be able to provide all the information required from a single 

experiment. To address this limitation, multimodal imaging strategies are being developed. 

Using two or more imaging modalities simultaneously synergizes the strengths of individual 

modalities and enhances accuracy of diagnosis through cross-modality validation and direct, 

inter-modality comparison.11-12 Traditionally, each imaging modality employs a different 

probe, which possesses a distinctive chemical composition, unique physicochemical properties 

and pharmacokinetic profile. For in vivo applications, it is difficult to implement a “cocktail 

approach” where a mixture of multiple probes is administered through a single dose  in order 

to achieve spatiotemporal homogeneity between the individual imaging modalities. Therefore, 

a single probe that integrate the contrasting properties of two or more imaging probes into an 

all-in-one system are actively being sought for dedicated multimodal imaging. 

                Among the various imaging modalities that have become an indispensable part of 

modern clinical diagnostics, MRI has gained substantial importance due to its noninvasiveness, 

high spatial resolution, deep penetration and absence of radiation hazards. Despite these 

promising attributes, a major limitation of MRI is its low sensitivity 13-14. This limitation can 

be circumvented by using suitable contrast agents that can enhance the image contrast between 

normal and diseased tissues by altering the longitudinal (T1) and transverse (T2) relaxation rates 



of water protons surrounding the target region of interest. While MRI serves as an important 

diagnostic tool for high resolution anatomical and functional imaging, fluorescence-based 

optical imaging provides highly sensitive detection, quantification and real-time-tracking of 

bio-molecules of interest at the tissue, cellular and sub-cellular level.15-16 Subsequently, 

bimodal contrast agents, integrating the synergistic advantages of both MRI and fluorescence-

based optical imaging, have gained substantial attention in preclinical research. In this context, 

lanthanide-doped up-converting nanoparticles (UCNP) deserves special mention because of 

their unique ability to convert near infrared excitation into visible and ultraviolet emission, 

endowing greater tissue penetration, lower autofluorescence and reduced toxicity.17-18 With an 

additional dopant like the gadolinium (Gd3+) ion, which possesses intrinsic paramagnetism due 

to the presence of 7 unpaired electrons in its 4f shell, UCNPs can be used for simultaneous 

MRI and optical imaging. Furthermore, when conjugated with appropriate functional 

molecules (e.g. antibodies, peptides, drugs or photosensitizer), such UCNPs can serve as 

prospective candidates for targeted multimodal imaging and therapy.19  

      Herein, we report the development of a multifunctional nanoplatform based on 

NaYF4:Yb,Gd,Eu upconverting nanorods (UCNR) that can be used for concurrent 

mitochondria-targeted fluorescence imaging and preclinical MRI.  The presence of Eu3+ ions 

in the core of this nanosystem facilitates robust upconversion luminescence whereas Gd3+ 

endows MRI visibility. To further facilitate mitochondrial targeting, the as-prepared UCNRs 

were functionalized with triphenyl phosphonium cations, a known mitochondria targeting 

agent6, through covalent bonding. Our results demonstrated that UCNRs developed in this 

study can be used as a safe and effective bimodal probe for mitochondrial-targeted optical 

imaging and dual T1- and T2-weighted MRI. This nanoprobe demonstrated robust T1 contrast 

enhancement in vivo for high resolution cerebral microangiography, corroborating that the 

UCNRs stay in blood circulation post-injection to demonstrate measurable contrast.  

           NaYF4:Eu,Gd,Eu UCNRs with uniform size were synthesized by a hydrothermal 

reaction (ESI†).20 The crystallinity, phase purity  and composition of the synthesized UCNRs 

were determined by powder XRD. The powder-XRD pattern of the synthesized UCNRs (Fig. 

S1, ESI†) exhibited sharp diffraction peaks that are indexed to pure hexagonal-phase β-NaYF4 

nanocrystals (JCPDS No. 0281192; space group: P63/m).21 Mitochondriotropic UCNRs were 

produced by chemical coupling of triphenyl phosphine (TPP) with amine-functionalized, 

silica-coated UCNRs, prepared using typical Stöber-based surface modification.21 The ζ 

potentials of pristine UCNRs and amine functionalized silica-coated-UCNR were measured as 



−26.7 and +34.07 mV, respectively. After reaction with TPP, the ζ potential of the UCNRs 

further increased to +36.4 mV.  The presence of positive charges indicated that TPP-coated 

UCNRs possess a suitable targeting moiety for the negatively charged mitochondrial 

membrane. As evident from transmission electron microscopy (TEM) image, the synthesized 

nanoparticles were rod-shaped, had good monodispersity and possessed uniform sizes with an 

overall diameter of 18 ± 3 nm (Fig. 1a and Fig. S2, ESI†). The selected area electron diffraction 

pattern (SAED) and high-resolution TEM (HRTEM) image showed the lattice fringes with 

a d spacing of 0.30 nm, which was in good agreement with the lattice spacing of the (111) 

planes of hexagonal NaGdF4 (Fig. 1 b-c). The energy dispersive X-ray (EDX) analysis 

confirmed that the synthesized UCNRs were composed of Y, F, Si, Yb, Gd and Eu (Fig. S3, 

ESI†). The upconversion photoluminescence properties of the UCNRs were studied by 

excitation with a 980 nm laser beam. As depicted in Fig. 1f, typical Eu3+ emissions coming 

from 5 7

0 1D F→  and 5 7

0 2D F→ were cantered at 590.3 and 613.3 nm, respectively.22-24 Fourier 

transform infrared (FT-IR) spectroscopy was used to recognize the functional groups on the 

surface of the nanocomposites and provide evidence for successful modification. The FT-IR 

spectra of bare-UCNRs, amine functionalised Si-coated UCNRs, and TPP functionalised 

UCNRs are presented in Fig. 1e. The transmission bands at 2841 and 2940 cm−1 were assigned 

to the asymmetric and symmetric stretching vibrations of methylene (−CH2) groups, associated 

with a thin layer of hypermer B246 on the surface of UCNRs. B246 is a polyhydroxystearic 

acid/polyethylene oxide/polyhydroxystearic acid, ABA block copolymer, used as a surfactant 

during the synthesis of nanocomposite. The FTIR spectra also reveal a broad band at around 

3431 cm−1 originating from the O−H stretching vibration of the polyhydroxystearic acid block 

of B246. After the Stöber-based surface modification, new bands were observed at 3150 cm-1 

(very broad) and 1596 cm-1, emanating from N–H stretching and N–H bending vibrations, 

respectively. In addition, typical Si−O−Si deformation (632 and 451 cm−1) and asymmetric 

stretching vibration of Si–O bond appeared at 1421 cm-1. After TPP conjugation, asymmetrical 

deformation of P-C bonds was observed at 1445-1322 cm-1, confirming successful anchorage 

of phosponium ions on the surface of UCNRs. 

       As NaYF4:Yb,Gd,Eu NRs are well-established optical upconversion systems, we 

evaluated the suitability of this new probe for two photon microscopy (TPM) (Fig. 2). The 

intracellular uptake and subcellular trafficking of UCNRs were studied in a murine macrophage 

cell line viz. RAW 264.7. TPM images of RAW 264.7 cells revealed strong intracellular 

emission signals within the cytosol, confirming the cellular internalization of UCNRs Fig. 2a. 



As the concentration of UCNRs was increased, an associated increase in intracellular 

luminescence was detected Fig. 2b. This trend was also evident in the intensity maps generated 

from these data Fig. 2c. The punctated nature of the images, which is detected in the intensity 

maps (Fig. 3c), also suggests that UCNRs localize in specific regions within the cytoplasm. To 

further verify whether the TPP-functionalized UCNRs developed in this study have 

mitochondrial targeting property, cells were stained with Mito Tracker green (MTG), a 

mitochondria-selective dye whose spectral properties are complementary to those of the 

UCNRs. Subsequently, their subcellular trafficking and compartmentalization was examined 

in-depth using the super-resolution structured illumination microscopy. In these experiments 

the  nanorods were one-photon excited at 488 nm and their emission collected at 550 to 650 

nm, whereas MTG was excited at 490 nm and observed to emit at 516 nm (Fig. 3). The intensity 

profile of the Widefield images revealed that 80 percent of the signals of MTG matches with 

that of the TPP-UCNRs. This observation along with the high calculated Pearson’s coefficient 

(91%), suggests that TPP-UCNRs localize in the mitochondria of RAW cells (Fig. 3). For 

further validation of mitochondrial localization, similar co-localization experiments were 

performed with a lysosome-selective stain, Lyso Tracker Green (LTG) (Fig. S4 ESI†). Our 

results confirmed that TPP-UCNRs do not localise over lysosome or nuclei and are specifically 

targeted towards mitochondria. 

     To further examine if the synthesized UCNRs can be used as a contrast agent for MRI 

applications, in vitro relaxometry studies with TPP-UCNRs was performed using a custom-

designed holder and the well-established, spin-echo based T1-T2 mapping protocol. The T1- 

and T2-weighted MRI phantom images of UCNRs in PBS acquired at different repetition time 

(TR) and echo time (TE) are presented in Fig. 4a. As evident from these images, the exact 

relationship between MR signal intensity and Gd3+ concentration was nonlinear and dependent 

on the pulse sequence parameters used during image acquisition. At lower concentrations (0-8 

mM Gd3+), T1 weighting was predominant and UCNRs exhibited concentration-dependent 

positive contrast-enhancement when compared to saline control. In this regime, the T1 

relaxation rate increases linearly with increasing Gd3+ concentration (Fig. 4b) until the positive 

contrast reaches its maximum enhancement point, the value of which depends on the TR used 

as well as T1 and T2 relaxivity of the contrast material (Fig 4c). Beyond this maximal contrast 

enhancement (maxCE) point, the initially observed linear relationship between T1 relaxation 

rate and Gd3+ concentration (Fig. 4b) becomes non-linear and the MR signal starts to diminish 

owing to T2* related signal loss. The R1 and R2 relaxivity of UCNRs were determined to be 3.4 



mM-1s-1 and 23.5 mM-1s-1 respectively (Fig. 4c). The R1 relaxivity of UCNRs were comparable 

to that of literature-reported values for Gd-DOTA and Gd-DTPA at 9.4 T25.  Although the 

UCNRs exhibited distinct T2-effects at higher Gd3+ concentrations and longer TR and TE, its 

R2/R1 ratio (6.91) was almost 14.8 times lower than the measured R2/R1 value (102.6) for the 

well-known ultrasmall iron-oxide nanoparticle based MRI contrast agent, Ferumoxytol 

(Feraheme, AMAG Pharmaceuticals) under similar experimental conditions (R1 = 1.412 mM-

1s-1; R2 = 144.9 mM-1s-1  (ESI†). These results indicate that TPP-UCNRs are more suited for 

T1-weighted MRI; however, depending on the magnetic field strength, pulse-sequence, 

imaging parameters (e.g. TR, TE, flip angle etc.) and concentration of Gd3+ chosen, this 

nanoprobe can be used to achieve enhanced T1 as well as tunable T1-T2 dual modal contrasts 

for MRI applications. These observations are in agreement with earlier reports26-27.  

     To further explore if the synthesized UCNRs can be used as a contrast agent for in vivo MRI 

applications, we performed cerebromicroangiography in healthy C57BL/6 mice using UCNRs 

as the contrast agent. Of note, our in vivo studies were not designed for large group statistics 

tackling a biological question and was rather intended to establish a proof-of-concept that the 

nanoprobe developed in this study can stay in blood circulation to offer robust T1 contrast 

enhancement in vivo. Fig. 5a presents the raw pre-and post-contrast MR images of a mouse 

brain acquired at 200µm3 spatial resolution using a T1-weighted FLASH-3D sequence. The 

post-contrast image revealed the presence of several small cerebral vessels that were not visible 

prior to the injection of UCNRs. Fig. 5b shows the representative 3D cerebrovasculature map 

of the mouse brain, presented as an overlay of the pre-contrast (white) and post-contrast 

(orange) images, constructed using the volume-rendering tools in Amira. We succeeded in 

identifying several key arteries and veins from this dataset including the superior sagittal sinus, 

transverse sinus, rostral rhinal vein, middle cerebral artery, internal carotid artery, anterior, 

posterior and superior cerebral artery and circle of Willis. These results indicate that UCNRs 

developed in this study can be used as a T1-agent for micro-magnetic resonance angiography 

(MRA) in vivo, allowing improved visualization and delineation of vessels. This feature is 

certainly beneficial for the diagnosis of vascular malformations associated with a wide range 

of medical conditions including vasculopathies such as athelosclerosis, neurogenerative 

disorders such as Alzheimer’s diseases, and neoplastic diseases e.g. glioblastoma multiferrome. 

Although in-depth pharmacokinetic evaluation is necessary to quantify the circulation half-life 

of these UCNRs, their MRI detectability in the vessels suggest that following intravenous 

injection, UCNRs are not immediately sequestered by the mononuclear phagocytic system and 



remains in the blood pool throughout the period of data acquisition (~12 min) to demonstrate 

robust T1 contrast enhancement for cerebral microangiography.   

     To further ensure the safety of TPP-UCNRs for biologically relevant applications, in vitro 

cellular viability studies were performed using the MTT assay. Our results indicated that the 

cell viability remained unaltered as compared to that of control group. Certainly, no decrease 

below 98% was detected even after exposures to different concentrations of phosphine 

conjugated UCNRs up to 48 h (Fig. S5, ESI†). These results indicate that the UCNRs are 

biocompatible, making them excellent candidates for biomedical applications. 

   

       In conclusion, we have developed a novel, lanthanide-based upconversion nanoplatform 

for simultaneous mitochondria-targeted optical imaging and T1-T2 dual modal MRI. Judicious 

integration of paramagnetic and upconversion luminescent properties on to the same platform 

results in a multifunctional, mitochondriotropic nanosystem that opens up new avenues for 

mitochondria-targeted theranostics. Our future studies will concentrate on 1) optimizing the 

pharmacokinetic properties of UCNRs for various preclinical imaging applications and 2) 

combining the current method with appropriate blood-brain-barrier opening technologies, 

which is crucial for UCNR-mediated MR imaging of mitochondrial function in vivo.  
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Fig. 1 TEM images of (a) β-NaYF4:Yb,Gd,Eu NRs; (b) and (c) are corresponding SAED 

patterns and HRTEM images of b-NaYF4:Yb,Gd,Eu NRs; (d) phosphine coated b-

NaYF4:Yb,Gd,Eu NRs;. (e) The FT-IR spectra of bare UCNRs (black); silica coated b-

NaYF4:Yb,Gd,Eu NRs (red) and phosphine conjugated UCNRs (blue). (f) Up conversion 

fluorescence spectra of solid phosphine appended NaYF4:Yb,Gd,Eu NPs. 

 

 
 

Fig. 2 Optical microscopy images showing uptake of UCNRs (a) Phase contrast (left), emission after 

two photon emission combined image (right) of RAW cells. (b) Effect of increasing concentration of 

UCP-NP treatment: 50 µg (left), 100 µg (right). (c) Intensity maps for the same concentrations shown 

in b. (Pseudo colour has been employed in all the images.) λExt = 980 nm. 
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Fig. 3 Colocalization experiments (SIM Microscopy) of intracellular localization of UCNRs 

using mito traker probes: Wide field microscopy images of in cellulo-emission of UCNRs 

(panel a) with intensity along traced line shown underneath. Emission from mito traker green 

(panel b) and intensity along the same line shown below. The overlap of the intensity is shown 

in panel c. panel c shows the overlap of the green and red fluorescence, indicating 

mitochondrila localization of the UCNRs. Panel f shows the Pearson co-efficient = 0.92.  

 

Fig. 4 In-vitro relaxometric analysis of UCNRs: (a) Representative T1- and T2-weighted MR 

phantom images of UCNRs in PBS acquired at different TR and TE; (b) Quantification of R1 

and R2 from T1-recovery and T2-decay curves. (c)  Effect of Gd3+ concentration on MRI 

signal intensity.  
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Fig. 5 (a) FLASH-3D MR images of mouse brain (axial orientation) captured at 200 µm3  

spatial resolution before and after injection of UCNRs. (b) Representative 3D 

cerebrovasculature map of the mouse brain generated using the volume rendering tools in 

Amira by overlapping the pre-contrast (in white) and post-contrast (in orange) images.   
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