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ゲ科 |科THE ADULT HYPOTHAL AMUSr 
FUNC TION AND ORGANISATION

The hypothalamus is an evolutionarily-ancient part of the ventral 

forebrain. Its overall organisation and resident cell types have been 

highly conserved in eukaryotes,1 reflecting the crucial role of the 

hypothalamus to life. It is the central autonomic regulator of homeo-

static mechanisms, including energy balance, growth, stress regula-

tion, sleep and reproduction. It integrates numerous inputs, including 

those from sensory afferents and circulating peripheral systems, 
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Abstract
The adult hypothalamus is subdivided into distinct domains: pre-optic, anterior, tu-

beral and mammillary. Each domain harbours an array of neurones that act together 

to regulate homeostasis. The embryonic origins and the development of hypotha-

lamic neurones, however, remain enigmatic. Here, we summarise recent studies in 

model organisms that challenge current views of hypothalamic development, which 

traditionally have attempted to map adult domains to correspondingly located embry-

onic domains. Instead, new studies indicate that hypothalamic neurones arise from 

progenitor cells that undergo anisotropic growth, expanding to a greater extent than 

other progenitors, and grow in different dimensions. We describe in particular how 

a multipotent Shh/Fgf10-expressing progenitor population gives rise to progenitors 

throughout the basal hypothalamus that grow anisotropically and sequentially: first, 

a subset displaced rostrally give rise to anterior-ventral/tuberal neuronal progenitors; 

then a subset displaced caudally give rise to mammillary neuronal progenitors; and, 

finally, a subset(s) displaced ventrally give rise to tuberal infundibular glial progeni-

torss	As	this	occursp	stab旭e	popu旭ations	of	Shh+ive and Fgf10+ive progenitors form. We 

describe current understanding of the mechanisms that induce Shh+ive/Fgf10+ive pro-

genitors and begin to direct their differentiation to anterior-ventral/tuberal neuronal 

progenitors, mammillary neuronal progenitors and tuberal infundibular progenitors. 

Taken together, these studies suggest a new model for hypothalamic development 

that we term the �anisotropic growth model�. We discuss the implications of the 

model for understanding the origins of adult hypothalamic neurones.
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compares these with ideal basic set-points for features such as hor-

mone and metabolite levels, temperature and electrolyte balance, 

and then initiates feedback systems to restore optimal physiology. In 

addition, the hypothalamus mediates allostasis, that is,  the ability to 

re-evaluate optimal set-points to anticipate the organism's changing 

environment. The adaptive responses of homeostasis and allostasis 

operate through autonomic, endocrine and behavioural systems and 

over different durations of time to maximise the chance of individual 

and species survival. In this way, hypothalamic cells enable the body 

to respond, anticipate and adapt to changing physiological condi-

tions over life.

Classically, the adult hypothalamus is divided into four domains: 

pre-optic, anterior, tuberal and mammillary. Each domain harbours 

cell clusters, termed nuclei, and less well-defined territories, all 

arranged in a patchwork manner. Early reports, based on lesion 

studies, led to the idea that a particular nucleus, or territory, might 

centrally control a particular behaviour; however, sophisticated new 

approaches, including cell-specific and conditional knockouts, che-

mogenetic and optogenetic studies, now suggest that activation of 

a particular neurone increases the likelihood of an event or a be-

haviour, such that homeostasis of a particular physiological state is 

mediated by complex interactions of multiple nuclei/neurones.2

ゴ科 |科E ARLY MODEL S OF HYPOTHAL AMIC 
DE VELOPMENT

There is a pressing need to determine how particular hypothalamic 

neurones arise in life, to provide insight into the ability of the body 

to anticipate and adapt robustly, to provide insight into pathologi-

cal conditions/dysfunctional behaviours such as chronic stress, 

reproductive and eating disorders, and to inform efforts to direct 

the differentiation of human pluripotent cells to hypothalamic neu-

ronal fates, all studies with enormous potential for the evaluation 

of future novel therapies for conditions such as obesity. Many pre-

vious models of hypothalamic development have been proposed 

and two in particular have received much attention: the columnar 

model and the prosomeric/revised prosomeric model. Each suggests 

that adult domains, and their resident nuclei/territories/neurones, 

arise from correspondingly located embryonic domains that expand 

isotropically (ie, to the same extent). The columnar model suggests 

that the hypothalamus is a diencephalic-derived structure, with pre-

optic, anterior, tuberal and mammillary progenitor subsets arrayed 

in columns along the anterior-posterior (future rostro-caudal) axis, 

reflecting an early anterior-posterior regionalisation of the neural 

tube.3 The prosomeric/revised prosomeric modelジpズ suggests that 

adult domains/nuclei/neurones reflect the position of progenitors 

in the alar or basal plate. In this model, alar and basal territories are 

defined on the basis of their position relative to a diagonal stripe of 

ce旭旭s	that	express	the	signa旭旭ing	mo旭ecu旭ep	Sonic	hedgehog	ｪShhｫs	A旭arr	
progenitors lie rostral/superior to Shh+ive cells, and basal progenitors 

lie within/caudal/inferior to Shh+ive cells. Furthermore, this model 

suggests that alar progenitors arise from a common diencephalic/

telencephalic unit. In the revised prosomeric model, both ventral 

and dorsal parts of the anterior hypothalamus (containing the su-

prachiasmatic	 nuc旭eus	 ｬSCNｭp	 paraventricu旭ar	 nuc旭eus	 ｬPVNｭ	 and	
periventricu旭ar	 nuc旭eus	 ｬPeVNｭ	 respective旭yｫ	 are	 derived	 from	 a旭ar	
progenitors, whereas tuberal and mammillary neurones/nuclei (in-

c旭uding	the	arcuate	nuc旭eus	ｬARCｭ	and	ventromedia旭	nuc旭eus	ｬVMNｭｫ	
are derived from basal progenitors. Importantly, proponents of 

each model point out that these provide a useful starting point for 

probing the origins of hypothalamic neurones, but acknowledge the 

difficulties in ascribing adult neuronal populations to progenitor 

domains, not least because differentiating neurones may undergo 

complex migrations.葦pゼ Each model was proposed before the advent 

of conditional knockout approaches, or sophisticated lineage-trac-

ing studies, and so neither takes account of the extensive growth of 

the hypothalamus in the earliest stages of its development, or of the 

possibility that progenitor cells might migrate as they are specified.

Recent work in the embryonic chick, which examines the growth 

of a previously-undefined progenitor population, now suggests that 

progenitor displacement/migration is key to hypothalamic develop-

ment, and suggests a fundamentally different model of hypothalamic 

development to those previously suggested. Here, we summarise 

these studies芦 and describe an �anisotropic growth model� of hypo-

thalamic development.

ザ科 |科ANISOTROPIC GROW TH MODEL OF 
HYPOTHAL AMIC DE VELOPMENT

ザsゲ科|科Induction of Shh+ive ventra旭 mid旭ine ce旭旭s

A	 specia旭ised	 axia旭	 ce旭旭	 popu旭ationp	 the	 prechorda旭	 mesendoderm	
(PM) underlies the prospective hypothalamus for many hours in the 

neurula stage embryo.9,10 Differential tissue movements, and the 

rapid proliferation of basal hypothalamic progenitor cells (see below), 

results in the PM being in register, first with the entire prospective 

hypothalamus, then the posterior (mammillary) hypothalamus, then 

the caudal diencephalon.芦pゲグ､ゲゴ However, gain- and loss-of function 

studies in a range of vertebrates suggest that even such transient ap-

position is sufficient for the PM to initiate one of the earliest steps in 

hypothalamic development: the induction of a population of Shh-ex-

pressing ventral midline forebrain cells, termed rostral diencephalic 

ventra旭	mid旭ine	ｪRDVMｫ	ce旭旭s13-17, that extend to the boundary with 

Foxg1,芦 (ie, the telencephalic boundary)ゲ芦	ｪFigure	ゲAｫs	As	discussed	
be旭owp	RDVM	ce旭旭s	p旭ay	a	critica旭	ro旭e	in	subsequent	steps	in	hypo-

thalamic development.

The PM expresses the secreted glycoprotein, Shh, and studies of 

isolated chick tissue explants reveal that Shh is required to induce 

Shh+ive	RDVM	ce旭旭ss13,15 Other factors, however, synergise with Shh to 

mediate this event, including the transforming growth factor β signal-

旭ing	旭igandp	Noda旭p	deriving	from	the	PM15,19,20 and the transcription 

factor (TF), Six3.ゲ葦 In Shh-null embryos, embryos haploinsufficient 

for Six3p	or	with	dysfunctiona旭	Noda旭	signa旭旭ingp	RDVM	ce旭旭s	are	not	
induced and embryos develop holoprosencephalic phenotypesゲ葦pゴゲ. 

The precise regulation and duration of Shh expression in the PM is 
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crucia旭	for	RDVM	ce旭旭	inductions	Loss	of	a	sing旭e	copy	of	Shh, or mu-

tations that lead to reduced expression of Shh in the PM, result in 

holoprosencephaly.22 The temporal perturbation of Shh signalling 

correlates with the severity of holoprosencephalic phenotypes: the 

earlier the alteration, the more severe the phenotype.ゴザpゴジ The tight 

temporal control of Shh	in	the	PM	is	regu旭ated	by	Noda旭p	which	acts	
in a juxtacrine manner to control the duration of Shh expression.25 

Elegant analyses in mouse show that Shh	expression	in	RDVM	ce旭旭s	
is	regu旭ated	by	a	unique	enhancerp	SBEゴ	ｪShh	brain	enhancer	ゴｫsゴ葦

Once	inducedp	Shh	diffuses	out	of	RDVM	ce旭旭s	to	estab旭ish	a	mor-
phogen gradient in adjacent diencephalic cells that is translated into 

a	ce旭旭､intrinsic	G旭iA､G旭iR	gradientp27-29 similar to that found in the spi-

nal cord.30	The	predicted	G旭iA､G旭iR	gradient	 is	considered	to	set	up	
an early dorso-ventral pattern, characterised by domains of Shh and 

the	homeodomain	TFsp	Nkxゴsゲp	Nkxゴsゴ	and	Pax葦	ｪFigure	ゲBp	 insetｫr	
Nkxゴsゴ	is	expressed	in	a	diagona旭	stripe	of	ce旭旭s	that	span	the	accepted	
basal-alar boundary.ジpズpゲゲpゲ葦pゲゼpゴゼpザゲ Recent work validates this idea: in 

mice where Shh	 is	de旭eted	 in	RDVM	ce旭旭sp	 ｪShhΔhyp	miceｫp	Nkxゴsゴ	 is	

F I G U R E  ゲ 科Prechorda旭	mesendoderm	induces	rostra旭	diencepha旭ic	ventra旭	mid旭ine	ｪRDVMｫ｠basa旭	hypotha旭amic	ｪbHypｫ	ce旭旭ss	Schematic	
sagitta旭	views	of	chick	embryo	ｪ芦､ゲグ	somitesｫs	Ap	Induction	of	Shh+ive	RDVM	ce旭旭s	in	the	芦	somite	embryo	through	Shh｠Noda旭	from	under旭ying	
prechorda旭	mesendoderms	PMp	prechorda旭	mesendoderms	Bp	Estab旭ishment	of	dorso､ventra旭	pattern	through	a	Shh	morphogen	gradient	
from	RDVM	ce旭旭sr	inset	shows	patterned	progenitor	domainss	Cp	Differentiation	to	bHyp	ce旭旭s	that	co､express	Shh, BMP7 and Fgf10 (red 

areaｫp	under	the	inf旭uence	of	BMPゼ	from	prechorda旭	mesendoderm
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reduced	 and	 Pax葦	 expands	 ventra旭旭ys29 Cross-repressive TF inter-

actions may then sustain pattern: in zebrafish, triple knockdown of 

nkxゴsゲp	nkxゴsジa	and	nkxゴsジb	旭eads	to	the	ventra旭	expansion	of	pax葦s32

ザsゴ科|科Shh+ive RDVM ce旭旭s deve旭op into Shh+ive 
Fgf10+ive bHyp ce旭旭s

By	contrast	to	f旭oor	p旭ate	ce旭旭s	at	the	ventra旭	mid旭ine	of	the	posterior	
neuraxis, Shh､expressing	RDVM	ce旭旭s	undergo	profound	mo旭ecu旭ar	
changes: double label in situ hybridisation studies in the chick show 

that Shh+ive	RDVM	ce旭旭s	are	the	precursors	to	a	Shh/BMP7/Fgf10-ex-

pressing population that is in precise register with the underlying 

PM, and that, at its anterior end, abuts Foxg1+ive telencephalic pro-

genitors芦	ｪFigures	ゲC	and	ゴAp	red､greenｫs	This	progenitor	popu旭ation	
therefore appears to be a ventral subset of a larger diencephalic 

subset, potentially one analogous to the Foxd1+ive progenitor subset, 

which has been shown, in the mouse, to give rise to the hypothala-

mus and pre-thalamus.33

Studies in chick and mouse indicate a likely mechanism for the 

transition of Shh+ive	RDVM	to	Shh+ive/BMP7+ive/Fgf10+ive	ce旭旭ss	After	
inducing Shh+ive	RDVM	ce旭旭sp	the	PM	down､regu旭ates	Shh/Nodal, and 

up-regulates BMP7, which in turn induces its own expression (and 

that of T-box transcriptional repressors, Tbx2/Tbx3, and BMP4) in 

RDVM	ce旭旭ssゴズpザジ､ザ葦	BMPp	acting	in	a	paracrine	manner	from	the	PMp	
or	in	a	juxtacrine	manner	from	RDVM	ce旭旭sp	induces	Fgf10	in	RDVM	
cells.35 We refer to cells that (transiently) co-express Shh/BMP/Tbx2/

Fgf10	as	bHyp	ｪbasa旭	hypotha旭amicｫ	ce旭旭ss	A	number	of	studies	indi-
cate that the hypothalamus, including bHyp cells, can only develop 

if Wnt signalling is decreased.ザゼpザ芦 Wnts deriving from telencephalic 

progenitor cells, may restrict the anterior limit of the hypothalamus, 

including the bHyp domain.ザ芦､ジグ The mechanism through which de-

creased Wnt signalling might support hypothalamic development is 

unclear, although, potentially, it enables the induction of Tbx genes: 

studies	in	chick	demonstrate	that	BMP	may	induce	Tbxゴ	by	decreas-
ing levels of Wnt/Wnt signalling.35

ザsザ科|科bHyp ce旭旭s are pro旭iferating progenitors 
that give rise to the basa旭 hypotha旭amus through 
anisotropic growth

As	 RDVM	 ce旭旭s	 transit	 to	 bHyp	 ce旭旭sp	 they	 undergo	 pronounced	
changes in cell cycle: first they undergo a transient arrest, then they 

become highly proliferative.

Targeted DiI/DiO fate-mapping studies in the chick embryo show 

the fate of the proliferative bHyp progenitor cells. They give rise to 

other progenitor subtypes that, through growth/displacement, ex-

tend throughout the basal hypothalamus from the optic vesicle to 

the mammillary pouch.芦 Growth of particular progenitor subsets oc-

curs anisotropically and sequentially from bHyp cells: first a subset is 

displaced/migrates rostrally and gives rise to Six3+iveFoxg1┉iveFgf10┉ive 

wanteriorx	progenitors	ｪFigure	ゴBp	orangeｫp	then	a	subset	is	disp旭aced｠
migrates caudally and gives rise to Emx2+ive mammillary progenitors 

(Figure 2C, blue); finally, progenitor(s) are displaced ventrally and give 

rise to tuberal infundibular progenitorsジゲpジゴ	 ｪFigure	ゴDp	arrowsｫs	As	
anterior progenitors are generated, the bHyp domain resolves into 

distinct domains of Shh+ive and Fgf10+ive progenitors: each of these 

is then stably-maintained throughout embryogenesis. Indeed, a pool 

of undifferentiated Fgf10+ive progenitors appears to be retained 

throughout life (beyond the scope of the present review; Placzek 

Msp	Fu	Tsp	Towers	Ms	ｬsubmittedｭｫs	The	sequentia旭	anisotropic	growth	
in three-dimensions from bHyp progenitor cells is peculiar and un-

precedented	within	centra旭	nervous	system	ｪCNSｫ	deve旭opments	The	
anisotropic patterns of progenitor growth obscure earlier dorso-ven-

tral (Shh-mediated) patterning. Furthermore, the extensive growth 

of progenitor population begins to change the overall shape of the 

hypothalamus, as well as the relative positions of progenitor cells: 

thus, when first induced, bHyp progenitors directly abut Foxg1+ 

Foxg1+ive telencephalic progenitors but then become displaced by 

their anterior-daughters and so, ultimately, Fgf10+ive progenitors 

come to be located in the ventral tuberal hypothalamus (Figure 2).

ザsジ科|科Mo旭ecu旭ar mechanisms of basa旭 hypotha旭amic 
anisotropic growth

One outstanding question is whether the basal hypothalamus is gen-

erated through similar anisotropic sequential growth in other verte-

brates. The chick, similar to humans, develops from a flat gastrula, 

whereas the mouse develops through an egg-cylinder embryo: po-

tentially, different forces could operate in each, with consequences 

for hypothalamic progenitor growth. However, studies suggest that, 

where examined, the molecular mechanisms that lead to anisotropic 

growth of bHyp progenitors have been conserved across species. In 

chick, the return to cell cycle and proliferation that drives the devel-

opment and growth of the basal hypothalamus occurs as the bHyp 

domain resolves into two Fgf10+ive progenitor subtypes: a posterior 

population that expresses Fgf10 and BMP7	ｪFigure	ザAp	redｫ	and	an	an-

terior population that expresses Fgf10 and Shh	ｪFigure	ザAp	po旭ka	dotsｫs	
These give rise to progenitor cells that down-regulate Fgf10 but re-

tain｠up､regu旭ate	Shh	and	are	disp旭aced｠migrate	anterior旭y	ｪFigure	ザAp	
hatched). We term such cells, which derive from bHyp cells, �neuroep-

ithelial Shh+ive progenitors�. The mechanism behind the resolution of 

bHyp cells and generation of neuroepithelial Shh+ive progenitors is 

partly understood and, where investigated, has been conserved: once 

the transcriptional repressors Tbx2/Tbx3 are up-regulated in bHyp 

cells, they rapidly and directly repress Shh by sequestering Sox2 away 

from a cis､regu旭atory	e旭ement	in	the	SBEゴ	enhancersザズpジザ	Loss	of	Shh 

is accompanied by the down-regulation of the Shh receptor, Patched 

(Ptc), in most bHyp cells. However, peripheral bHyp cells behave dif-

ferently to their central neighbours: they maintain/up-regulate Shh 

and Ptc and down-regulate Fgf10 (potentially through loss of the Fgf 

signalling mediator, pea3).35 In this way, the bHyp population quickly 

gives rise to molecularly-distinct daughter populations: Fgf10+ive cells 

that overlap with peripheral Shh+ive cells. The spatial resolution of Shh 

and Fgf10 expression is linked to proliferation and depends on the 

inter､regu旭ation	ofp	and	ba旭ance	betweenp	Shh	and	BMP	signa旭旭ingr	in	
chick, if Shh/Shh signalling are aberrantly maintained, proliferation 
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is not stimulated35; similarly, mouse ShhΔhyp embryos show a rostral 

shift in BMP4 expressionゴ芦 and an expanded zone of non-proliferat-

ing Tbx3､expressing	RDVM	ce旭旭ss29

ザsズ科|科Anterior progenitor se旭ection and 
differentiation

At	the	same	timep	a	conserved	transcriptiona旭	programme	supports	
both the selection of anterior neuroepithelial Shh+ive progenitors 

ｪFigure	ゴBp	 hatchedｫ	 and	 their	 subsequent	 differentiation	 to	 ante-

rior	 progenitors	 that	 migrate｠are	 disp旭aced	 rostra旭旭y	 ｪFigure	 ゴBpCp	
orange). Genetic analyses and pharmacological interventions in ze-

brafish and chick begin to reveal that feed forward-forward-back 

regulatory interactions between Shh and the paired-box transcrip-

tion factor Rx (or its zebrafish homologue, rx3) establish a growth 

loop that selects, and then provides a dynamic stream of anterior 

neuroepithelial Shh+ive progenitors.芦pジジ Conditional genetic analyses 

indicate that a similar growth loop may exist in mouse,ジズ although this 

remains to be formally tested. Key to this growth loop is the ability of 

Shh to non-autonomously induce Rx, for Rx to autonomously induce 

Shh, and for Shh to subsequently autonomously down-regulate Rx 

for cells to realise the anterior growth programme. Potentially, Shh-

Rx interact additionally with Foxd1 and/or Six3: each interacts with 

Shh and each promotes proliferation.ザザpジ葦､ジ芦

Having acted with Rx to select anterior progenitors, in a sub-

sequent step, Shh appears to up-regulate p57kip2芦 and components 

of	the	Notch	pathwayジゾpズグ to promote a neurogenic differentiation 

programme	ｪFigure	ゴBpCｫs	Up､regu旭ation	of	p57kip2	and	Notch	com-

ponents is followed by the up-regulation of Shh itself, through an 

unknown mechanism. Therefore, in space, there is an opposing dif-

ferentiation-proliferation gradient: highest levels of proliferation are 

detected in Fgf10+ive and Shh+ive progenitor cells, and highest lev-

els of p57kip2 (marking cell cycle exit/differentiation) are detected 

in daughter cells that have migrated/are displaced furthest away芦 

(Figure 2C).

There are a number of implications to these findings. First, hav-

ing initially acted as a morphogen to pattern the early hypothala-

mus, Shh then regulates growth, potentially by regulating the cell 

cycle. Second, anterior neuroepithelial Shh+ive progenitor cells are 

a dynamic cell population: Shh+ive progenitors are constantly being 

generated. Potentially, this creates a temporal dimension, where 

waves of progenitors arise in a spatio-temporal manner from ante-

rior neuroepithelial Shh+ive progenitors, providing the opportunity 

to build complex arrays of basal hypothalamic neurones. In support 

of this idea, genetic or pharmacological studies that down-regulate/

prevent Shh or Rx activity leads to the failure of differentiation of 

many different neuronal subtypes of the basal-anterior and tuberal 

hypothalamus, including pomc, avp, otp, TH and Sst neurones, and 

F I G U R E  ザ 科Anterior	progenitor	
growth and differentiation from 

basa旭	hypotha旭amic	ｪbHypｫ	ce旭旭ss	Ap	
Resolution of bHyp cells into posterior 

Fgf10/BMP7+ive (red) and anterior Fgf10/

Shh+ive (polka dot) domains and onset 

of growth (depicted by curved arrow). 

Shh+ive neuroepithelial progenitors 

(hatched) that down-regulate Fgf10 grow 

anteriorly from Fgf10/Shh+ive	ce旭旭ss	Note	
that, although shown in sagittal view, 

Shh+ive neuroepithelial progenitors form 

an arc around Fgf10+ive	ce旭旭ss	Bp	Continued	
generation and differentiation of 

anterior progenitors (orange) from Shh+ive 

neuroepithe旭ia旭	progenitorss	Cp	A	gradient	
of proliferation and differentiation is 

detected in the developing hypothalamus, 

emanating from bHyp progenitors 

(adapted from Fu et al1)
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neurones of the tract of the post-optic commissure.ゲp芦pゲ芦pゴゼ､ゴゾpザ葦pジジpジズ 

However, future lineage-tracing studies that build on previous/re-

cent studies芦pゴゼpゴゾpズゲ are needed to tease out which neurones require 

Shh non-autonomously vs autonomously; namely, to distinguish be-

tween neurones born from progenitors that respond to Shh (but do 

not express it) vs neurones that differentiate from Shh+ive progenitor 

populations.

ザs葦科|科Maintenance of a ventro､tubera旭 Fgf10+ive 
progenitor poo旭

Throughout the generation of anterior neuroepithelial Shh+ive progen-

itors, a pool of Fgf10+ive progenitors is established and maintained.芦 

The mechanisms that select a steady supply of anterior neuroepithe-

lial Shh+ive progenitors simultaneously form part of the mechanism 

that ensures a stable-size pool of Fgf10+ive progenitors in a mecha-

nism that may be conserved across species. Thus, genetic and phar-

macological interventions suggest that Shh, deriving from anterior 

neuroepithelial progenitors, feeds back to regulate the size of the 

Fgf10+ive pool芦pザ葦 (note that Wnt may also be involvedザゾpジグ). Certainly, 

in other parts of the brain, differentiating cells feedback to progeni-

tor cells to maintain their appropriate numbers and behaviours.52 

In chick, mouse and zebrafish, progenitor cells within the Fgf10+ive 

poo旭	 continue	 to	express	Fgf	 signa旭	 componentsp	 inc旭uding	pMAPK	
and pea3, and to respond to juxtacrine Fgf signalling, into late stages 

of embryogenesis. Their ability to continue to express Fgf10 and re-

spond to Fgf signalling has important implications for the future de-

velopment, maintenance and function of the hypothalamus, including 

formation of the hypothalamic-pituitary neuraxis (beyond the scope 

of	the	present	reviewq	P旭aczek	Msp	Fu	Tsp	Towers	Ms	ｬsubmittedｭｫs

ザsゼ科|科Mammi旭旭ary progenitor generation and 
differentiation

In the short-term, the maintenance of pools of undifferentiated 

Fgf10+ive progenitor cells is important for generating the mammil-

lary progenitors that begin to appear after anterior progenitors, 

and that migrate/are displaced posteriorly芦	ｪFigure	ゴCｫs	At	presentp	
it is not clear what promotes the switch from anterior to mammil-

lary progenitor generation: indeed, currently, we understand little 

about either this transition or the process of mammillary progeni-

tor	se旭ection｠growthp	a旭though	the	transcription	factorp	Lhxズp	p旭ays	
a role in mammillary differentiation.53 Mammillary progenitors ap-

pear to be generated from a posterior proliferation front芦 and altera-

tions	 in	the	ba旭ance	of	Shh	and	BMP	signa旭旭ing	disrupt	mammi旭旭ary	
progenitors and differentiating cells, suggesting some similarities 

in the programmes of differentiation of anterior and posterior pro-

genitors.ザズpジゲ Regardless of the mechanism, the extensive growth of 

anterior then mammillary progenitors obscures earlier patterning. 

The simple organisation of the hypothalamus along the dorso-ven-

tral axis, established through early Shh patterning, is rapidly eroded 

through the subsequent extensive growth of anterior and mammil-

lary progenitor populations.

ザs芦科|科Infundibu旭ar progenitor generation and 
differentiation

Finally, having generated anterior and mammillary progenitors that 

extend in opposite directions, the Fgf10+ive progenitor pool gives rise 

to another set(s) of progenitors: infundibular progenitors that grow 

ventrally.ジゲpジゴpズジ Unlike anterior and mammillary progenitors, infun-

dibu旭ar	progenitors	are	g旭ia旭	in	natures	Potentia旭旭yp	the	Notch	signa旭-
ling pathway triggers a switch from neurogenesis to gliogenesis: in 

Hesギｨ┉}┉ｩ; Hes5(+/�) mutant embryos, progenitor cells differentiate 

into neurones at the expense of pituicytes (derivatives of the in-

fundibulum: see below).ジゴ Other experiments begin to reveal that 

Fgf10 is itself required for growth of the infundibulum: if Fgf10 is 

reduced, eliminated or dysregulated, the infundibulum does not de-

velop and infundibular cells/infundibular-derived cells are apoptotic 

and hypoplastic.芦pズズpズ葦 Knockout studies in the mouse and analysis 

of human variants reveal a number of TFs, such as Hes1/Hes5, that 

are required for infundibular formation, including Nkx2.1, Tbx3 and 

Sox2.ジゴpズゼ Many of these are likely to affect early steps in the devel-

opment of bHyp progenitors but conditional knockout studies are 

beginning to show TFs that act downstream of Fgf signalling and un-

derlie the progression or maintenance of glial infundibular progeni-

torss	In	particu旭arp	Rx	and	the	Lim	homeodomain	TFp	Lhxゴp	may	work	
downstream of Fgf, and in an inter-regulatory manner, to specify the 

infundibulumジズpズ芦､葦ゴr	 in	Lhxゴ､deficient	micep	 the	 infundibu旭um	 fai旭s	
to grow, cells proliferate aberrantly and show increased cell death.葦ゲ 

The	 SoxBゲ	HMG､box	 transcription	 factorp	 Soxザp	 is	 旭ike旭y	 to	 inter-
act	with	Rx｠Lhxゴr	in	humansp	either	reduced	or	e旭evated	dosage	of	
SOX3 leads to infundibular hypoplasia.57

Taken together, then, this sequence of growth leads to progeni-

tor cells of basal anterior, tuberal and mammillary neurones arrayed 

around the ventro-tuberal infundibulum. The sequential anisotropic 

growth in three-dimensions from bHyp progenitor cells is peculiar 

and	unprecedented	within	CNS	deve旭opments

ジ科 |科ANISOTROPIC GROW TH MODEL AND 
HYPOTHAL AMIC ORGANISATION

The �anisotropic growth model� of hypothalamic development shows 

that, in the chick, different rudiments of the adult hypothalamus are 

established at different times, suggesting sequential progenitor pro-

grammes: an early programme that arises as progenitor cells are born 

in	 response	to	an	ear旭y	G旭iA､G旭iR	gradientp	 fo旭旭owed	by	a	 旭ater	pro-

gramme that arises as bHyp progenitor cells develop, and then itself 

has three temporally-sequential components: anterior, mammillary 

and	then	infundibu旭ars	Additiona旭旭yp	the	mode旭	emphasises	the	impor-
tance of progenitor migration/displacement in establishing different 

hypothalamic domains, and shows that, in the chick, at least some 

neurones of the anterior basal hypothalamus are likely to be gener-

ated from Shh､expressing	progenitor	ce旭旭s	ｪanterior	RDVM	ce旭旭s｠ante-

rior Shh+ive neuroepithelial progenitors). The movement of progenitor 

cells, whether passively or actively, is likely to occur to a significant 
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extent	 as	 the	 hypotha旭amus	 deve旭ops	 over	 times	 A旭though	 not	 ex-
amined in detail, alar progenitor cells also undergo extensive migra-

tion.35 The migration of bHyp and alar progenitor cells explains the 

difficulty in matching early progenitors to adult neurones and nuclei.

As	 notedp	 it	 remains	 to	 be	 seen	whether	 a	 simi旭ar	 programme	
builds the hypothalamus in other species. Current lineage-tracing 

studies in the mouse show that Shh-expressing progenitors (either 

posterior	RDVM	ce旭旭s27 or Shh+ive neuroepithelial cells29,51) give rise 

to tuberal and mammillary regions, although they do not provide 

evidence that anterior regions are generated from Shh-expressing 

progenitors. Instead, many existing models suggest that an alar pro-

genitor domain lies between telencephalic and Shh-expressing basal 

hypothalamic progenitors.ジpズ One possibility is that different classes 

of vertebrates have evolved slightly different mechanisms to specify 

the	 hypotha旭amuss	An	 a旭ternate	 possibi旭ity	 is	 that	 current	 旭ineage､
tracing	studies	have	not	marked	anterior､most	RDVM	ce旭旭s	or	ear旭y､
generated Shh+ive neuroepithelial cells (the likely sources of anterior 

progenitors). Certainly, genetic lineage-tracing studies of progenitor 

cells support the idea that many mouse hypothalamic cells arise from 

Foxd1+ive progenitor cells that abut telencephalic progenitors.ゲ芦pザザ

Do gene knockout studies provide insight into how the mouse hy-

pothalamus is built? Previous gene knockout studies have suggested 

two major transcriptional programmes of hypothalamic development: 

a Fezf2/Olig2/Otp/Sim1 programme, which generates neurones of 

the	PVNp	PeVNp	SON	and	SCN	that	occupy	the	anterior	hypotha旭a-
musp	and	a	Nkxゴsゲ､Shh､Rx	progenitor	programmep	which	generates	
neurones	of	the	tubera旭	hypotha旭amusp	 inc旭uding	those	of	the	VMN	
and	ARCq	P旭aczek	Msp	Fu	Tsp	Towers	Ms	ｪsubmittedｫsジズpズゼp葦ゴp葦ザ Thus, for 

examp旭ep	initia旭	reports	suggested	that	the	PVN｠PeVN｠SON｠SCNp	but	
not	the	ARCp	can	be	detected	in	mice	that	旭ack	functiona旭	Nkxゴsゲp葦ジ 
whereas	Lhxゲ	ｪa	marker	of	the	SCNｫ	is	sti旭旭	detected	after	genetic､in-

activation of Shhs	Arguab旭yp	howeverp	these	studies	are	worth	re､vis-
iting: lineage tracing studies provide evidence for extensive migration 

in the mouse葦ズq	 indeedp	 旭ineage	tracing	inc旭uding	ｪa	tau､LacZ	knock､
in	a旭旭e旭e	at	the	Simゲ	旭ocusｫ	of	mice	mutant	for	Simゲ	show	that	PVN｠
SON	 progenitor	 ce旭旭s	 are	 generated	 but	 do	 not	 migrate	 norma旭旭ys葦 
Thus, Sim1 may direct migration, rather than be a master regulator 

of	旭ineages	Furthermorep	a旭though	sti旭旭	presentp	the	PVN｠PeVN｠SON｠
SCN	appear	 reduced	 in	 size	 in	 the	Nkxゴsゲ､nu旭旭	mouse葦ジ raising the 

possibi旭ity	 that	 neurones	within	 the	 PVN｠PeVN｠SON｠SCN	may	 be	
composed of mixed progenitor origin: some arising from bHyp cells 

via	an	Nkxゴsゲ､Shh､Rx	programmep	and	some	arising	from	disp旭aced｠
migrated alar progenitors via a Fezf2/Olig2/Otp/Sim1 programme.

In summary, the final position of hypothalamic neurones does 

not necessarily reflect the position of their progenitors, which can 

migrate extensively. This highlights the importance of future lin-

eage-tracing studies in determining the origin of individual hypotha-

lamic neuronal classes in discrete nuclei.
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